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ABSTRACT The Gram-negative bacterium Escherichia coli causes many diseases, and
antibiotic resistance has become a problem for their treatment. Bacteriophages may
present a viable treatment alternative. Here, the complete genome sequence of E.
coli-infecting myophage Minorna is presented. Proteins needed for replication, mor-
phogenesis, and lysis were identified in the Minorna coding sequence.

The Gram-negative bacterium Escherichia coli causes serious human diseases, includ-
ing bloodstream and urinary tract infections (1). The rate of antibiotic resistance in

E. coli strains is rapidly rising (2), and bacteriophage therapeutics are the new frontier
in combating this threat (3). Here, we describe the complete genome of a new E. coli
myophage, Minorna.

Bacteriophage Minorna, against E. coli JE-1 carrying the plasmid pRA1 (RA1::Tn5
Sqr), was isolated from the creek near Northgate Park in College Station, TX (4). The
water sample was processed through a 0.22-�m filter. Luria broth or agar (BD) was
used for growing the host and phage under aerobic conditions at 37°C, as described
by Adams (5). To determine phage morphology, samples were negatively stained
with 2% (wt/vol) uranyl acetate and viewed by transmission electron microscopy at
the Texas A&M Microscopy and Imaging Center. Minorna genomic DNA was pre-
pared as previously described (6) and sequenced on an Illumina MiSeq instrument
with 250-bp paired-end reads using v2 500-cycle chemistry from an Illumina TruSeq
Nano LT kit library. The 339,988 sequence reads from the index containing the
phage genome were quality controlled using FastQC (http://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) and assembled using SPAdes v3.5.0 (7) with 687-
fold contig coverage after trimming using the FastX toolkit 0.0.14 (http://hannonlab
.cshl.edu). PCR (with primers 5=-CGCGCAGCGTAGCATATAAT-3= and 5=-GAGTTACCTGA
ACGTAGCGAC-3=) and Sanger sequencing confirmed that the contig was complete.
Genes were called using GLIMMER v3.0 and MetaGeneAnnotator v1.0 (8, 9), and tRNA
genes were screened with ARAGORN v2.36 (10). The gene functions were predicted
with InterProScan v5.22 (11), BLAST v2.2.31 against the NCBI nr (12) and UniProt
Swiss-Prot and TrEMBL databases (13), LipoP (14), and TMHMM v2.0 (15). Rho-
independent termination sites were annotated using TransTermHP (http://transterm
.cbcb.umd.edu/). All analyses were run using default parameters in the Galaxy (16) and
Web Apollo (17) instances hosted by the Center for Phage Technology (https://cpt
.tamu.edu/galaxy).

Bacteriophage Minorna is a myophage with a 43,264-bp genome. The G�C content
is 51%, matching the G�C content of its host. There are 57 protein-coding genes, 26
with predicted functions, and no tRNAs, with an overall 94% coding density. Minorna
was compared with other phages by progressiveMauve2.4.0 (18) and shares similarity
with many Klebsiella phages, including its highest nucleotide sequence identity, at 80%,
with KPV811 (GenBank accession number KY000081) and its highest amino acid
similarity at 84% identity to Klebsiella phages KpV48 (KX237514), both T1-like phages.
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Consistent with the packaging mechanism of phage T1, headful packaging for Minorna
was predicted by PhageTerm (19).

A complete lysis cassette is present at the beginning of the genome, including an
endolysin with two predicted transmembrane domains (GenBank accession number
QBP07053), a holin with one transmembrane domain (QBP07054), and a unimolecular
spanin (QBP07055) similar to the T1 phage unimolecular spanin, which is associated
with both bacterial membranes (20, 21). The morphogenesis proteins identified are also
grouped together and span from the large (QBP07058) and small terminase subunits
through tail proteins, internal core protein, major capsid protein, and portal protein
(QBP07071). The internal core protein (QBP07063) is the largest protein, at 1,232
residues. Encoded proteins for replication and transcription include DNA helicase
(QBP07093), DNA primase (QBP07096), DNA polymerase (QBP07090), and RNA poly-
merase (QBP07075). There are no identified introns or frameshifts.

Data availability. The genome sequence and associated data for phage Minorna
were deposited under GenBank accession number MK598851, BioProject accession
number PRJNA222858, SRA accession number SRR8869232, and BioSample accession
number SAMN11360441.
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