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A B S T R A C T
Weighted Quantile Sum (WQS) regression is a method commonly used in environmental epidemiology to assess

the impact of chemical mixtures in relation to a health outcome of interest. Data are partitioned into a single
training and test set to reduce sample-specific chemical weights. However, in typical epidemiology sample sizes,
this may produce unstable chemical weights and WQS index estimates, and investigators may resort to training
and testing on the same data. To solve this problem, we propose repeated holdout validation whereby data are
randomly partitioned 100 times, producing a distribution of validated results. Taking the mean as the final
estimate, confidence estimates may also be calculated for inference. Further, this method helps characterize the
variability in chemical weights, aiding in the identification of chemicals of concern. This is important since it may
direct future research into specific chemicals.
Using data from 718mother-child pairs in the Swedish Environmental Longitudinal, Mother and Child, Asthma

and Allergy (SELMA) study, we assessed the association between prenatal exposure to 26 endocrine disrupting
chemicals and child Intelligence Quotient (IQ). Results using a single partitionwere unstable, varying by random
seed. The WQS index estimate was significant when all data was used (e.g. no partition) (β =�2.2 CI =�3.43,
�0.98), but attenuated and nonsignificant using repeated holdout validation (β =�0.82 CI =�2.11, 0.45). When
implementing WQS in epidemiologic studies with limited sample sizes, repeated holdout validation is a viable
alternative to using a single, or no partitioning. Repeated holdout can both stabilize results and help characterize
the uncertainty in identifying chemicals of concern,whilemaintaining some of the the rigor of holdout validation.

� [75_TD$DIFF]Repeated holdout validation improves the stability of WQS estimates in finite study samples

� Uncertainty in identifying toxic chemicals of concern is acknowledged and characterized
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Specification Table

Subject Area:
 Environmental Science

More specific subject area:
 Environmental Epidemiology

Method name:
 Repeated Holdout Validation for Weighted Quantile Sum Regression

Name and reference of
original method:
Weighted Quantile Sum Regression
Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. 2015. Characterization of Weighted
Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J Agric Biol
Environ Stat 20:100–120; doi:10.1007/s13253-014-0180-3.
Resource availability:
 gWQS R Package (https://cran.r-project.org/web/packages/gWQS/index.html)
Repeated_Holdout_WQS code (http://doi.org/10.5281/zenodo.2658697)
Method details

Weighted Quantile Sum (WQS) regression is an approach used in environmental epidemiology to
evaluate associations between potentially highly correlated co-exposures and a health outcome [1].
Exposure values are quantiled and combined into a unidirectional weighted index, thereby reducing
dimensionality and avoiding multi-collinearity. WQS provides a single overall effect estimate of the
mixture that is easier to interpret than many other mixtures methods, and individual chemicals are
ranked by their overall contribution to the index, indicating relative importance. In simulations, WQS
demonstrated improved accuracy over traditional regression and shrinkage methods [1]. More
recently, extensions to WQS have enabled wider applications, including interaction and stratification
[2,3], high-dimensional data [4], and the distributed lag modeling framework for serial exposure
measurements [5].

Equation 1 shows the WQS regression formula [1]. For j = 1 to c components of exposure, qji is the
quantile of component j for the ith individual. Theweightwj is estimated for each of the j components,
where weights take on values between 0 and 1 and sum to 1. WQS regression analysis is conducted in
multiple steps. First, weights are estimated using a nonlinear modeling algorithm where the
regression coefficients and weights are estimated simultaneously. An ensemble step is added for
stabilization – e.g., weights are estimated across bootstrapped samples and the final weights are
determined by their average [6]. The overall effect of themixture (WQS index) is estimated by β1, with
weights constrained to a single direction, and is linked to the mean outcome mi using a generalized
linear model, along with the intercept β0, matrix of covariates zi’ and their corresponding coefficients
’.
gðmiÞ ¼ b0 þ b1
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@
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The index can be estimated in both positive and negative directions with separate constrained
analyses in the nonlinear estimation step. The constraint of focusing the inference in a single direction
(combined with the constraints that the weights sum to 1) has the advantage of improving the ill-
conditioning of the estimation due to complex correlation patterns in the quantiled components. The
ensemble step provides the advantage of stabilizing the weights while accommodating variability in
their estimates. Ideally,WQS uses a training set for themodel fitting in ensemble steps, and conducts a
hypothesis test on the WQS index in a holdout, or validation set. Finally, when two indices are
estimated using constraints in the positive direction and one in the negative direction, they may be
combined in a final model to evaluate their joint relationship with the mean response.

Validation techniques are important tools used in predictive modeling and machine learning to
evaluate the replicability of results [7]. Evenwhen prediction, variable selection, or model selection is
not the goal, validation can help assess the generalizability and stability of findings [7,8]. Most
previous WQS regression applications partitioned data into a single training and test set to avoid
sample-specific chemical weights andWQS index estimates (Fig. 1), which may partly reflect random

https://cran.r-project.org/web/packages/gWQS/index.html
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Fig. 1. Comparison of Standard versus Novel Partitioning Schemes for WQS.
Conventional WQS regression partitions a full dataset into a single training and test set to estimate chemical weights and test
the association between theWQS index and outcome (left). Repeated holdout validation randomly partitions data m times and
takes the average WQS index estimate (right).
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noise [1]. However, in finite study samples this reduces statistical power and may lead to
unrepresentative partitions and unstable estimates [9]. While stratified random partitioning can
produce balanced partitions based on a categorical variable of interest, this procedure is less practical
when analyzing multiple continuous chemical exposure variables in WQS regression. Because of this
instability, investigators may forgo partitioning, training and testing on the same full dataset.
However, we show that this may produce optimistic results.

To overcome this problem, we implemented repeated holdout validation which combines cross-
validation and bootstrap resampling [9]. Specifically, we randomly partitioned (with replacement) the
dataset 100 times and repeatedWQSregressiononeach set to simulate adistributionofvalidated results
from the underlying population (Fig. 1). Within each repetition, we still included the bootstrap step
endorsed by Carrico et al. [1] to ensure weights within a single training partition were stable with
improved sensitivity and specificity. With 100 bootstraps per repetition and 100 repetitions, weights
were estimated 10,000 times. Therefore, a drawback is that this procedure is more computational
intensive, taking 100 times longer to run compared to typicalWQS implementations. The distribution of
100 validated results approximated the normal distribution in our analysis of 718 subjects. However, a
larger number of repetitions would provide better normal approximations (e.g.�1000 repetitions as is
typical for bootstrapping) [10]. Note that the training-test split percentages are somewhat arbitrary;we
used [76_TD$DIFF]40%/60% training-testing splits as suggested by Carrico et al. [1] to provide additional power to the
test set for testing the significance of the beta parameter, as compared to a [77_TD$DIFF]50%/50% split.We conducted
analysis in R (R [11]) using the gWQS package [12] and provide additional code for conducting repeated
holdout validation and compiling results in GitHub repository [13].

From the simulated distributions, we took the mean as the final estimate for the chemical weights
andWQS index β coefficient. For coefficient inference, we calculated the 95 % confidence intervals (CI)
based on the standard deviation (SD) of the simulated sampling distribution since this corresponds to
the standard error (SE) calculated for a single sample [10]. Note that the SE ismuch smaller than the SD
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in the simulated distribution and would give unreasonably narrow CIs. Although unconventional, we
did this to facilitate comparison with results from training and testing on the full dataset which are
reported using symmetric CIs.

Our example data comes froma study of prenatal exposure to 26 endocrine disrupting chemicals in
relation to child IntelligenceQuotient (IQ) amongmother-child pairs from the Swedish Environmental
Longitudinal, Mother and Child, Asthma and Allergy (SELMA) study [14]. Chemicals included triclosan,
bisphenols A, F, and S (BPA, BPF, BPS), monoethyl, monobutyl, monobenzyl, di-2-ethylhexyl,
diisononyl, monohydroxyisodecyl, and monocarboxyisononyl phthalates (MPE, MBP, MBzP, DEHP,
DINP, MHiDP, MCiNP), 2-4-methyl-7-oxyooctyl-oxycarbonyl-cyclohexane carboxylic acid (MOiNCH),
diphenylphosphate (DPHP), 3,5,6-trichloro-2-pyridinol (TCP), 3-phenoxybenzoic acid (PBA), 2-
hydroxyphenanthrene (2OHPH), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS),
perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA),
perfluorohexane sulfonic acid (PFHxS), hexachlorobenzene (HCB), trans-nonachlor (Nonachlor),
dichlorodiphenyltrichloroethane and its metabolite dichlorodiphenyldichloroethylene summed
(DDT), and 10 summed polychlorinated biphenyls (PCB). We set the chemical of concern threshold
to a weight of 3.8 %, a value consistent with equal weighting (100 %/26 chemicals).

Compared to running WQS on the full dataset without validation, repeated holdout results were
attenuated towards the null and nonsignificant (Table 1). This does not indicate that results obtained
without validation are incorrect, but that they may only apply to that specific study sample, and may
not generalize. The machine learning literature calls this resubstitution error, and is known to give
overly-optimistic results [9]. Inference from sampling distributions typically uses percentile-based
estimates and CIs (e.g. 2.5th, 50th, 97.5th centiles). We observed similar results using either of the
estimate and CI derivations (Table 1).

Another advantage of repeated holdout validation is that it allows the investigator to characterize
weight uncertainty, aiding in the identification of toxic chemicals of concern. We created a weight
uncertainty plot which efficiently displays all distributional information (Fig. 2). The bars correspond
to the right axis and show the number of repetitions a chemical weight surpassed the chemical of
concern threshold of 3.8 % out of the 100 repeated holdouts. All other plot information corresponds to
the left axis, indicating actual weights (expressed as percentages) with the threshold value clearly
marked. Boxplots display the 25th, 50th, and 75th centiles, with whiskers indicating the 10th and 90th

centiles. Diamonds display mean weights. Individual data points display the weights from each
repetition.

Extreme individual weights exemplify why single partitions may lead to incorrect conclusions
regarding a particular chemical. For example, DPHP had the second highest meanweight (10 %) in the
WQS index, but seven of 100 repetitions were below the chemical of concern threshold,
demonstrating that it may have been misclassified if only one partition was analyzed. Conversely,
the mean weight for Triclosan (3 %) was below the chemical of concern threshold, but 26 % of
repetitions had weights above the threshold. This may be due to random error or an unmeasured
confounder related toTriclosan and IQ. This demonstrates one aspect ofwhy a chemicalmay be related
to neurodevelopmental outcomes in some studies, but not others. The simulated distribution allows
the investigator to evaluate how replicable results may be if the study were repeated using a new
sample from the same underlying population, or another population with similar demographics and
chemical exposure patterns.

There are alternatives to repeated holdout for WQS, but they may only be suitable for specific
research questions. K-fold cross-validation partitions data into 5–10 folds, allowing the WQS index
Table 1
WQS Index β Coefficients and CIs by Validation Technique & Estimation Type.

Validation Technique Estimation Type β Coefficient Lower Limit Upper Limit

None: Train/Test Full Dataset Mean & SE-based 95 % CI �2.20 �3.43 �0.98
Repeated Holdout Mean & SD-based 95 % CI �0.83 �2.11 0.45
Repeated Holdout Median, 2.5th & 97.5th percentiles �0.86 �1.99 0.43
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Fig. 2. Chemicals of Concern Identification & Uncertainty for 26 Endocrine Disrupting Chemicals in Relation to IQ.
Bars correspond to right axis and indicate the number of times a chemical exceeded the concern threshold in 100 repeated
holdouts. Data points, boxplots, and diamonds correspond to left axis. Data points indicateweights for each of the 100 holdouts.
Box plots show 25th, 50th, and 75th percentiles, and whiskers show 10th and 90th percentiles of weights for the 100 holdouts.
Closed diamonds show mean weights for the 100 holdouts. For comparison, open diamonds show the mean weight of the full
sample analysis. Threshold = 3.8 %
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estimate to be averaged across the partitions. In contrast to repeated holdout, it guarantees that each
subject is rotated through training and test sets. However, k-fold validation is more appropriate when
the goal is predictive accuracy, whereas the primary focus of WQS regression is chemical weight
sensitivity and specificity. In high dimensional mixtures settings, WQS with random subsetting
(WQSRS) may be used [4]. This method iteratively selects random subsets of exposures and combines
results across multiple ensemble steps. Simulations showed that WQSRS performed well with over
400 predictor variables.

[78_TD$DIFF]Conclusion

Training and testing on the same dataset is consistent with most epidemiology studies, but this
methodology has limitations that are seldom acknowledged. Specifically, we may simply be fitting to
random noise despite our best efforts to control for themany biases inherent in observational studies.
Compared to training and testing on the same dataset, using a validation hold-out set to test for
significance of the WQS index helps achieve a higher level of rigor, with results that may be more
generalizable and repeatable. Using a single partition for training and validation is appropriate when
the sample size is large enough to produce stable results regardless of random seeds. In smaller
samples, repeated holdout validation can produce more stable WQS index estimates, and help
characterize the uncertainty in the selection of chemicals of concern. Repeated holdout validation is a
useful extension to WQS regression, allowing an investigator to retain some of the rigor of holdout
testing in epidemiologic-relevant sample size. [79_TD$DIFF]
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