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Abstract Sleep is necessary for the optimal consolidation of newly acquired procedural

memories. However, the mechanisms by which motor memory traces develop during sleep remain

controversial in humans, as this process has been mainly investigated indirectly by comparing pre-

and post-sleep conditions. Here, we used functional magnetic resonance imaging and

electroencephalography during sleep following motor sequence learning to investigate how newly-

formed memory traces evolve dynamically over time. We provide direct evidence for transient

reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern

formed during learning, as well as gradual reorganization of this representation toward a

subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep.

Importantly, the putamen functional connectivity within the consolidated network during NREM

sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is

necessary for two complementary processes: the restoration and reorganization of newly-learned

information during sleep, which underlie human motor memory consolidation.

DOI: 10.7554/eLife.24987.001

Introduction
There is now ample evidence that sleep plays a crucial role in the consolidation of newly-acquired

procedural memory, particularly for explicitly instructed sequential motor skills (Walker et al., 2002;

Korman et al., 2003; Doyon and Benali, 2005; Korman et al., 2007; Debas et al., 2010). Several

mechanistic hypotheses have also been proposed regarding the contribution of sleep in this memory

process (see [Frankland and Bontempi, 2005; Rasch and Born, 2007; Tononi and Cirelli, 2014] for

comprehensive reviews). Yet, the dynamic neural changes that drive motor memory consolidation

during sleep still remain controversial (Frankland and Bontempi, 2005; Rasch and Born, 2013;

Tononi and Cirelli, 2014).

One pioneering sleep-dependent consolidation model, the trace reactivation hypothesis assumes

that the repeated reactivation of a recently formed memory representation during sleep leads to a

gradual strengthening of the learning-related connections, and thus to long-term storage of the

memory trace (Rasch and Born, 2007, 2013). There is now mounting evidence in support of this

hypothesis including the replay of hippocampal place cell firing (Skaggs and McNaughton, 1996;

Lee and Wilson, 2002) in rodents, as well as human studies employing targeted memory reactiva-

tion paradigms using auditory or olfactory cues (Rasch et al., 2007; Cousins et al., 2014;

Laventure et al., 2016), and neuroimaging studies showing the reactivation of learning-related brain
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regions during sleep or awake rest (Maquet et al., 2000; Rasch et al., 2007; Deuker et al., 2013;

Staresina et al., 2013; Tambini and Davachi, 2013).

Another model, built in part upon the trace reactivation, the systems consolidation hypothesis

(Frankland and Bontempi, 2005; et al., 2005; Rasch and Born, 2013) proposes that sleep engages

an active reorganization process that stabilizes the labile neural representation of a novel skill into a

consolidated memory trace. For instance, a systematic transfer in memory representations from hip-

pocampal to neocortical areas has been reported for non-procedural forms of memories

(Frankland et al., 2004; Maviel et al., 2004; Frankland and Bontempi, 2005). On the other hand, a

systemic shift from cortical (e.g., motor, parietal cortex) to subcortical regions (e.g., striatum) has

been proposed to underlie the consolidation of procedural memory, and motor sequence learning

in particular (Doyon and Benali, 2005; Yin et al., 2009; Debas et al., 2010; Kawai et al., 2015).

Yet in humans, the systems consolidation model has only been inferred indirectly by comparing the

effect of motor practice on offline gains in behavioral performance and changes in neural activity

between the initial learning and retention sessions separated by either diurnal or nocturnal sleep

(Walker et al., 2002; Fischer et al., 2005; Gais et al., 2007; Takashima et al., 2009; Debas et al.,

2010). Thus, direct evidence in support of this hypothesis from human neuroimaging studies is

lacking.

Finally, an alternative and potentially complementary model, the synaptic homeostasis hypothesis

(Tononi and Cirelli, 2003, 2006, 2014) proposes that local neuronal networks are potentiated and

eventually become saturated during learning. In order for new information to be encoded the

eLife digest The idea that, while you sleep, you could be honing skills such as the ability to play

a musical instrument may sound like science fiction. But studies have shown that sleep, in addition to

being beneficial for physical and mental health, also enhances memories laid down during the day.

The process by which the brain strengthens these memories is called consolidation, but exactly how

this process works is unclear.

Memories are thought to persist as altered connections between neurons, often referred to as

memory traces. When we practice a skill, we activate the neurons encoding that skill over and over

again, strengthening the connections between them. However, if this process were to continue

unchecked, eventually the connections would become saturated and no further increases in strength

could occur. One possible solution to this problem is that sleep enhances skill learning by

downscaling connections across the brain as a whole, thereby freeing up capacity for further

learning. Alternatively, sleep may reorganize an initially unstable memory trace into a more robust

form with the potential to last a lifetime.

To test these possibilities, Vahdat et al. asked healthy volunteers to practice a finger-tapping task

while lying inside a brain scanner, and then to sleep inside that scanner for 2–3 hours. When the

volunteers returned to the scanner the next morning and attempted the task again, they performed

better than they had the previous night. Their brains also showed a different pattern of activity when

performing the task after a night’s sleep.

So what had happened overnight? As the volunteers lay awake inside the scanner, their brains

reactivated the memory trace formed during learning. However, as they entered a stage of non-

dreaming sleep called non-REM sleep, this activity became weaker. At the same time, a new pattern

of activity – the one that would dominate the scan the next morning – began to emerge. Whereas

the post-learning activity was mainly in the brain’s outer layer, the cortex, the new pattern included

other areas that are deeper within the brain. The activity of one deeper region in particular, the

putamen, predicted how well the volunteers would perform the task the next day.

Non-REM sleep thus strengthens memories via two complementary processes. It suppresses the

initial memory trace formed during learning, and reorganizes the newly-learned information into a

more stable state. These results might explain why people who are sleep-deprived often have

impaired motor skills and memories. The findings also open up the possibility of enhancing newly

learned skills by manipulating brain circuits during non-REM sleep.

DOI: 10.7554/eLife.24987.002
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following day, sleep would be involved in the restoration of these local networks by downscaling the

strength of synaptic connections (Tononi and Cirelli, 2003; Huber et al., 2004; Tononi and Cirelli,

2006). However, direct experimental evidence to support the synaptic homeostasis hypothesis in

humans remains limited and controversial (Frank, 2012). It is thus unclear whether and how these

different sleep-dependent mechanisms of memory consolidation may be reconciled and contribute

to motor skill learning in humans. Here, for the first time, we used simultaneous EEG and fMRI in

order to identify the relative contributions of the trace reactivation, systems consolidation, and syn-

aptic homeostasis hypotheses to the consolidation of procedural memory in humans. Specifically, we

tested the hypothesis that the memory trace of motor sequence learning involves network-wide

reactivation and further reorganization into a more stable representation during non-rapid eye

movement (NREM) sleep periods.

Results

Methods: overall experimental approach
In order to directly examine the off-line periods during which the motor memory trace is being con-

solidated, we acquired blood-oxygen-level dependent (BOLD) fMRI data during motor sequence

task practice, wake resting-state and post-training sleep conditions. Brain functional images were

recorded while thirteen participants performed two different finger movement tasks using a

response pad one week apart. In the motor sequence learning (MSL) task, subjects practiced a self-

paced, explicitly known 5-item finger sequence task, which was compared with performance on a

motor control task (CTL) in which participants were asked to produce simultaneous movements of all

four fingers at the same average frequency, and for the same number of times as in the MSL task.

These two conditions were administered in a counterbalanced order (Figure 1a). For both MSL and

CTL tasks, participants underwent an initial training session at 10:30 PM (i.e., learning session; S1),

followed by a retest session at 9:00 AM the next morning (i.e., retest session; S2) (Figure 1a). Rest-

ing-state conditions, during which subjects stayed awake with eyes opened, were also acquired

before and after each practice session in the evening (RS1 and RS2) and the following morning (RS3

and RS4; Figure 1a). Immediately following the training session (i.e., around 11:00 PM), a simulta-

neous EEG-fMRI recording scan lasting a maximum of 2.5 hr took place while subjects slept in the

scanner. This design allowed us to investigate MSL memory trace reactivation and further transfor-

mation during off-line periods, including both resting-state and sleep conditions, from its initial state

to a consolidated trace that was later recruited during performance at retest.

Behavioral results
Motor performance was measured using the speed at which key presses for correct responses were

executed in both MSL and CTL tasks (Albouy et al., 2012; Fogel et al., 2014; Lungu et al., 2014).

As expected, a two-factor repeated measures ANOVA across practice blocks (14 blocks) and task

conditions (MSL, CTL) during the training session (S1) revealed that performance speed evolved dif-

ferently over the course of learning between the two tasks (Figure 1b; significant condition � prac-

tice block interaction; F13;156 ¼ 4:94; p<0:0001). Yet given that we intentionally matched the speed at

which both MSL and CTL tasks had to be performed, as expected, average speed did not differ

between tasks (no main effect of task; F1;12 ¼ 3:14; p>0:1). Also, consistent with previous studies

(Walker et al., 2002; Albouy et al., 2015), only performance on the motor learning task revealed

evidence of consolidation overnight, as indicated by off-line improvements in the MSL, but not the

CTL task, in the absence of additional practice (Figure 1b). Specifically, the improvement in task per-

formance between the end of the training (mean of last three blocks in S1) and beginning of the

retest session (mean of first three blocks in S2) significantly differed across tasks, as revealed by a

two-factors [session (end S1, beginning S2) � task (MSL, CTL)] repeated measures ANOVA (signifi-

cant interaction; F1;12 ¼ 16:77; p ¼ 0:001; follow-up paired t-tests: MSL[beginning S2 – end S1],

t12 ¼ 2:43; p<0:05; and CTL[beginning S2 – end S1], t12 ¼ �1:65; p>0:1; Figure 1c).

We also examined changes in performance accuracy by measuring the percentage of incorrect

key presses in each block of the MSL task. Given that the simple 5-item sequence was explicitly

known to the participants, as expected (Walker et al., 2002; Debas et al., 2010; Albouy et al.,

2012; Fogel et al., 2014), performance error was very low overall, and did not show any significant
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Figure 1. Experimental design, behavioral performance, and task activation maps. (A) Experimental procedure. On Day 1, subjects first experienced a

screening and adaptation night in the mock scanner, which mimicked conditions experienced in both experimental and control nights. Subjects

returned and underwent fMRI scans (Day seven and Day 14) while training (S1) on either the motor skill learning (MSL) or motor control (CTL) task in a

counterbalanced order, interleaved by resting-state conditions (RS1 and RS2). This was followed by simultaneous EEG-fMRI sleep recording for up

to ~2.5 hr. Subjects were then allowed to sleep for the remainder of the night in the sleep lab. Finally, on the following morning subjects underwent

retest fMRI sessions (S2) on the same take as the previous training session (Day eight and Day 15), interleaved by resting-state conditions (RS3 and RS4).

Arrows shows the experiment’s timeline. (B) Performance speeds (i.e., inter-key interval) averaged across all subjects show that the learning curves

differed between the MSL (red) and CTL (blue) conditions during the learning session (S1). (C) Only the MSL task was consolidated overnight, as

indicated by performance gain averaged across subjects (asymptotic performance at the end of S1 compared to the beginning of S2). (D) Color-coded

activation maps representing motor sequence-related areas during the learning (S1) and retest (S2) sessions (corrected for multiple comparisons using

Gaussian random field theory, cluster level threshold p<0:05). Bar plots illustrate the volume of cortical and subcortical activation in each map. As

expected, the connectivity index (CI) within the learning (E) and the consolidated (F) patterns was significantly higher in the MSL compared to the CTL

condition. Error bars represent s.e.m.; ** and *** indicate p<0:01 and p<0:001, respectively.

DOI: 10.7554/eLife.24987.003

Figure 1 continued on next page
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change overnight (average error in the last three blocks of S1 compared to the first three blocks of

S2, t12 ¼ 0:95; p>0:35). This further confirms that the performance speed was a suitable measure to

quantify off-line improvements in motor performance. Furthermore, we investigated performance

variability by calculating the standard deviation of inter-key-press intervals in each block of MSL and

CTL tasks. In line with the performance speed results, performance variability significantly decreased

overnight only in the MSL task, as revealed by a two-factors [session (end S1, beginning S2) � task

(MSL, CTL)] repeated measures ANOVA (significant interaction; F1;12 ¼ 15:9; p ¼ 0:0018; follow-up

paired t-tests: MSL [beginning S2 – end S1], t12 ¼ 3:98; p<0:002; and CTL [beginning S2 – end S1],

t12 ¼ 0:36; p>0:7).

Learning and consolidated activation patterns
We identified distinct brain activation patterns recruited during the learning and retest sessions fol-

lowing a night of sleep. For comparison purpose, the task-related activation maps during MSL and

CTL sessions are presented in Figure 1—figure supplement 1. Using a two-factor [practice session

(S1, S2) � task (MSL, CTL)] repeated-measures ANOVA at the group level, we identified motor

sequence-related brain areas that were either activated during the learning (the ‘learning pattern’;

S1[MSL – CTL], Figure 1d top) or retest session (the ‘consolidated pattern’; S2[MSL - CTL],

Figure 1d bottom). Although, both the learning and consolidated patterns comprised similar senso-

rimotor core regions (see Figure 1—source data 1 and 2), the relative activation levels of different

cortical and subcortical areas were mostly altered across the two maps; that is, the consolidated pat-

tern revealed increased activity in sub-cortical structures and decreased activity in cortical regions

(Figure 1d). Specifically, despite the fact that the total volume of motor sequence-related activity

was preserved across sessions (37.48 cm3 in learning versus 36.10 cm3 in consolidated pattern), the

volume of all cortically activated voxels (including mostly the fronto-parietal sensorimotor regions) in

the consolidated pattern was almost reduced by half (from 29.34 cm3 to 15.58 cm3), while the vol-

ume of sub-cortical activations (including mostly the basal ganglia and cerebellar regions) was nearly

quadrupled (from 4.01 cm3 to 15.32 cm3; Figure 1d middle bar plots). Similarly, a contrast between

the learning and retest sessions strongly confirmed our volume-based analysis results; that is, two

cortical clusters (including the superior parietal lobule and anterior intraparietal sulcus bilaterally)

showed significantly greater activation during the learning compared to the retest session, while

only subcortical regions (including the putamen and cerebellar cortex) revealed significantly greater

activation during the retest compared to the learning session (Figure 1—figure supplement 2).

Consistent with recent work in both human and animal models (Debas et al., 2010; Kawai et al.,

2015), these results suggest a topological shift of activity from cortical to subcortical regions that

might underlie sequence memory consolidation.

To investigate whether regions within these distinct patterns became more highly interconnected

(reflecting a strengthening of the memory trace), we examined the changes in functional connectivity

within the learning and the consolidated patterns in both MSL and CTL conditions. The strength of

functional connectivity within a given brain network (i.e., the ‘connectivity index’, (CI)) was estimated

using a straightforward approach that measured the overall co-activation level of brain areas within

that network during different fMRI runs (Vahdat et al., 2014). Specifically, the CI was defined as the

power of a time series of normalized coefficients in a spatial regression model, which estimated the

co-activation level of areas within a given network over different scanning times (see

Materials and methods for the formulation). This connectivity measure was selected as it provides a

Figure 1 continued

The following source data and figure supplements are available for figure 1:

Source data 1. Summary of activation peaks related to the learning pattern.

DOI: 10.7554/eLife.24987.004

Source data 2. Summary of activation peaks related to the consolidated pattern.

DOI: 10.7554/eLife.24987.005

Figure supplement 1. Task-related activation maps during the learning session (S1).

DOI: 10.7554/eLife.24987.006

Figure supplement 2. Differences in the activation of motor sequence-related areas between the learning (S1) and retest (S2) sessions.

DOI: 10.7554/eLife.24987.007
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hypothesis-driven multivariate approach specifically suited to study dynamics of changes in connec-

tivity within a network of areas across the whole brain (see Materials and methods for more details).

As a validation check, we first evaluated CI during task performance in the learning (S1) and retest

(S2) sessions. It was expected that since the learning and consolidated patterns are extracted from

the [MSL – CTL] contrast, we would observe greater levels of CI during the MSL as compared to the

CTL task periods. Consistently, a two-factors (session � task) repeated measures ANOVA reported a

significant main effect of task for both the learning (F1;12 ¼ 31:2; p<0:0005; Figure 1e) and consoli-

dated patterns (F1;12 ¼ 63:4; p<0:000005; Figure 1f). Notably, there was also a significant effect of

session for the consolidated pattern, showing greater CI during the retest (S2) compared to the

learning (S1) session (significant interaction; F1;12 ¼ 9:33; p ¼ 0:01; also significant main effect of ses-

sion in MSL, t12 ¼ 3:31; p ¼ 0:006). This analysis confirms that CI is a sensitive measure to detect

changes in within-network functional connectivity across experimental conditions.

Sleep-dependent reactivation and reorganization of the memory trace
In order to investigate whether memory reorganization from the learning to the consolidated trace

occurred during the off-line periods (dependent upon either simple passage of time or sleep), or

whether the consolidated trace merely manifested itself during retest, we calculated CI within the

learning and consolidated patterns during different resting-state periods (RS1, RS2, RS3), as well as

during NREM sleep. A two-factor (resting-state condition (RS1, RS2, RS3) � task (MSL, CTL))

repeated-measures ANOVA revealed that the CI changed as a function of motor task condition

(MSL vs. CTL) across resting-state periods for the consolidated pattern (significant interaction;

F2;24 ¼ 6:06; p ¼ 0:007, Figure 2b). Interestingly, CI within the consolidated pattern was significantly

enhanced for the MSL task only during RS3 (significant MSL [RS3-RS1], t12 ¼ 3:14; p<0:01, significant

MSL [RS3-RS2], t12 ¼ 2:26; p<0:05, and significant main effect of task during RS3, t12 ¼ 3:78; p<0:005,

Figure 2b). Thus, despite the fact that the consolidated pattern’s CI was not yet increased immedi-

ately after training (MSL [RS2-RS1], t12 ¼ 0:94; p>0:35), it was already significantly elevated before

the retest session (i.e. RS3), hence suggesting that the consolidation process took place during the

preceding interval filled with sleep, and did not manifest itself as a result of practice during retest.

By contrast, the CI analysis within the learning pattern yielded an opposite pattern of findings.

Although the effect of motor task condition (MSL vs. CTL) across all resting-state conditions was

only marginally significant (interaction; F2;24 ¼ 3:14; p ¼ 0:06, Figure 2a), there was a significant

effect of task on the learning pattern’s CI across the resting-state conditions before and after learn-

ing (repeated measured ANOVA (resting-state condition (RS1, RS2) � task (MSL, CTL);

F1;12 ¼ 6:99; p ¼ 0:02, Figure 2a). A follow-up paired t-test revealed that CI increased immediately

following learning in the MSL task only (significant MSL [RS2-RS1], t12 ¼ 3:05; p ¼ 0:01, and signifi-

cant RS2 [MSL - CTL], t12 ¼ 2:37; p ¼ 0:035). However, the learning pattern’s CI dropped after sleep,

so that it was no longer significantly different from baseline in the following morning (MSL [RS3-

RS1], t12 ¼ 1:6; p>0:1), nor was it different across MSL and CTL tasks in the post-sleep resting-state

condition (RS3 [MSL - CTL], t12 ¼ 1:1; p>0:25).

The resting-state analyses suggest that the sequence-related memory trace was likely reorganized

from the learning to the consolidated pattern between RS2 and RS3 runs, that is, during sleep. To

directly test this hypothesis, we calculated CI during stage 2 and slow wave sleep (SWS) of NREM

sleep, as classified by simultaneous EEG recordings during the intervening sleep session. Impor-

tantly, this analysis confirmed that only the consolidated pattern’s CI was significantly elevated dur-

ing NREM sleep in the MSL compared to the CTL night (t12 ¼ 3:47; p<0:005; Figure 2d). By contrast,

the learning pattern’s CI during NREM sleep did not differ significantly between the two tasks

(t12 ¼ 1:26; p>0:2; Figure 2c).

In order to test the specificity of our findings with respect to other activation patterns that would

be presumably unrelated to the experimental conditions, we extracted four highly-reproduced

canonical brain networks (Damoiseaux et al., 2006) using the application of independent compo-

nent analysis (ICA) on the task fMRI data (see Materials and methods). These networks included the

default mode, visual, and the left and right fronto-parietal networks (Figure 2—figure supplement

1). We then calculated CI within each of these networks during different resting-state periods (RS1,

RS2, RS3), as well as during NREM sleep. Two-factor (resting-state condition (RS1, RS2, RS3) � task

(MSL, CTL)) repeated-measures ANOVAs revealed no significant change in CI in any of these

Vahdat et al. eLife 2017;6:e24987. DOI: 10.7554/eLife.24987 6 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.24987


Figure 2. Connectivity index (CI) during resting-state and NREM sleep. (A, B) show the CI within the learning and the consolidated patterns,

respectively, averaged across subjects during the resting-state conditions before (RS1) and after (RS2) the training session (S1), as well as on the

following morning before retest (RS3). The learning pattern’s CI was significantly increased in the MSL immediately following training (RS2), while the

consolidated pattern’s CI increased significantly only post-sleep (RS3) in the MSL as compared to the CTL condition. (C, D) show, respectively, CI within

the learning and the consolidated patterns averaged across subjects during NREM sleep. Only the consolidated pattern’s CI differed significantly

between the MSL and CTL nights. Error bars represent s.e.m.; * and ** indicate p<0:05 and p<0:01, respectively.

DOI: 10.7554/eLife.24987.008

The following figure supplements are available for figure 2:

Figure supplement 1. The group-level spatial maps of four highly-reproducible brain networks extracted during the MSL task.

DOI: 10.7554/eLife.24987.009

Figure supplement 2. Connectivity index (CI) during resting-state periods within the four control networks reported in Figure 2—figure supplement

1.

DOI: 10.7554/eLife.24987.010

Figure supplement 3. Connectivity index (CI) during non-REM (NREM) sleep within the four control networks reported in Figure 2—figure

supplement 1.

DOI: 10.7554/eLife.24987.011
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networks as a function of motor task across resting-state periods (no interaction; p>0:25, and no

main effect of task or resting-state condition; p>0:2, in all four networks; Figure 2—figure supple-

ment 2). Likewise, no significant change in CI between the two tasks was found during NREM sleep

in any of the four networks (paired t-statistics, p>0:3; Figure 2—figure supplement 3). Overall,

these analyses suggest that the observed changes in the learning and consolidated patterns were

not due to some global epiphenomena of time, learning or sleep on resting state connectivity.

Neural substrates underlying memory reorganization during NREM
sleep
The CI analyses allowed us to specify whether a pattern of brain areas as a whole showed changes in

functional connectivity across different conditions. However, in order to specify the brain areas within

the consolidated pattern that are primarily responsible for modulating the strength of connectivity in

the MSL night, we performed a dual regression analysis (Filippini et al., 2009). For each subject, this

approach projects a group-level activation map (i.e., as a spatial regressor) onto a selected fMRI con-

dition (e.g., RS1 or RS3), in order to identify brain areas within that spatial map or pattern that are

specifically recruited during the given fMRI run (see Materials and methods for more details). Sepa-

rate dual regression analyses were carried out using the learning and the consolidated patterns as

spatial regressors. For each pattern, a group-level repeated-measures GLM was performed to evalu-

ate the contribution of different areas within each pattern during NREM sleep periods across tasks.

We found that the ventrolateral putamen was the primary brain region within the consolidated pat-

tern whose functional connectivity was significantly elevated during NREM sleep in the MSL com-

pared to the CTL night (corrected for multiple comparisons using Gaussian random field theory

(GRF), p<0:05, Figure 3). Importantly, changes in functional connectivity between the putamen and

the rest of the structures in the consolidated pattern were significantly related to the amount of

sleep-dependent behavioral gains in motor performance (r ¼ 0:72; p ¼ 0:005 (N = 13), Figure 3 scat-

ter plot). This indicates that individuals with greater increases in functional connectivity with the

putamen had greater overnight improvements in performance. By contrast, none of the brain areas

within the learning pattern showed a significant change in connectivity during NREM periods

between the two tasks.

Likewise, we used the dual regression method to identify the brain areas within each of the learn-

ing and consolidated patterns whose connectivity changed during either of the post-learning rest-

ing-state conditions (i.e., RS2 or RS3) as compared to the baseline (i.e., RS1) across the two tasks

(resting-state conditions � task, repeated-measure ANOVA). Consistent with the active role of the

putamen found during NREM sleep, this analysis revealed that the ventrolateral putamen

(Figure 4a) and lobules V-VI of the cerebellar cortex (Figure 4b) were the principal brain regions

responsible for the elevated connectivity within the consolidated pattern during the post-sleep rest-

ing-state condition (significant RS3� RS1ð Þ � MSL� CTLð Þ interaction, corrected for multiple

comparisons using GRF, p<0:05). Figure 4—figure supplement 1 shows the average amounts of

connectivity in each cluster for each session and task separately. As shown in the figure, the ampli-

tude of connectivity was significantly elevated in RS3 compared to RS1 only in the MSL task (paired

t-statistics, p<0:01 in MSL for both clusters, p>0:2 in CTL for both clusters). Yet among these two

structures, only the putamen connectivity was significantly correlated with the amount of overnight

gains in performance speed (r ¼ 0:69; p<0:01 (N = 13), Figure 4a, right scatter plot). Again, no area

within the learning pattern showed a significant change in connectivity during the post-sleep resting-

state condition across tasks. However, when the learning pattern was examined during the pre-sleep

resting-state condition immediately following training (i.e., RS2), connectivity was elevated in the

posterior parietal lobule with respect to the baseline condition in the MSL compared to the CTL task

(significant RS2� RS1ð Þ � MSL� CTLð Þ interaction, p<0:05; Figure 4—figure supplement 2). Con-

sistent with the CI analyses, none of the areas within the consolidated pattern showed changes in

connectivity in the pre-sleep resting-state condition compared to the baseline, hence suggesting

again that changes within the consolidated pattern were initiated during sleep.

Temporal dynamics of the motor memory trace during NREM sleep
Given that we first observed an elevation of connectivity within the consolidated pattern during

NREM sleep following MSL, we further examined the pattern of dynamic changes in CI over the
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course of the post-training night as compared to the intermittent periods of wakefulness. To do so,

we employed a sliding-window approach over the temporally-concatenated fMRI data of each state

and condition. Specifically, we separated NREM stage two and SWS periods, and calculated CI val-

ues in NREM stage 2, as well as, the intermittent periods (epochs) of wake, for which we had suffi-

cient data in our group of participants. On average 22 min of data (600 volumes) for each subject

and condition were selected (see Materials and methods for more details, and Table 1 for sleep

architecture information in the scanner). The mean epoch duration and the number of epochs

selected for data analysis are reported in Figure 5—source data 1. Note that there was no signifi-

cant difference in the characteristics of the selected epochs between MSL and CTL conditions (Fig-

ure 5—source data 1). Additionally, the mean epoch duration and the number of concatenated

epochs were not significantly different between the wakefulness and NREM stage two sleep periods

Figure 3. Neural correlates of motor sequence memory consolidation during NREM sleep. The ventrolateral

putamen functional connectivity within the consolidated pattern differed significantly between the MSL and CTL

nights during NREM sleep. Bar plot illustrates the functional connectivity of the putamen with the rest of structures

in the consolidated pattern averaged across subjects during NREM sleep. Importantly, the putamen connectivity

within the consolidated pattern during NREM sleep was significantly related to the extent of sleep-dependent

performance speed gains on a per subject basis, as depicted in the scatter plot. The color-coded activation map

indicates Z-score values and is corrected for multiple comparisons using GRF, p<0.05. Error bars represent s.e.m.;

* indicates p<0:05.

DOI: 10.7554/eLife.24987.012

The following source data and figure supplement are available for figure 3:

Source data 1. Regions of interest (ROI) used in the seed-based functional connectivity analysis.

DOI: 10.7554/eLife.24987.013

Figure supplement 1. Changes in brain functional connectivity related to motor sequence learning during non-

REM sleep.

DOI: 10.7554/eLife.24987.014
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(p=0.12, paired t-test for the mean duration; and p=0.40, Wilcoxon signed rank test for the number

Figure 4. Neural correlates of motor sequence memory consolidation during post-sleep resting-state periods. The ventrolateral putamen (A) and the

cerebellar cortex (lobules V-VI) (B) functional connectivity within the consolidated pattern differed significantly between the MSL and CTL conditions

during post-sleep resting-state periods (RS3) as compared to baseline (RS1). Bar plot illustrates the change in functional connectivity of putamen within

the consolidated pattern between RS3 and RS1 scans averaged across subjects in each task condition. The scatter plot in (A) shows that only the

putamen functional connectivity was significantly related to the extent of overnight behavioral gains in performance speed. The color-coded activations

maps indicate Z-score values and are corrected for multiple comparisons using GRF, p<0.05. Error bars represent s.e.m.; * and ** indicate p<0:05 and

p<0:01, respectively.

DOI: 10.7554/eLife.24987.015

The following figure supplements are available for figure 4:

Figure supplement 1. Functional connectivity within the consolidated pattern during post-sleep resting-state periods (RS3) and baseline (RS1) in each

task.

DOI: 10.7554/eLife.24987.016

Figure supplement 2. Neural correlates of motor sequence learning during resting-state periods immediately following training.

DOI: 10.7554/eLife.24987.017

Figure supplement 3. Changes in brain functional connectivity related to motor sequence learning during the post-sleep (top row) and the pre-sleep

(bottom row) resting-state conditions.

DOI: 10.7554/eLife.24987.018

Table 1. Sleep architecture during post-training EEG-fMRI recording session on CTL and MSL condi-

tion nights. Mean and SEM values are reported in minutes. Sleep onset is calculated relative to the

start of simultaneous EEG-fMRI recording. See also Materials and methods and Results for additional

details. Slow wave sleep (SWS).

CTL MSL MSL vs. CTL

Mean SEM Mean SEM T P

Wake 53.2 8.98 66.9 7.02 1.68 0.12

Stage 1 10.8 2.16 8.6 1.58 0.76 0.46

Stage 2 42.7 5.85 34.1 5.13 1.75 0.11

SWS 17.0 4.88 10.2 3.77 0.95 0.36

Sleep onset 16.96 6.12 15.80 3.01 0.17 0.87

DOI: 10.7554/eLife.24987.022
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of epochs). These analyses revealed a gradual increase in the strength of connectivity within the con-

solidated pattern during stage 2 NREM sleep following MSL as compared to the CTL task, as sup-

ported by a repeated measure ANOVA (significant time� task interaction, F10;120 ¼ 1:98; p<0:05;

and paired-samples t test comparing mean of the first three and the last three time points [corre-

sponding to the first and the last 7 min and 12 s periods of recorded NREM stage-2 fMRI data,

respectively], t12 ¼ 2:23; p<0:05; Figure 5b). Two follow-up repeated measures ANOVAs during

stage two sleep also revealed a significant main effect of time on the consolidated pattern’s CI in

the MSL (F10;120 ¼ 2:35; p<0:05), but not in the CTL task (F10;120 ¼ 0:98; p>0:4). Importantly, however,

the results showed that the consolidated pattern’s CI did not change during the intermittent periods

of wake distributed throughout the sleep session (no time� task interaction, F10;120 ¼ 0:93; p>0:5; no

main effect of task or time, p>0:8 for both; Figure 5e).

Likewise, CI within the learning pattern changed as a function of motor task (MSL vs. CTL) over

the period of NREM sleep (significant time� task interaction, F10;120 ¼ 2:00; p<0:05; Figure 5a), but

not during wakefulness (F10;120 ¼ 0:73; p>0:6; Figure 5d). In contrast to the consolidated pattern,

however, the CI within the learning pattern showed a significant difference between tasks only at

Figure 5. Temporal dynamics of memory trace during NREM stage two sleep. (A, B) illustrate the time course of CI change within the learning and the

consolidated patterns during NREM stage two sleep, respectively. The consolidated pattern’s CI gradually increased during NREM sleep only in the

MSL condition (red curve), while the learning pattern’s CI decreased. CI did not differ significantly over the course of NREM stage two sleep in the CTL

night (blue curves). Furthermore, CI within the learning (D) and consolidated (E) patterns did not change significantly over the course of intermittent

awakenings distributed throughout the sleep session in the CTL (blue curves) or MSL (red curves) night. (C), (F) illustrate the time course of ventrolateral

putamen functional connectivity within the consolidated pattern during NREM stage two sleep and intermittent bouts of awakenings, respectively.

Likewise, the putamen functional connectivity with the rest of structures in the consolidated pattern gradually increased only during NREM sleep in the

MSL condition. Each data point is calculated using 100 fMRI volumes. Shaded area represents s.e.m.

DOI: 10.7554/eLife.24987.019

The following source data and figure supplement are available for figure 5:

Source data 1. Average duration and number of epochs used in the temporal dynamics analysis (Figure 5).

DOI: 10.7554/eLife.24987.020

Figure supplement 1. Robustness of temporal dynamics analysis with respect to the window size.

DOI: 10.7554/eLife.24987.021
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the beginning of the night. In fact, when early in the NREM stage two period was analyzed sepa-

rately, we found a significant increase in connectivity within the learning pattern in the MSL com-

pared to CTL (paired t test, mean of the first three time points (corresponding to the first 7 min and

12 s of NREM stage-2 fMRI data) in MSL compared to CTL, t12 ¼ 2:32; p<0:05). However, there was

no significant difference across tasks during later stage two sleep periods (mean of the last three

time points in MSL compared to CTL; paired t test, t12 ¼ 0:47; p>0:6).

In order to test the robustness of our findings with respect to the window size, we repeated our

sliding window analyses iteratively by varying the size of the window. Consistently, a significant dif-

ference in the consolidated pattern connectivity was found between early and late periods in NREM

sleep only following MSL using different window sizes ranging from 50 to 300 volumes (significant

windowsize� timeperiod earlyvs:lateð Þ interaction, F5;60 ¼ 5:67; p<0:0005; and significant effect of time

period (early vs. late) in the MSL, F1;12 ¼ 5:75; p<0:05; Figure 5—figure supplement 1); thus sug-

gesting that the pattern of results was robustly detectable over a range of time-windows.

In order to further examine the role of the ventrolateral putamen in shaping the functional con-

nectivity of the consolidated pattern as supported by the dual regression analysis, we employed a

similar sliding window approach to investigate the dynamic changes in functional connectivity of the

putamen (same region as reported in Figure 3) within the consolidated pattern during NREM stage-

2 sleep (see Materials and methods). We found that functional connectivity of the putamen was

gradually enhanced during NREM two sleep following MSL as compared to the CTL task (significant

time� task interaction, F10;120 ¼ 3:21; p ¼ 0:001; follow-up paired t tests comparing mean of the first

three time points in MSL and CTL, t12 ¼ 0:89; p>0:3; and mean of the last three time points in MSL

compared to CTL, t12 ¼ 2:69; p<0:05;Figure 5c), in line with CI analyses within the consolidated pat-

tern. Again, there was no effect of task on the connectivity of putamen during the intermittent peri-

ods of wakefulness (no time� task interaction, F10;110 ¼ 0:59; p>0:8; Figure 5f).

Finally, a series of conventional seed-based functional connectivity analyses (see Materials and

methods) on the resting-state and NREM sleep data largely confirmed our findings using the dual

regression approach (Figure 3—figure supplement 1, and Figure 4—figure supplement 3). The

results revealed that increased connectivity of areas mainly within the consolidated pattern (including

the putamen and cerebellar cortex; Figure 1—figure supplement 2, top row) during both NREM

sleep (Figure 3—figure supplement 1) and the post-sleep resting-state condition ([RS3 – RS1]; Fig-

ure 4—figure supplement 3, top row) were significantly associated with the amount of overnight

gains in performance. Also, the functional connectivity within the posterior parietal cortex (an area

more activated during the learning compared to the retest; Figure 1—figure supplement 2, bottom

row) was increased in the resting-state condition immediately following the MSL as compared to the

baseline ([RS2 – RS1]; Figure 4—figure supplement 3, bottom row).

Discussion
Several neurophysiological mechanisms have been proposed to account for the role of sleep in

memory consolidation, including the trace reactivation, synaptic homeostasis, and systems consoli-

dation hypotheses (see [Frankland and Bontempi, 2005; Rasch and Born, 2007; Tononi and Cirelli,

2014] for full review). Importantly, our findings are not only consistent with those processes, but

they clearly demonstrate that consolidation of a motor sequence memory trace is mediated through

interplay of these complementary mechanisms. First, our results point to a dynamic reactivation pro-

cess, which began immediately after training during the subsequent resting-state period and

extended into the early parts of NREM sleep. In line with these observations, several neuroimaging

studies have documented elevation of functional connectivity in the post-training resting-state peri-

ods within the sensorimotor network implicated during motor learning (Vahdat et al., 2011;

Gregory et al., 2014; Sami et al., 2014).

Likewise, several human neuroimaging studies during sleep have reported direct evidence dem-

onstrating the reactivation of brain areas within the learning trace following visuospatial

(Rasch et al., 2007; Deuker et al., 2013) and motor sequence learning (Maquet et al., 2000). How-

ever, there is increasingly more evidence supporting the view that memory trace reactivation is not

specific to sleep, but also occurs in the post-training wakefulness before sleep (Foster and Wilson,

2006; Peigneux et al., 2006; Karlsson and Frank, 2009; Carr et al., 2011; Staresina et al., 2013;

Tambini and Davachi, 2013; Ambrose et al., 2016). Our results extend these observations by
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showing a general trace reactivation process involving the entire learning pattern during post-train-

ing resting-state periods, which returns back to baseline levels early in NREM sleep. These findings

suggest that sleep enables two distinct complementary processes that take place in parallel,

whereby sleep: (1) has a downscaling impact on the memory trace formed during learning at the sys-

tems level, and (2) actively transforms the trace to a consolidated state that is related to offline gains

in performance. The downscaling of functional connectivity within the locally-activated learning pat-

tern during the first hour of NREM sleep in our study is reminiscent of the results obtained using

EEG recordings following a visuomotor adaptation task (Huber et al., 2004). Huber and colleagues

showed that localized EEG slow wave activity within regions activated during motor adaptation tem-

porarily enhanced, and then restored to a control night activity level during the first hours of NREM

sleep. Likewise, our results are consistent with a network-level restoration process, that is, the ele-

vated functional connectivity within a newly-acquired learning pattern is downscaled back to pre-

learning baseline levels during NREM sleep, thus supporting the synaptic homeostasis hypothesis at

a systems level.

Moreover, when we examined individual brain areas within the learning and consolidated pat-

terns, we found that the ventrolateral putamen and lobule VI of the cerebellar cortex were mainly

involved in the reorganization process following motor sequence learning. Critically, changes in func-

tional connectivity of the putamen within the consolidated pattern during NREM sleep, as well as

during the post-sleep resting-state periods, were related to the extent of overnight behavioral gains

in performance. Similar to the consolidated pattern taken as a whole, the strength of functional con-

nectivity in the putamen gradually increased over the course of NREM sleep following MSL. These

findings highlight the central role of the putamen in the consolidation and reorganization of motor

sequence memory during NREM sleep. These results are consistent with previous work investigating

the neural substrates of motor sequence memory consolidation in both humans (Doyon and Benali,

2005; Debas et al., 2010) and animals (Yin et al., 2009; Kawai et al., 2015) models, which reported

a shift in neural activity from cortical motor areas to subcortical structures, particularly, to the stria-

tum. For instance, Debas et al. (Debas et al., 2010) observed a sleep-dependent enhancement in

striatal activity during practice of a motor sequence from training to retest following sleep, but not

wake. Our work complements these findings by showing that this reorganization process takes place

gradually over the course of NREM sleep.

Another important observation was that only changes in functional connectivity within the consoli-

dated pattern emerging during NREM sleep (and subsequently in the following morning) were

related to the extent of overnight improvement in performance (Figures 3 and 4a, Figure 3—figure

supplement 1, and Figure 4—figure supplement 3 top row). By contrast, functional connectivity in

the learning pattern immediately following training was unrelated to the subsequent off-line gains in

performance (Figure 4—figure supplement 2, and Figure 4—figure supplement 3 bottom row).

This further suggests that the processes related to the reorganization of memory trace during NREM

sleep specifically support off-line improvements in motor sequence performance. Also, in order to

disentangle the effects of NREM stage2 from SWS, we concatenated different chunks of NRME2

sleep to obtain sufficient amount of data, and investigated changes in connectivity patterns during

NREM2 sleep. The results of this analysis (Figure 5) confirmed our initial findings shown in Figure 2.

Yet, we did not have enough SWS data to perform a similar analysis.

One limitation of the current study is that, due to the extensive scanning time required for each

participant, we did not run a separate wake control group in which participants simply stayed awake

between the learning and the retest sessions. This might limit the conclusions one can make regard-

ing sleep versus wake transformations. Yet to address this shortcoming, we acquired sufficient and

comparable amounts of data during both sleep and wake periods following learning in the sleep

scanning session (Table 1 and Figure 5—source data 1) and performed control analyses to investi-

gate the specificity of our results in relation to NREM sleep as compared to the simple passage of

time during wakefulness (Figure 5). In this analysis, the architecture (mean duration and number) of

the concatenated epochs were similar between MSL and CTL conditions, as well as between the

wakefulness and NREM stage two sleep (Figure 5—source data 1). Remarkably, our results showed

that, first, the learning pattern’s connectivity significantly decreased during NREM sleep, but not

during wake periods, and second, the consolidated pattern’s functional connectivity was specifically

increased during NREM sleep, while no significant change was observed during wake periods. Over-

all, the results of these analyses suggest that NREM sleep, in contrast to simple passage of time, is
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likely essential for active reorganization of the memory trace toward a consolidated representation.

Furthermore, dual regression analysis results revealed a close association between the amount of

connectivity changes within the consolidated pattern during NREM sleep and the amount of off-line

gains in performance on a per subject basis (Figure 3).

It should be noted that as it was not possible to have subjects sleep in the scanner more

than ~2.5 hr, the acquired EEG/fMRI data contained only NREM sleep in the first part of the night.

Only a few studies have specifically looked at early vs. late sleep, and the results reveal that sleep in

the latter part of the night is preferentially associated with memory consolidation (e.g., [Plihal and

Born, 1997; Walker et al., 2002]). However, it has also been shown that early sleep is involved in

procedural memory processing (Gais et al., 2000), and that early and late sleep may synergistically

contribute to memory processing (Stickgold et al., 2000). Remarkably, even a very short amount of

daytime sleep containing NREM sleep during a nap can afford the same benefit to memory consoli-

dation as a whole night of sleep (e.g., [Mednick et al., 2003; Korman et al., 2007; Nishida and

Walker, 2007; Doyon et al., 2009]). Importantly, in the present study participants were allowed to

return to the sleep laboratory for the remainder of the night, and, thus, post-sleep changes in behav-

ior and their neural correlates were examined in the following morning. While we could not study

directly the changes in neural activity in the latter part of the night, our findings suggest that early

sleep has an important role in memory consolidation.

The observed elevated functional connectivity within the consolidated pattern during wakefulness

resting before the retrieval test (RS3) could be explained in two ways. First, a reactivation of the

task-related network might be due to the subjective expectancy to perform on the task later, as this

information was provided to the subjects prior to the start of the morning scanning session. Alterna-

tively, it might be due to the process of consolidation of an encoded memory trace following sleep.

The observation that the elevation of functional connectivity was correlated with offline gains in per-

formance on a per subject basis (Figure 4), however, support the latter hypothesis. Future experi-

ments are needed to fully address this question, when participants are scanned in the morning with

no expectancy of subsequent retrieval tests.

Finally, although NREM sleep has been directly implicated in declarative and visuospatial memory

consolidation in humans (Marshall et al., 2006; Rasch et al., 2007), the role of NREM sleep in pro-

cedural memory consolidation is still controversial (Tucker et al., 2006; Rasch et al., 2007), as sug-

gested for example by the dual process hypothesis of sleep (Maquet, 2001). Recently, however,

there is increasing evidence indicating the essential role of NREM sleep in motor skill memory con-

solidation (Rasch et al., 2009; Cousins et al., 2014; Schönauer et al., 2014; Laventure et al.,

2016). Several studies have emphasized the role of sleep spindles (Fogel and Smith, 2006;

Ramanathan et al., 2015) and other features of NREM sleep such as slow wave activity

(Cousins et al., 2014; Gulati et al., 2014) in the consolidation of a procedural memory. Indeed,

learning-dependent changes in sleep spindles take place following motor learning (Fogel and Smith,

2006) and are shown to be related to the amount of off-line gains in performance (Nishida and

Walker, 2007), as well as enhanced activity in the putamen during NREM sleep (Fogel et al., 2017)

and at retest following sleep, but not wake (Fogel et al., 2014). Altogether, this suggests that sleep

spindle activity is a possible neurophysiological mechanism for driving the increased connectivity of

the putamen within the consolidated pattern during NREM sleep. Yet it should be noted that due to

the difficulties of having participants undergo a full sleep cycle in the scanner, it was not possible for

us to record any EEG-fMRI data during REM sleep. Hence, we could not test the contribution of

REM sleep to procedural memory in the current study. Future studies examining spindle-related neu-

ral activity, as well as, REM sleep following motor sequence learning are needed to directly address

these questions.

Conclusion
Our findings demonstrate a gradual shift in motor memory representations following motor

sequence learning; a transiently activated cortical trace is downscaled back to baseline levels and a

subcortically-dominant and more interconnected trace, emerges during NREM sleep. These findings

suggest that sleep supports both a homeostatic restoration of the memory trace potentiated during

learning, and also actively reorganizes the memory trace at a systems-level. Specifically, our findings

reveal that the ventrolateral putamen plays a central role in the emergence of the consolidated pat-

tern during NREM sleep.
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Materials and methods

Participants
Thirteen healthy right-handed adults (seven female, age 27.4 ± 3.6; mean ± std) passed the inclu-

sion/exclusion criteria (see below) and completed the full experimental protocol. Ethical and scien-

tific approval was obtained from the Research Ethics Board at the Institut Universitaire de Gériatrie

de Montréal (IUGM), Montreal, Quebec, Canada and informed written consent was obtained prior

to entering the study. Subjects were included in the study based on the following inclusion/exclusion

criteria. They had to be a non-smoker, medication free and to have normal body weight (BMI �25).

They also had to present no history of psychiatric or neurologic disorders and to score �8 on the

Beck Depression (Beck et al., 1974) and Anxiety (Beck et al., 1988) Inventories. Participants who

had previous formal training as a typist or musician and who were categorized as extreme morning

or evening types (Horne Ostberg Morningness-Eveningness Scale [Horne and Ostberg, 1976]),

worked at night, or had taken a trans-meridian trip �3 months prior to the experiment were also

excluded from this study. Finally, subjects were included if they did not exhibit signs of excessive

daytime sleepiness (�9 on the Epworth Sleepiness Scale [Johns, 1991]) and if the quality of their

sleep was normal as assessed by the Pittsburgh Sleep Quality Index questionnaire (Buysse et al.,

1989). Participants were required to keep a regular sleep-wake cycle (bed-time between 10:00 PM –

1:00 AM, wake-time between 07:00 AM – 10:00 AM) and to abstain from consuming alcohol, caf-

feine or nicotine and from taking daytime naps throughout their participation in the study. Compli-

ance to the schedule was assessed using both sleep diaries and wrist actigraphy (Actiwatch 2, Philips

Respironics, Andover, MA, USA) worn on the non-dominant wrist.

Moreover, one week prior to the first experimental session (Figure 1a), each participant experi-

enced a screening night beginning at 11:00 PM in the mock scanner located at the Functional Neu-

roimaging Unit, Montreal, Quebec, Canada. Participants were given a two-hour opportunity to

sleep. The mock scanner noise (recorded from the scanner and presented at same approximate

sound level) and lighting conditions (i.e., lights off) were similar to those of the experimental nights

in the actual MRI scanner. EEG signal was recorded using the same MR-compatible electrode cap as

that during the experimental nights. Following this two-hour sleep opportunity in the mock scanner,

EEG electrodes were removed and subjects were permitted to sleep in the nearby sleep laboratory

until 7:30AM. In order to be included in the study, a minimum of five minutes of consolidated NREM

sleep (i.e., the minimum amount of data necessary for data analysis purposes) during the two-hour

screening period was required. Finally, 13 subjects met these inclusion criteria and completed the

study, and were thus included in the data analyses (see power analysis at the end of Materials and

methods).

Finger motor sequence learning task
Subjects were tested using a version of the motor sequence learning task (Karni et al., 1995), in

which they were required to perform self-generated finger movements with their non-dominant (left)

hand as quickly and accurately as possible. A custom MR-compatible ergonomic response pad com-

prising four push buttons located in a row was used. Each participant was scanned under two differ-

ent conditions including motor sequence learning (MSL) and control (CTL), which were performed on

two separate nights and the following mornings one week apart (Figure 1A). The order of the MSL

and the CTL conditions was counterbalanced across participants. In each condition, subjects first

practiced the corresponding task in the evening (learning session, S1), and were tested again later

on the same task in the following morning (retest session, S2).

On the MSL night, subjects first explicitly memorized and slowly demonstrated to the experi-

menter the 5-item sequence of finger movements (4-1-3-2-4, where one stands for the index finger

and four for the little finger), until they could produce 3 consecutive correct 5-item sequences using

an MR-compatible response pad. During the experiment, subjects lay supine in the scanner and exe-

cuted the task following color-coded cues, which appeared on a screen visible via a mirror attached

to the head coil. A green cross displayed in the center of the screen indicated the start of the task

block, which terminated after 60 key presses. Each practice block was separated by a 15 s rest

period (indicated by a red cross) during which subjects were instructed to keep their fingers immo-

bile. Subjects were administered 14 blocks of practice during each of the learning and retest
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sessions. All subjects performed the sequence with an average accuracy of more than 83%, corre-

sponding to more than 10/12 correct sequences per block. The timing of all key presses was

recorded and speed was measured by the inter-key-press interval for correct responses only.

On the CTL night, subjects were required to press all four fingers of the left hand simultaneously

at the same average rhythm as the MSL task. This task was designed to have the same motor perfor-

mance characteristics of the MSL condition (e.g., same number of finger flexion movements, same

average inter-key press interval, all in the same amount of time), but importantly, without any

sequence to learn. Similar to a previous study (Orban et al., 2010), random individual key presses

were not used as we intended to employ a control task that was uncued and thus internally gener-

ated and explicitly known, similar to the MSL task. The use of self-generated random sequences was

not possible either, as it has been shown that people are not able to reliably produce random

sequences of movements (Figurska et al., 2008). Subjects were first instructed to press all four keys

simultaneously following the rhythm of an auditory tone (presented monotonically at 3 Hz) as long as

a green cross was displayed on the screen. This first pre-training step was intended to entrain sub-

jects to the average speed of performance (~3 Hz) normally observed during practice of the MSL

task. After three blocks of practice (60 movements each) in this pre-training step, subjects performed

the task in the absence of the audio tones. Here, participants were instructed to maintain the same

rhythm as practiced in the first pre-training step. Once performance was maintained at 3 Hz (±0.25

Hz) for three consecutive blocks, this step of the pre-training phase was terminated. This pre-training

phase ensured that subjects could reliably press all four keys simultaneously at the target rhythm.

Similar to the MSL task, the pre-training was not included in subsequent analyses. For the practice

sessions of the CTL task, participants were instructed to follow the same rhythm as practiced during

the pre-training phase, and to rest during the presentation of the red cross. Similar to the MSL task,

subjects were administered 14 blocks of practice, where each practice block terminated after 60

simultaneous 4-key presses, and each intervening rest period lasted 15 s. Again to be consistent

with the MSL task, performance in the CTL task was measured as the inter-response interval

between consecutive key presses (i.e., simultaneous flexion of all four fingers). The onset of the first

of four finger presses was used in the subsequent analyses if the four fingers did not precisely touch

their respective keys instantaneously.

Imaging parameters
Images were collected using a 3T TIM TRIO Siemens scanner with a 12-channel head coil. A struc-

tural volume was acquired in the sagittal plane using a magnetization prepared rapid gradient echo

(MPRAGE) sequence (TR = 2300 ms, TE = 2.98 ms, FA = 9˚, 176 slices, FoV = 256 � 256 mm2, voxel

size = 1 � 1 � 1 mm3). For functional acquisitions, an echo-planar imaging (EPI) gradient echo

sequence was used with the following parameters: TR = 2160 ms; TE = 30 ms; FA = 90˚;
FoV = 220 � 220 mm2; matrix size = 64 � 64; 40 transverse slices, slice thickness = 3 mm; 10% inter-

slice gap; inplane resolution = 3.44 � 3.44 mm2. In order to minimize the effects of gradient artifact

on electroencephalography recordings, the sequence parameters were chosen so that the MR scan

repetition time (2160 ms) matched a common multiple of the EEG sample time (0.2 ms), the product

of the scanner clock precision (0.1 ms) and the number of slices (40 slices). Imaging parameters were

the same during the resting-state scanning periods (RS1 to RS4; Figure 1A), the practice sessions of

the MSL and CTL tasks (S1 and S2), as well as post-training sleep where EEG measurements were

simultaneously recorded with fMRI acquisitions. The number of acquired functional volumes during

practice sessions was variable depending on the participant’s speed during the task. Each resting-

state scan, however, lasted for 150 volumes or 6 min and 24 s. The sleep session was terminated

when the maximum possible number of volumes for a single fMRI session (4000 volumes, lasting a

maximum of 2.5 hr) in the Siemens 3.0T TIM TRIO MRI system was reached, or if subjects voluntarily

terminated the session. Similar to the acclimatization night, EEG electrodes were removed after this

sleep opportunity and subjects were then allowed to sleep in the nearby sleep laboratory. The retest

sessions were administrated at least 1.5 hr after awakening at 7:30 AM to ensure the dissipation of

sleep inertia.
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Image preprocessing
Preprocessing of the imaging data was carried out using the FSL software package

(Beckmann et al., 2003) and in-house programs developed in MATLAB. This included (1) removal of

the first two volumes in each scan series, (2) slice time correction, (3) non-brain tissue removal (4)

motion correction, (5) global intensity normalization, (6) spatial smoothing (Gaussian kernel of

FWHM 6 mm) and (7) temporal high-pass filtering (s = 100 s). To achieve the transformation

between the low-resolution functional data and the standard stereotaxic space (MNI152: average T1

brain image constructed from 152 normal subjects), we performed two transformations. The first

was from the functional image to the T1-weighted structural image (using a 6 degree of freedom

(DOF) transformation), and the second was from T1-weighted structural image to the average stan-

dard space (using a 12 DOF linear affine transformation, voxel size = 2 � 2 � 2 mm). Also to mini-

mize the effect of head motion during the sleep session data acquisition, those fMRI volumes that

were scored as movement artefact in the EEG scoring (less than 1% of total volumes in all subjects,

see Polysomnographic Recording and Analysis) were not included in the fMRI analyses.

In our functional connectivity analysis on sleep data during NREM periods as classified by the

EEG scoring (see the EEG analysis for more details) and intermittent wakefulness periods in between

sleep stages, we selected the longest continuous segment of data to avoid discontinuities/sudden

jumps in our data analysis. Also, because we performed a repeated measures analysis, we selected

for each subject the minimum number of sleep or wakefulness volumes available in each task night

(MSL and CTL), so that the differences in the number of volumes across tasks did not affect our

between-task contrast. These criteria resulted in the selection of 316 ± 32 (mean ± s.e.m.) fMRI vol-

umes during NREM stage two and SWS, and 358 ± 17 (mean ± s.e.m.) volumes during wakefulness

periods.

Functional task sessions
For each subject, each condition (MSL or CTL), and each practice session (S1 or S2), changes in brain

regional responses were estimated using a model including responses to the task practice blocks

weighted by each block’s performance speed (inversely related to block duration). This regressor

was then convolved with a double-gamma hemodynamic response function (HRF). Six rotation and

translation motion parameters were also included in the model as confounds. Because we were inter-

ested to extract a single map for each practice session, we did not separate areas related to the

main effect of practice and those related to the modulation by performance speed. Hence, the use

of a weighted regressor made this analysis more sensitive to identify all brain regions that are

related to both task execution and performance improvements over the course of training. The sub-

ject-level regression coefficients (COPEs in FSL) and their variance maps (VARCOPEs in FSL) were

then input to a group-level analysis, which used a mixed-effects (FLAME1, FSL) general linear model

(Z > 3.5, corrected family-wise error using Gaussian random field theory, cluster significance thresh-

old of p<0.05). In order to extract group-level maps of learning (S1) and retest (S2) practice sessions

related to motor sequence learning as compared to simple motor performance, linear contrasts

were performed to compare the difference between tasks during learning S1[MSL - CTL] and retest

S2[MSL - CTL]. In this repeated-measures analysis, several regressors modeled the mean of each sub-

ject across different practice sessions. We name these thresholded Z-statistics maps (Z > 3.5) corre-

sponding to S1 and S2 sessions the ‘learning’ and the ‘consolidated’ patterns, respectively. In each

of the learning and consolidated patterns, we calculated the total volume of activated voxels, the

volume of cortical activation using a mask extracted from the Harvard-Oxford cortical structural atlas

(Desikan et al., 2006) (more than 25% tissue probability), and the volume of subcortical activation

using a mask extracted from the Harvard-Oxford subcortical structural atlas and the probabilistic cer-

ebellar atlas (Diedrichsen et al., 2009) (more than 25% tissue probability).

Within-network functional connectivity index
To assess the strength of functional connectivity within a network of brain regions, we used a ‘con-

nectivity index’ (or CI) as proposed in Vahdat et al. (Vahdat et al., 2014). Assume that X(v) specifies

a vector of voxel intensities for a given brain network including n voxels, vi ; i ¼ 1; ::; n, and Y v; tð Þ

represents a matrix of preprocessed BOLD data for a given subject and run (e.g. during resting-state

or sleep condition) including m volumes, t ¼ 1; ::;m. Data preprocessing included the regular steps
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explained above, as well as normalization of each voxel time series by the standard deviation of all

the voxels’ time series inside the brain mask for each fMRI run and each subject. In this way, we

made sure that between-run comparisons were not confounded by differences in total variation of

BOLD signal across all brain voxels and time. We then first employed a spatial general linear model

(GLM) to estimate the time course of activation of X(v) in the BOLD data Y v; tð Þ over time (Equation 1

a), and then normalized the resulting regression coefficients b tð Þ using the standard deviation of the

residuals " v; tð Þ (Equation 1 b,c). The normalized factor h tð Þ follows a student-t distribution, so that

we could compare it over time and across different runs for a given network (Kruggel et al., 2002).

Yðv; tÞ ¼ XðvÞbðtÞþ �ðv; tÞ ðaÞ

s tð Þ ¼ std " v; tð Þð Þ ðbÞ

h tð Þ ¼ b tð Þ
s tð Þ ðcÞ

(1)

Finally, the CI was calculated as the power (variance) of the resulting normalized coefficients h tð Þ

for each subject and each run. This index simply represents the strength of functional connectivity

(or functional integration) of spatial pattern X vð Þ in a given fMRI data Y v; tð Þ. The normalization by

the regression residuals makes this index specific to the co-activation of the desired pattern (X vð Þ),

and not to any general activation in all or parts of brain areas.

This connectivity measure was selected as opposed to other methods such as ICA and seed-

based analysis due to the following reasons. First, unlike the application of data driven approaches

such as ICA, we sought to examine specific hypotheses regarding the reactivation and reorganiza-

tion of pre-defined activation patterns recruited during the learning and retest task performances.

Second, we sought to investigate the reactivation of the entire learning/consolidated pattern using a

multivariate approach, as opposed to univariate methods such as seed-based analysis, which are

suited to examine distinct connections at each time. Third, although the representational similarity

analysis (Kriegeskorte et al., 2008) offers a unique approach to study reactivation (Staresina et al.,

2013; Tambini and Davachi, 2013), this approach is well-suited in designs aiming at studying activ-

ity patterns within a specific region of interest in the brain. As in this study we sought to investigate

the reactivation patterns across all brain areas, a more general connectivity measure was desirable.

Lastly, we sought to examine the dynamics of change in each specified network over time during

sleep; hence estimation of a connectivity measure time-series was applicable. Nevertheless, we also

report the results of seed-based functional connectivity analysis for comparison purposes.

We performed two separate ANOVA to compare changes in CI within each of the learning and

the consolidated patterns. One analysis compared CI during NREM sleep between tasks (MSL –

CTL), and the other one compared it across different resting-state conditions (RS1, RS2, and RS3)

within each pattern. As the aim of the current study was to capture off-line changes in connectivity

(whether related to simple passage of time or to sleep) that happens following the acquisition of a

new motor sequence, thus, we did not include the final resting-state condition following retest ses-

sion (RS4) in our analyses because it involved changes related to the retest practice session, which

was beyond the scope and hypotheses of this study.

Furthermore, in a control analysis, we investigated changes in CI with respect to several highly-

reproducible brain networks (Damoiseaux et al., 2006) during resting-state periods and NREM

sleep. In this analysis, the preprocessed fMRI data registered to the MNI standard space during the

MSL condition in both S1 and S2 sessions were temporally-concatenated across all subjects. This

time-concatenated matrix was then fed to the fast-ICA algorithm (Hyvärinen, 1999) to extract 30

group-level spatial components. These Z-score spatial maps were correlated with the templates of

four highly-reported resting-state networks including the default mode, visual, and left and right

fronto-parietal networks (Damoiseaux et al., 2006), and the corresponding group-level spatial maps

with the highest correlation with templates were selected (Figure 2—figure supplement 1). Similar

to the learning and consolidated patterns, these group-level spatial maps were then used as the pat-

tern of interest within which CI was calculated during each of the resting-state and NREM sleep con-

ditions in both MSL and CTL nights. Similar ANOVA models as explained above were conducted to

investigate changes in CI in each spatial map during resting-state periods and NREM sleep.
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Dual regression analysis
In order to identify the brain areas within a given network whose functional connectivity is signifi-

cantly changed across different experimental conditions, we used dual regression analysis. The dual

regression method is based on two levels of regression, the first level is similar to the spatial regres-

sion carried above (Equation 1 a), where for each subject and run, a time series of regression coeffi-

cients is estimated from a group-level spatial map (the given brain pattern). This time series is then

normalized by its standard deviation, and is entered in a second level temporal regression as a pre-

dictor, where a spatial map is estimated for the same subject and run. These subject-level regression

coefficients (COPEs in FSL) and their variance maps (VARCOPEs in FSL) were then input to a mixed-

effects group-level analysis (FLAME1, FSL), where linear contrasts assessed the difference between

task conditions (corrected for family-wise error using Gaussian random field theory, cluster signifi-

cance threshold of p<0.05). Again, we performed two separate group-level GLMs for each of the

learning and the consolidated patterns. One analysis compared functional connectivity within each

pattern during NREM sleep between tasks (MSL – CTL), while the other one used a repeated-meas-

ures ANOVA to assess changes in functional connectivity across different resting-state conditions

(RS1, RS2, and RS3).

Temporal dynamics connectivity analysis
To evaluate changes in the strength of functional connectivity in a given brain pattern over time, we

calculated CI in a sliding window over the sleep fMRI session. In this analysis, for each subject, we

selected NREM stage two sleep segments (epochs) of more than 50 volumes and concatenated all

epochs in each run (note that we did not have enough data during SWS to perform this analysis).

Table 1 reports sleep architecture information inside the MRI scanner, including the average time

spent awake and asleep, and in specific sleep stages, and sleep onset time relative to the start of

simultaneous EEG-fMRI recording. We also applied the same concatenation procedure to the inter-

mittent wakefulness periods (epochs) during the sleep run. This resulted in 954 ± 156 (mean ± s.e.

m.) fMRI volumes during stage 2 of NREM sleep, and 1517 ± 235 (mean ± s.e.m.) volumes during

wakefulness periods for each subject and each condition. We selected the first 600 volumes in each

condition, so that we had enough and comparable number of fMRI volumes across subjects during

stage two sleep or wakeful periods for group-level averaging (the mean duration and the number of

selected epochs averaged across subjects for each of wakefulness and NREM stage two sleep in

MSL and CTL nights are reported in Figure 5—source data 1). Then, we selected a window size of

100 volumes, which corresponded to 3 min and 36 s of data, and slid the window by 50-volumes

steps (half the window size overlap), which resulted in 11 data points in each of the NREM stage two

and wakefulness periods. We then calculated CI in each time window for the learning and the con-

solidated patterns. Finally, we performed two-factor repeated measures ANOVA (time by task) to

assess changes in CI over time and experimental tasks (MSL and CTL). Similarly, in a region of inter-

est (ROI) based analysis, we applied a similar sliding window approach to measure changes in the

functional connectivity of a given ROI and the rest of consolidated pattern over time during NREM

stage two sleep and wakefulness. Hence, in each time window, we calculated the Pearson’s correla-

tion between the mean time series of the ROI and each voxel inside the mask of the consolidated

pattern (excluding the ROI voxels), and averaged the correlation values across all voxels. The aver-

age correlation values were then tested in a time (11 points) by task (two levels) repeated measures

ANOVA.

Seed-based functional connectivity
To ensure that the method employed here was reproducible using more conventional seed-based

approaches (Vahdat et al., 2011, 2014), we defined 12 ROIs based on peaks of activity during

either the learning (6 ROIs) or retest (6 ROIs) practice sessions (Figure 3—source data 1). We

defined a spherical mask (radius = 6 mm) around each seed in standard space. We re-sampled this

mask first to the T1 weighted structural image of each subject and from there to the low-resolution

functional space of that subject. For each subject, the average time course of the BOLD signal within

the transformed mask during the resting-state (RS1, RS2, and RS3) and NREM sleep (stage two and

SWS) was calculated.
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The mean BOLD time-course of each ROI was used as a predictor in a subject-level GLM to assess

the functional connectivity of that ROI with every other voxel in the brain. Physiological noise was

removed from the fMRI data based on a procedure described in Vahdat et al. (Vahdat et al., 2011).

We calculated the following regressors: the average white-matter BOLD signal (WM), cerebro-spinal

fluid (CSF), and the global signal. In total, nine nuisance regressors were used: WM, CSF, global sig-

nal and six motion parameters (x, y, and z translations and rotations obtained from the motion cor-

rection step in preprocessing). Hence, for each subject and each run a separate multiple regression

analysis was carried out using the time series of nuisance signals as confound regressors and the

time series of the ROI as the regressor of interest. We included the time derivative of each ROI’s sig-

nal as a regressor in the GLM to account for possible time differences in the haemodynamic

response function (HRF) of different cortical areas, as well as the latency for signal propagation from

one cortical area to another (Vahdat et al., 2011). This analysis produced maps of all voxels that

were positively or negatively correlated with an ROI’s mean time-course. This was followed by

between-subjects analyses that were carried out using a mixed-effects model (FLAME1) imple-

mented in FSL (Beckmann et al., 2003). As in Vahdat et al. (Vahdat et al., 2011, 2014), we used

each subject’s behavioral outcome (overnight improvements in performance) as a regressor to

obtain a weighted average of the difference between conditions (MSL compared to CTL). Correc-

tions for multiple comparisons at the cluster level were carried out using Gaussian random field the-

ory (min Z > 2.7; cluster significance: p<0.05, corrected). To correct for multiple ROIs we identified

as statistically significant those clusters that had a probability level of better than p=0.05/12 (12 =

number of ROIs).

We then examined the correspondence between the behavioral regressor and the changes in

functional connectivity (for the resting-state data the change between RS3 or RS2 and RS1, and for

the sleep data the difference between the MSL and CTL nights). We constructed a vector for each

connection between an ROI and target cluster whose elements were each subjects’ change in func-

tional connectivity (DFC). This vector was correlated with a vector of associated overnight improve-

ments in motor performance.

Polysomnographic recording and analysis
EEG was recorded by using an MR-compatible EEG cap (Braincap MR, Easycap, Herrsching, Ger-

many) with 64 ring-type electrodes and two MRcompatible 32-channel amplifiers (Brainamp MR

plus, Brain Products GmbH, Gilching, Germany). EEG caps included 62 scalp electrodes referenced

to FCz. Two bipolar ECG recordings were taken from V2-V5 and V3-V6 using an MR-compatible 16-

channel bipolar amplifier (Brainamp ExG MR, Brain Products GmbH, Gilching, Germany). Electrode-

skin impedance was reduced to <5 KOhm using high-chloride abrasive electrode paste (Abralyt

2000 HiCL; Easycap, Herrsching, Germany). In order to reduce movement-related EEG artifacts, sub-

jects’ heads were immobilized in the head-coil by surrounding the subject’s head with foam cush-

ions. EEG was digitized at 5000 samples per second with a 500-nV resolution. Data were analog

filtered by a low pass filter at 250 Hz and a high pass filter at 0.0159 Hz. Data were transferred via

fiber optic cables to a personal computer where Vision Recorder Software, Version 1.x (Brain Prod-

ucts, Gilching, Germany) was synchronized to the scanner clock. Sleep EEG was monitored online

with Brain Products RecView software using online artifact correction.

EEG data were preprocessed by a low-pass filter (60 Hz), down-sampled to 250 samples/sec and

re-referenced to averaged mastoids. Scanner artifacts were removed using the ‘fMRI Artifact rejec-

tion and Sleep Scoring Toolbox (FASST)’ for MATLAB (Mathworks, Natick, Massachusetts, USA

[Leclercq et al., 2011]), using an adaptive average subtraction method. Ballistocardiographic arti-

facts were then removed using an algorithm based on a combination of artifact template subtraction

and event-related independent component analysis (Leclercq et al., 2009) for artifacts time-locked

to the R-peak of the QRS complex of the cardiac rhythm. Following gradient artifact and ballistocar-

diographic artifact correction, EEG recordings were sleep stage scored according to standard crite-

ria (Berry et al., 2012) to identify periods of NREM sleep, free of any movement artifact, during

which the EEG and fMRI data were analyzed.
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Statistical analyses
Results are shown as mean ± s.e.m. Based on our previous resting-state analysis results on neurologi-

cally healthy subjects (Debas et al., 2010; Vahdat et al., 2011), on average, a difference of

0.73 ± 0.56 (mean ± std) of baseline functional connectivity (Z score units) within the sensorimotor

network have been detected following motor learning. Thirteen subjects would thus provide 90%

power to detect changes across experimental conditions at a significance level of a = 0.05

(Rigby and Vail, 1998). Data were checked for normality and equality of variance across conditions.

Unless otherwise indicated, statistical significance was determined using repeated measures two-

tailed t tests (when comparing two conditions) or repeated measures ANOVAs (when comparing

more than two conditions). Results were considered to be significant at p<0.05.
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