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Abstract

This paper presents a method for predicting the total nitrogen content in sandalwood using

digital image processing. The goal of this study is to provide a real-time, efficient, and highly

automated nutritional diagnosis system for producers by analyzing images obtained in for-

ests. Using images acquired from field servers, which were installed in six forest farms of dif-

ferent cities located in northern Hainan Province, we propose a new segmentation algorithm

and define a new indicator named “growth status" (GS), which includes two varieties: GSMER

(the ratio of sandalwood pixels to the minimum enclosing rectangle pixels) and GSMCC (the

ratio of sandalwood pixels to minimum circumscribed circle pixels). We used the error-in-var-

iable model by considering the errors that exist in independent variables. After comparison

and analysis, the obtained results show that (1) The b and L channels in the Lab color system

have complementary advantages. By combining this system with the Otsu method, median

filtering and a morphological operation, sandalwood can be separated from the background.

(2) The fitting degree of the models improves after adding the GS indicator and shows that

GSMCC performs better than GSMER. (3) After using the error-in-variable model to estimate

the parameters, the accuracy and precision of the model improved compared to the results

obtained using the least squares method. The optimal model for predicting the total nitrogen

content is y ¼ 237:374e� ð4:471 L
L0
þ11:927 a

a0
þ2:782 b

b0
Þ
þ 26:248GSMCC � 4:274. This study demon-

strates the use of Internet of Things technology in forestry and provides guidance for the

nutritional diagnosis of the important sandalwood tree species.

Introduction

Santalum album L. is one of the tree species most widely used in perfume, medicine and

advanced craft engraving. Almost all the advantages and benefits of sandalwood stem from the

oil extracted from its core material [1], which is widely used in phytochemistry, pharmacology

and other applications [2]. Due to the extensive demand for this oil in economic centers,
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sandalwood trees have been widely planted in southern China. However, sandalwood is diffi-

cult to nurture because it is sensitive to nitrogen, phosphorus, potassium and H2O levels. The

nitrogen supply takes precedence over the others because nutrient deficiency or excess both

affect heartwood growth; therefore, producers require a real-time and accurate nitrogen diag-

nostic method.

In plants, an insufficient nitrogen supply results in a smaller leaf area and a reduction

in leaf photosynthesis, chlorophyll content and biomass production, leading to yield and

quality losses [3,4]. Additionally, the excessive use of nitrogen-containing fertilizers not only

increases production cost but also environmental pollution. However, agriculture and for-

estry fertilization currently depend on the experience of producers who are willing to apply

nitrogen fertilizer in large amounts to ensure high yields over a range of environmental

conditions.

The chemical composition of the soil can be used to identify the health of plants. The mea-

sures typically used assess the total nitrogen, effective nitrogen and inorganic nitrogen content

(including nitric and ammonia nitrogen) to identify the amount of topdressing [5]. However,

these methods are time-consuming and expensive [6,7,8], and there is no obvious relationship

between the content of the nitrogen in the soil and in the crop. Plant sap analysis can address

these disadvantages and has been successfully applied in the United Kingdom, Germany, Aus-

tralia and the United States [9]; however, this method is destructive to plants and cannot pro-

vide rapid and automatic diagnostics.

Nondestructive testing technologies, including fertilizer windows, leaf color charts, chloro-

phyll meter reading (SPAD value), reflectance spectroscopy, hyperspectral remote-sensing

technology and digital image-processing techniques, have developed rapidly in the past 20

years. However, each approach has shortcomings. For example, fertilizer windows cannot

determine the specific application amount and also requires chemical analysis [10]. The leaf

color chart method has difficulty determining the causes of color changes and is influenced by

plant density and variety [11]. SPAD is used more widely for comparisons, but its measured

leaf area is very limited [12], and when plant nitrogen content is close to or higher than the

optimal value, the SPAD value cannot accurately characterize the chlorophyll content [13].

Reflectance spectroscopy has recently become highly popular in precision agriculture, but the

canopy area measured by this method is relatively small and not representative of the actual

value. Hyperspectral remote sensing technology is affected by the solar altitude angle, wind

speed and soil humidity, and the required equipment is too expensive for many producers.

Nevertheless, despite these disadvantages, hyperspectral remote sensing is likely to become an

essential tool for large-scale nutritional diagnosis in the future.

Nutritional diagnosis based on digital image-processing technology is not only convenient

and fast but also affordable because it does not require expensive data processing technology.

Consequently, this method has been widely used in recent years. Researchers have analyzed

leaf images using digital image-processing technology to provide support for diagnosing the

nutritional status of crops [14]. Leaf color has been recognized as one of the most sensitive

indicators of nutrient deficiencies [15], and nitrogen is directly related to leaf color because it

is a key component of the chlorophyll molecule. Previously, researchers found a relationship

between nitrogen content and leaf color that appears in images. Blinn et al. [15] used aerial

photography to assess the need for fertilizers in loblolly pine plantations. Scharf et al. [16]

established a linear model between the G/B value of the corn canopy and the minimum nitro-

gen application. After more than 30 years of development, nondestructive techniques for

assessing nitrogen using digital images have been applied to rice (Oryza glaberrima L.), wheat

(Triticum aestivum L.), maize (Zea mays L.), cotton (Gossypium spp.) and some other vegeta-

bles. Lee et al. [17] extracted the canopy coverage and ten types of color indicators for rice;
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they reported that those indicators can accurately match the differences caused by varieties

and gradients. To estimate the required nitrogen fertilizer amount, an Android-based rice leaf

color analyzer was proposed by Intaravanne et al. [18]; the key idea in this approach is to

simultaneously capture and process the two-dimensional (2-D) color image data from rice

leaves and their surroundings. In an experiment with wheat, Baresel et al. [19] used both

image analysis and chlorophyll measurements to perform nondestructive detection. The

results showed that chlorophyll measurements cannot reflect biomass, while image analysis

can reflect both biomass and leaf nitrogen content. The development of color models, devices

and artificial intelligence technologies have made image processing more convenient, and

many new methods have been proposed. Romualdo et al. [20] used artificial vision techniques

and digital image-processing to perform nitrogen nutritional-status diagnostics on maize; this

approach can identify nutrient deficiencies at various stages of plant development, especially

in the early growth stages. Confalonieri et al. [21] estimated leaf and plant nitrogen content

using an 18%-gray dark green color index (DGCI) method. Compared to the DGCI and the

corrected DGCI, the new method is considerably more stable with regard to both trueness and

precision. Zhou et al. [22,23] used a ratio of vegetation index/leaf-area index called the RVI/

LAI-reference curve to guide nitrogen fertigation and used image processing technology to

estimate shoot nitrogen concentrations as well as the dry matter of potatoes. The results

showed that normalized VI by ground cover was the best predictor for nitrogen estimation.

In China, studies on this technology started relatively later than in other countries. In 2007,

Wang et al. [24] found a significant relationship between the color index of the plant canopy

and nitrogen rate, yield, total nitrogen, plant nitrate concentration and biomass. Shortly after-

ward, image processing began to be widely applied for nutritional diagnoses. Domestic

researchers have combined digital image-processing technology with plant soil testing and

established corresponding recommended fertilization technology systems [25,26,27]. Zhang

et al. [28] extracted leaf color characteristics using digital image-processing technology; their

comprehensive evaluation showed that the quadratic polynomial established by G/(R-B) could

obtain good prediction results: the coefficient of determination was 81.04%. Li et al. [29]

found that the correlation index between various color factors (G, NRI, NGI, NBI, G/R and G/

B) and nutrition parameters varies substantially as growth stages change, and the normalized

red index (NRI) shows the optimal fit. Jia et al. [30] extracted green and red values from digital

images of cotton, used them to calculate canopy cover and then calibrated the models to

describe the relationship between the canopy cover and the aboveground total nitrogen con-

tent, biomass and LAI. Mao et al. [31] used a combination of spectroscopy and computer

vision to conduct nondestructive nitrogen detection in lettuce. The computer vision approach

extracted 11 plant features from images, including morphological, color and textural features,

which improved the results.

Although nondestructive assessment of nitrogen from digital images has been widely

applied in agriculture, it has been rarely used in forestry. Moreover, different crops have differ-

ent image indicators that reflect their nutritional status, and the methods used in crops and

fruits may not be suitable for trees. Sandalwood is economically valuable, and a large market

demand exists, but due to excessive deforestation and ecological destruction, global sandal-

wood resources have declined sharply. China possesses no natural sandalwood resources, and

because of restrictions in regions and financial conditions, the planting and cultivation of san-

dalwood in China is still in its infancy. Sandalwood generally requires 20–30 years to mature

into useful timber, but that time can be reduced to 15 years through scientific management.

To speed up sandalwood growth, the operators require real-time diagnosis techniques and rea-

sonable fertilization. Therefore, nondestructive nutritional diagnosis based on digital image-

processing technology provides a new approach to developing China’s sandalwood industry.

Total nitrogen content prediction of sandalwood based on digital image processing
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At present, numerous studies are focused on finding the image indicators that represent the

nutrient content; however, these studies often ignore image segmentation effects, which could

influence the optimization process. Regardless of the segmentation algorithm used, error

always exists in color indicators: when defined as independent variables, color indicators

increase system error because the independent variables in the model do not represent the true

values. Simultaneously, nitrogen deficiency also affects plant growth status and can reveal

whether a plant is deficient in nitrogen. However, growth status has not been studied as a

model indicator during model construction in previous research. Therefore, the goals of this

study are threefold: i) to propose an image segmentation algorithm suitable for field images; ii)

to use growth status as a model indicator to predict the total nitrogen content of sandalwood;

and iii) to use the error-in-variable model to estimate the parameters to produce a more reli-

able result.

Materials and methods

Research area survey and data acquisition

The data used in this paper were collected from different forestry centers in northern Hainan

Province containing planted sandalwood trees. To enhance the data representation, the sam-

ples were collected from cities that differ in location and soil type. We chose six study areas

located in four different cities as shown in Fig 1. The soil types of the study areas are shown in

Table 1. Supplementary soil sample descriptions can be found in S1 Table.

In agricultural, crops, plants are relatively short; thus, canopy images can easily be acquired

for use in segmentation [32,33]. However, for forestry, an unmanned aerial vehicle (UAV) is

necessary to perform low-altitude remote sensing to obtain tree canopy images. Not only does

this requirement increase costs but it also has unsolved problems such as shadows caused by

leaves, which affect the reflection information of the canopy when performed on a sunny day

[34]. In this research, we used a field server as ground remote-sensing equipment to monitor

the sandalwood. A field server is a real-time monitoring device consisting of a CCD camera,

air temperature, humidity and soil temperature sensors and a wireless local area network mod-

ule. From 6:00 to 18:00, the cameras captured images every hour and transmitted them to the

server in real time. To reduce the optical illumination effect, we selected images of 1024×768

pixels taken between 12:00 and 14:00.

The sandalwood saplings studied in this research were all started from seedlings. The seed-

lings were grown in nurseries to the 8–10-leaf stage and then transplanted into the forest

farms. After 4 years, 12 saplings were chosen from each farm for the experiment, and field

servers were placed near them. Nitrogen as urea was applied at 4 rates: 0 (N0), 80 (N1), 160

(N2) and 240 (N3) kg/ha. Each rate was applied randomly to groups of 3 saplings at each study

area.

Sampling and testing

Leaf sampling was required after the image data were collected. According to the transmission

mechanism of nitrogen, the nitrogen content in leaves varies with changes in the growth posi-

tion. To ensure that the data were representative, the sampling test was divided into 6 levels

(inside-top, outside-top, inside-middle, outside-middle, inside-bottom and outside-bottom) as

shown in Fig 2. Several leaves—both old and new—were collected at each level. The collected

leaves were dried at 85 ˚C until the weight remained constant, ground through a 20-mesh

screen and analyzed for total nitrogen via Micro-Dumas combustion by the soil testing and

plant analysis laboratory at the Chinese Academy of Tropical Agricultural Sciences.

Total nitrogen content prediction of sandalwood based on digital image processing
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Data analysis

Image data processing was implemented using the MATLAB R2012a platform, and data analy-

sis was performed using SPSS Statistics 21.0 and the R Language. RGB is the most commonly

Fig 1. Distribution of sandalwood samples in northern Hainan Province.

https://doi.org/10.1371/journal.pone.0202649.g001

Table 1. Soil types among the different study areas.

Study area Soil type Geographical location

Longhua District Yellow-brown earth 19˚51025@N~19˚53043@N, 110˚19050@E~110˚21026@E

Qiongshan District Red earth 19˚52017@N~19˚54005@N, 111˚28038@E~111˚29056@E

Long Lou Town White sandy loam 19˚43058@N~19˚44058@N, 110˚57034@E~110˚57050@E

Wenjiao Town Red sandy loam 19˚42005@N~19˚43056@N, 110˚52059@E~111˚54001@E

Ding’an County Seat Dark-brown earth 19˚39008@N~19˚41056@N, 110˚14051@E~110˚16005@E

Tunchang County Seat Latosol 19˚11028@N~19˚13031@N, 109˚57052@E~109˚59018@E

https://doi.org/10.1371/journal.pone.0202649.t001
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used color space for storing and displaying color images, but it is susceptible to illumination

and shadow effects. In contrast, the HSI color space is relatively stable to changes in light

intensity [35]. CIELAB is a device-independent color system based on physiological character-

istics that can express a color range larger than the human eye can see. To analyze the correla-

tions between color values and total nitrogen content, the single-channel mean values of the

RGB, HSI and Lab color spaces were calculated after segmenting the sandalwood from the

complex background.

The total nitrogen content not only affects leaf color but also significantly influences above-

ground biomass. Therefore, in addition to the color factors, a new indicator is proposed in this

paper, “growth status” (GS), represented by GSMER and GSMCC which are discussed separately.

The definition of growth status is as follows.

After segmentation, the minimum enclosing rectangle (MERp) and minimum circum-

scribed circle (MCCp) are searched. Then, the number of sandalwood pixels Sp inMERp and

MCCp are calculated. GSMER and GSMCC are the ratios of Sp to MERp and MCCp, respectively:

GSMER ¼
Sp

MERp
; GSMCC ¼

Sp
MCCp

Error-in-variable model

In the typical regression model, independent variables are regarded as true values, while the

dependent variables have measurement errors. The errors of the variables have various sources

such as sampling error, observation error, and so on. However, the independent variables

may also contain errors from different aspects. In all models, it is assumed that these errors

have a random distribution. We call those random errors the error-in-variable. However, the

typical regression model estimation method is not appropriate when errors exist in both the

dependent and independent variables. In particular, when the measurement error in the

Fig 2. Sampling method.

https://doi.org/10.1371/journal.pone.0202649.g002

Total nitrogen content prediction of sandalwood based on digital image processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202649 August 21, 2018 6 / 22

https://doi.org/10.1371/journal.pone.0202649.g002
https://doi.org/10.1371/journal.pone.0202649


independent variables are relatively large, the results calculated using the conventional method

will produce obvious systematic errors. Therefore, we must use the error-in-variable model to

estimate the parameters [36,37].

The error-in-variable model is a parameter estimation algorithm as described in [38]:

f ðyi; xi; cÞ ¼ 0

Yi ¼ yi þ ei; i ¼ 1; . . . n

EðeiÞ ¼ 0;Var ðeiÞ ¼ S

8
><

>:
;

where f = (f1, f2,. . .,fm)’ is a known vector-valued function in the m dimension; Yi in the 1×p

dimension is the true value of yi—the observation value; ei is the error between Yi and yi; xi in

the 1×q dimension is the observation value with no error; ∑ is the positive definite matrix,

which can be known or unknown; and c is a parameter sized in the k×1 dimension. In general,

p�m. When f is a bilinear function of (yi, xi) and c, the model is called a linear error-in-vari-

able model; otherwise, it is a nonlinear error-in-variable model.

Due to the influence of light and measurement, errors always exist in both independent var-

iables and dependent variables in this research. Thus, the use of the error-in-variable model

methods can ameliorate this problem and improve the prediction ability of the model.

Model evaluation

This study selected 48 groups of data randomly for modeling and then evaluated the model

with the remaining 24 groups of samples. The images used for modeling and validation are

shown in S1 and S2 Figs. The adopted statistical parameters—coefficient of determination

(R2), residual mean value (�e), residual variance value (δ2) and mean square error (MSE)—rep-

resent the differences between the measured and predicted values [39]. Eqs (1) and (2) were

used in modeling to show the fitting degree, and Eqs (1)–(4) were used during validation to

show the precision of the models:

R2 ¼ 1 �

Xn

i¼1

ðyi � y
0

iÞ

Xn

i¼1

ðyi � �yiÞ
ð1Þ

�e ¼
1

n

Xn

i¼1

ðyi � y
0

iÞ ð2Þ

d
2
¼

1

n � 1

Xn

i¼1

ðyi � y
0

iÞ
2

ð3Þ

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2 þ d

2
p

ð4Þ

where yi, y
0

i , �y i and n are the observed values, predicted values, mean of the observed values

and number of samples, respectively.
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Results and discussion

Segmentation algorithm in a complex background

As shown in Fig 3, soil, weeds and other green plants exist in image backgrounds and cause

difficulties during image segmentation. Therefore, to ensure the quality of subsequent work, it

was necessary to propose an accurate image segmentation algorithm.

The CIELAB color model is the most complete color system; it can describe all the colors

visible to the human eye. It has a large color space compared with the RGB system and is more

robust to illumination changes; thus, it is suitable for analyzing images acquired in the field. In

the Lab color system, L represents brightness, which ranges from 0–100, and the "a" and "b"

represent different color channels ranging from -128 to 127.

Due to the complexity of the field images, the traditional RGB color system is unsuitable for

obtaining an accurate segmentation result; using the Lab color space eliminates this problem.

In this study, we transformed RGB into the Lab system and then extracted the L, a and b chan-

nels and conducted the Otsu method to obtain a binary image. Through a large number of

experiments, we found that the Lab color image is suitable for dividing sandalwood and soil

into classes while the a and b channels are suitable for separating sandalwood leaves from soil

and other tree species. Of these, the b channel obtained a better result in comparisons. Never-

theless, some background pixels still remained when using only the a or b channel. Through

experimentation, we found that the L channel can fill in the gaps, allowing sandalwood to be

separated from other plants through brightness, which eliminated most of the residual pixels.

Thus, we chose the b and L channels to conduct the image segmentation. The results are

shown in Figs 4 to 7.

The process of the segmentation algorithm is as follows.

Fig 3. Original sandalwood image.

https://doi.org/10.1371/journal.pone.0202649.g003
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1. Convert the RGB image into the Lab color space; then, extract the b and L channels.

2. Use the Otsu method to convert the b-channel and L-channel images into binary images.

Record the thresholds as TL and Tb. The binary images are recorded as IL and Ib.

3. Perform median filter processing (7×7) on Ib and then multiply it by the original image.

The processing result is recorded as Ib1 (Fig 8).

4. Convert Ib1 into the Lab color space and extract the L channel; then, use the threshold TL to

convert it to binary, and record the result as Ib2 (Fig 9).

5. Perform median filter processing (7×7) on Ib2 and then use the circular structure element

with a radius of 5 to corrode twice and expand twice (Fig 10). Multiply it by the original

image and record the final segmentation result as Ib3 (Fig 11).

Fig 4. Segmentation result of Lab image using the Otsu method.

https://doi.org/10.1371/journal.pone.0202649.g004
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After numerous comparisons and analyses, the template and the structural elements used

in the algorithm were found to be the best choice. As shown in Figs 8 to 11, image Ib eliminates

the soil background and plants with a dark green color. The L-channel is used to separate san-

dalwood from other plants using brightness differences, eliminate scattered pixels through

median filtering and morphological operations, and then, to produce the final segmentation

results.

To verify the algorithm proposed in this paper, we compared it with the results obtained

using both a support vector machine (SVM) method and the results of manual processing with

Photoshop software. The results obtained by Photoshop, which are processed using the polyg-

onal lasso tool, are equivalent to visual interpretation; therefore, we adopted these results as

the ground truth. Seventy images containing both the modeling data and the validation data

were tested. We used a color indicator to diagnose the total nitrogen; therefore, the evaluation

criteria included not only the number of pixels but also the mean values of the RGB channels.

Fig 5. Segmentation result of the L channel image using the Otsu method.

https://doi.org/10.1371/journal.pone.0202649.g005
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All the images tested resulted in a pixel number error within 5% and a color error within 3%,

which indicated that the segmentation algorithm was appropriate. As listed in Table 2, five

images were chosen randomly to show the comparison results. The pixel number errors

obtained through the SVM approach are relatively larger than those obtained by the method

proposed in this paper. This discrepancy could cause deviations when finding the minimum

enclosing rectangle and minimum circumscribed circle for segmenting sandalwood. In addi-

tion to the pixel error, the color value errors obtained by the two methods differed slightly; the

proposed method achieved more stable results.

Parameter selection and model construction to determine the total

nitrogen content in sandalwood

As shown in Table 3, significant correlations were observed among the total nitrogen content,

color factors, and GS indicators. Except for the a and S channels, the other factors are both sig-

nificantly correlated with total nitrogen content at the 0.01 level. The R, L and I channels have

Fig 6. Segmentation result of the a channel image using the Otsu method.

https://doi.org/10.1371/journal.pone.0202649.g006
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the strongest Pearson correlation values; thus, they were selected for combination in a mixed-

color system and were compared with the other color systems when building the model.

Color value and leaf total nitrogen content generally show a linear or nonlinear trend that

can be expressed as linear, reciprocal, power, logarithmic or exponential functions (Table 4).

Thus, those formulas are commonly used to predict nitrogen content, biomass and chlorophyll

content [40–42]. For example, the relationship between the value of the I channel and total

nitrogen of sandalwood is shown in Fig 12. All the obtained models satisfied the fitting results.

Regression analysis of the total nitrogen content prediction model of

sandalwood

Because the best version of the five models’ expressions for each color system is unknown,

each model type was tested against 4 color systems. To select the best color system and GS indi-

cator to estimate the total nitrogen of sandalwood, the linear, reciprocal, power, logarithmic

and exponential models were selected for regression analysis, and 3 groups of data (color,

Fig 7. Segmentation result of the b channel image using the Otsu method.

https://doi.org/10.1371/journal.pone.0202649.g007
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color and GSMER, color and GSMCC) were set up to test the influence of the different GS
indicators.

As shown in the ninth column of Table 5, the R2 values of each model range from 0.812 to

0.848, and the �e values range from -0.424 to -0.234 without adding the GS factor. The differ-

ences between the color systems for any given model is small, and—except for the power func-

tion—the fit of the Lab system result is better than the others. With respect to �e, the Lab

system obtained a better result in the linear, reciprocal, and power models, while the RGB sys-

tem obtained a better result in the logarithmic and exponential models. After adding GSMER
and GSMCC, R2 increased to ranges of 0.841~0.885 and 0.863~0.913, respectively, and �e was

reduced to ranges of -0.402~-0.184 and -0.394~-0.158, respectively. This indicated that the fit-

ting degree obtained when using the minimum circumscribed circle is better than that when

using the minimum enclosing rectangle. The parameter in Table 6 lists the model coefficients

after adding the GSMCC indicator.

Fig 8. Segmentation result after median filter processing.

https://doi.org/10.1371/journal.pone.0202649.g008
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To verify the superiority of the error-in-variable model, we selected the models from

Table 5 where R2 > 0.9 after adding GSMCC and then used the error-in-variable model to per-

form the tests; those coefficients, R2 and �e are shown in Table 6. Compared with the fitting

degree obtained using the least squares method (columns 11–12 in Table 6), the error-in-vari-

able model method improved R2 and reduced �e.

Validation analysis of the total nitrogen content prediction model of

sandalwood

Test validation samples were used to evaluate the models. The results are shown in Table 7.

Compared to the least squares method, the error-in-variable model method both improved R2

and reduced the values of �e, δ2, and MSE, which demonstrates that the error-in-variable model

method can obtain more accurate prediction results. As shown in Tables 6 and 7, the order of

the model prediction accuracy of the modeling data and validation data is not exactly the

same. For example, in Table 6, the Lab color system in the exponential function obtained the

Fig 9. Threshold segmentation result.

https://doi.org/10.1371/journal.pone.0202649.g009
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highest coefficient of determination. However, in Table 7, its �e reached approximately 6—the

second worst value in all of the models. To select the optimal model, we chose the R2 and �e val-

ues obtained from the modeling data, and the R2, �e, δ2, and MSE values obtained from the vali-

dation data. Comparing the different models, the best result was “1”, and the worst was “7”.

The results are shown in the last row of Table 7 and show that the optimal model is the expo-

nential function using the Lab color system. The expression is as follows:

y ¼ 237:374e� ð4:471 L
L0
þ11:927 a

a0
þ2:782 b

b0
Þ þ 26:248GSMCC � 4:274:

Conclusions

With the development of “precision forestry,” there is a bright prospect for forestry informa-

tion inversion and nutritional diagnosis acquired from digital image processing technology.

The images used in this study were selected from different forest farms in the northern cities

Fig 10. Morphological processing.

https://doi.org/10.1371/journal.pone.0202649.g010
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of Hainan Province. We used field servers to capture and monitor the health condition of san-

dalwood trees, and by using this equipment, a total nitrogen content prediction method was

proposed.

Differing from previous studies, we defined a new indicator named GS, which includes two

versions: GSMER and GSMCC. The GS indicators together with the color factors are all treated as

independent variables during the modeling process, and we used the error-in-variable model

to estimate the parameters. This study developed a real-time and precise method to predict the

total N content of sandalwood that meets the diagnostic requirement of automation. Our con-

clusions are as follows:

1. Sandalwood segmentation of field images can be realized by using the Lab color system.

Due to its robustness to illumination changes and its large color range, the Lab color system

provides a better result than RGB or other color systems. By applying the Otsu method to

each channel, we found that the b channel is suitable for extracting green plants from the

Fig 11. Final segmentation result.

https://doi.org/10.1371/journal.pone.0202649.g011
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background, while the L channel is suitable for separating sandalwood from other plants.

Therefore, this study combined those channels together with the Otsu method, median fil-

tering, and morphological processing to complete the segmentation algorithm.

2. We propose a new indicator, named GS, which includes two versions, GSMER and GSMCC, to

describe the plant growth status. The combination of this indicator with the color factors

provides more stable results regarding both accuracy and precision. After adding the GS
indicators, the fitting degree was improved. We obtained better results when using GSMCC
than when using GSMER. Therefore, GSMCC, the minimum circumscribed circle, expresses

growth status more accurately than does GSMER, the minimum enclosing rectangle.

3. Considering that errors exist in both the color and GSMCC indicators, the error-in-variable

model was adopted. Because of segmentation errors cause some color-value and pixel-num-

ber deviations, the traditional regression method is not appropriate. We found that the

Table 2. Segmentation method evaluation proposed in this paper.

Number Methods Pixel number error (%) R mean value Error (%) G mean value Error (%) B mean value Error (%)

(1) ① - 177.11 - 219.99 - 97.13 -

② 2.85 175.32 1.01 222.83 1.29 99.76 2.71

③ 5.94 174.65 1.39 217.93 0.94 101.32 4.31

(2) ① - 196.31 - 227.14 - 102.12 -

② 3.94 198.37 1.05 225.93 0.53 104.93 2.75

③ 6.46 198.12 0.92 224.84 1.01 105.99 3.79

(3) ① - 166.96 - 208.85 - 103.16 -

② 3.37 167.38 0.25 209.71 0.41 101.33 1.78

③ 6.92 168.65 1.01 208.88 0.01 100.43 2.65

(4) ① - 199.63 - 233.15 - 94.07 -

② 3.09 201.39 0.88 235.22 0.88 92.48 1.69

③ 8.67 205.39 2.89 237.43 1.84 91.45 2.79

(5) ① - 185.59 - 219.81 - 102.10 -

② 4.53 183.73 1.00 216.28 1.61 104.73 2.58

③ 6.65 188.39 1.51 223.04 1.47 103.45 1.32

① Represents the results obtained by Photoshop.
② Represents the results obtained by the segmentation algorithm proposed in this paper.
③ Represents the results obtained by the SVM method.

https://doi.org/10.1371/journal.pone.0202649.t002

Table 3. Results of significance tests and Pearson correlations between factors and nitrogen content (m = 48).

Dependent variable Pearson Dependent variable Pearson

R -0.875�� L -0.815��

G -0.775�� a 0.203

B -0.671�� b -0.734��

H -0.543�� GSMCC 0.789��

S -0.426� GSMER 0.524��

I -0.808�� - -

�� Indicates a significant difference at the 0.01 probability level (two-tailed).

� Indicates a significant difference at the 0.05 probability level (two-tailed).

https://doi.org/10.1371/journal.pone.0202649.t003
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results obtained when using the error-in-variable method were better than those obtained

using least squares estimation.

4. Five types of models are discussed in this study. Each model type was fit with four color sys-

tems: RGB, HSI, Lab and RLI. The optimal model of the total N prediction was selected by

Fig 12. Relationship between I channel value and sandalwood total nitrogen content. (a) Linear function; (b) Reciprocal function; (c) Power function; (d)

Logarithmic function; (e) Exponential function.

https://doi.org/10.1371/journal.pone.0202649.g012

Table 4. Prediction models of total nitrogen content in sandalwood.

Model Expression

Linear Combination
y ¼ ags þ

X3

i¼1

aixi

Reciprocal Combination
y ¼ ags þ

X3

i¼1

ai
xi

Power Function
y ¼ ags þ a0

Y3

i¼1

jxij
ai

Logarithmic Function
y ¼ ags þ a0 ln

�
�
�
�

X3

i¼1

aixi

�
�
�
�

Exponential Function

y ¼ ags þ a0e

X3

i¼1

ai
xi
xi
0

 !

In every expression, ags = b0 + b1GSMER or ags = b0 + b1GSMCC, both of which are discussed in this paper. Here, x1, x2

and x3 are the mean values of the single channel in each color system. In the exponential functions, x0i represents

ximax − ximin.

https://doi.org/10.1371/journal.pone.0202649.t004
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comparing the R2 and �e values obtained from the modeling data and the R2, �e, δ2, and MSE
values obtained from the validation data. The results showed that the exponential function

using the Lab color system yields the most satisfying accuracy and precision in regression

and validation.

Table 5. Regression analysis results of the least square method using different indicators (m = 48).

Model Color

System

Coefficient R2 �e
a0 a1 a2 a3 b0 b1 Color

factor

Color factor

+GSMER

Color

factor+

GSMCC

Color

factor

Color factor

+GSMER

Color

factor+

GSMCC

Linear

Combination

RGB - 0.031 -6.496 43.648 0.203 -0.418 0.824 0.841 0.878 -0.301 -0.298 -0.294

HSI - -44.606 -10.707 52.013 0.405 -35.07 0.831 0.852 0.863 -0.289 -0.274 -0.271

Lab - -0.373 -16.349 81.168 -1.145 -0.572 0.839 0.871 0.895 -0.271 -0.266 -0.260

RLI - -0.587 -20.236 88.295 144.874 -0.487 0.827 0.857 0.876 -0.314 -0.303 -0.297

Reciprocal

Combination

RGB - -0.296 -17.073 20.727 -93.151 124.971 0.824 0.872 0.880 -0.293 -0.287 -0.285

HSI - 13.726 -37.074 -15.731 5.904 0.295 0.828 0.863 0.863 -0.309 -0.296 -0.291

Lab - 2.661 -22.404 -4.844 -36.941 -367.321 0.841 0.870 0.902 -0.279 -0.253 -0.226

RLI - -36.62 -26.815 59.015 -9.091 11.22 0.839 0.878 0.892 -0.293 -0.288 -0.281

Power Function RGB 35.141 -2.121 1.362 0.032 -9.977 -23.123 0.838 0.862 0.904 -0.313 -0.265 -0.234

HSI -12.483 0.003 0.005 0.02 12.813 -24.621 0.812 0.864 0.869 -0.347 -0.334 -0.329

Lab 57.563 -1.63 0.652 -0.398 -17.245 -24.276 0.829 0.867 0.904 -0.234 -0.184 -0.158

RLI -6.542 0.864 -0.442 -0.408 114.418 -18.779 0.845 0.885 0.890 -0.299 -0.281 -0.273

Logarithmic

Function

RGB -56.388 0.929 -0.456 -0.074 118.614 -18.458 0.842 0.860 0.900 -0.288 -0.266 -0.239

HSI -73.609 102.18 2.980 143.110 169.522 -19.865 0.813 0.854 0.866 -0.334 -0.321 -0.302

Lab 62.805 23.162 47.639 -39.114 -15.354 -8.397 0.842 0.864 0.887 -0.306 -0.290 -0.284

RLI 7.004 -78.473 -35.590 130.029 -13.058 39.253 0.829 0.861 0.868 -0.379 -0.359 -0.351

Exponential

Function

RGB 84.911 -8.689 4.492 0.411 -9.396 25.619 0.847 0.884 0.912 -0.274 -0.235 -0.221

HSI 89.014 -0.891 -0.072 0.411 -14.896 18.23 0.832 0.857 0.868 -0.424 -0.402 -0.394

Lab 240.139 -4.471 -12.089 -3.518 -3.081 23.898 0.848 0.883 0.913 -0.303 -0.286 -0.274

RLI 2.575 -12.728 10.724 4.674 -13.652 34.163 0.837 0.881 0.901 -0.399 -0.381 -0.374

a0~a3 and b0~b1 are model coefficients after adding the GSMCC indicator

https://doi.org/10.1371/journal.pone.0202649.t005

Table 6. Regression analysis results of error-in-variable models using color and GSMCC indicators (m = 48).

Model Color System Coefficient R2

(EIV)

�e
(EIV)

R2

(LSM)

�e
(LSM)a0 a1 a2 a3 b0 b1

Reciprocal Combination Lab - 2.928 -21.938 -4.844 -34.029 -363.293 0.906 -0.219 0.902 -0.226

Power function RGB 32.194 -2.485 1.879 0.187 -8.386 -24.565 0.915 -0.221 0.904 -0.234

Lab 54.982 -1.419 0.592 -0.236 -19.284 -22.948 0.911 -0.151 0.904 -0.158

Logarithmic function RGB -53.643 0.987 -0.724 -0.184 115.845 -17.827 0.905 -0.231 0.900 -0.239

Exponential function RGB 84.072 -8.428 4.938 0.917 -9.982 25.184 0.916 -0.212 0.912 -0.221

Lab 237.374 -4.471 -11.927 -2.782 -4.274 26.248 0.935 -0.266 0.913 -0.274

RLI 2.982 -13.084 11.524 3.194 -15.384 36.283 0.908 -0.312 0.901 -0.374

EIV: error-in-variable models; LSM: least square method models.

https://doi.org/10.1371/journal.pone.0202649.t006
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