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Abstract
Purpose: TP53 mutation, one of the most frequent mutations in early-stage lung 
adenocarcinoma (LUAD), triggers a series of alterations in the immune landscape, 
progression, and clinical outcome of early-stage LUAD. Our study was designed to 
unravel the effects of TP53 mutation on the immunophenotype of early-stage LUAD 
and formulate a TP53-associated immune prognostic model (IPM) that can estimate 
prognosis in early-stage LUAD patients.
Materials and methods: Immune-associated differentially expressed genes (DEGs) 
between TP53 mutated (TP53MUT) and TP53 wild-type (TP53WT) early-stage LUAD 
were comprehensively analyzed. Univariate Cox analysis and least absolute shrink-
age and selection operator (LASSO) analysis identified the prognostic immune-as-
sociated DEGs. We constructed and validated an IPM based on the TCGA and a 
meta-GEO composed of GSE72094, GSE42127, and GSE31210, respectively. The 
CIBERSORT algorithm was analyzed for assessing the percentage of immune cell 
types. A nomogram model was established for clinical application.
Results: TP53 mutation occurred in approximately 50.00% of LUAD patients, stim-
ulating a weakened immune response in early-stage LUAD. Sixty-seven immune-
associated DEGs were determined between TP53WT and TP53MUT cohort. An IPM 
consisting of two prognostic immune-associated DEGs (risk score = 0.098 * ENTPD2 
expression + 0.168 * MIF expression) was developed through 397 cases in the TCGA 
and further validated based on 623 patients in a meta-GEO. The IPM stratified pa-
tients into low or high risk of undesirable survival and was identified as an inde-
pendent prognostic indicator in multivariate analysis (HR = 2.09, 95% CI: 1.43–3.06, 
p < 0.001). Increased expressions of PD-L1, CTLA-4, and TIGIT were revealed in 
the high-risk group. Prognostic nomogram incorporating the IPM and other clinico-
pathological parameters (TNM stage and age) achieved optimal predictive accuracy 
and clinical utility.
Conclusion: The IPM based on TP53 status is a reliable and robust immune signature 
to identify early-stage LUAD patients with high risk of unfavorable survival.
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1 |  INTRODUCTION

Lung cancer is the leading reason for tumor-associated death, 
and it is histologically categorized into two major subtypes: 
small-cell lung carcinoma (SCLC) and non-small-cell lung 
carcinoma (NSCLC), accounting for approximately 15% 
and 85% of all cases, respectively.1,2 Lung adenocarcinoma 
(LUAD), the most frequent subtype of NSCLC, comprises 
over 40% of all patients, which is derived from mucus-secret-
ing type II alveolar cells in small airway epithelium.3,4 High 
rate of metastasis and invasiveness, one of the most strik-
ing characteristics of LUAD, yields a 5-year survival rate of 
merely 19%.5 Moreover, a staggering proportion (57%) of 
LUAD cases initially diagnosed with metastatic neoplasm 
achieves a 5-year survival rate of merely 5%.6 Conversely, 
low-dose computerized tomography (CT) is conducive to the 
rapid screening of early-stage LUAD.7,8 Those with localized 
tumor exhibit a relatively desirable 5-year survival rate of up 
to 83% (TNM stage IA) and 71% (TNM stage IB).9 Based on 
several large and randomized clinical trials, a majority of ear-
ly-stage LUAD cases are not recommended to receive adju-
vant systemic chemotherapy following surgical intervention, 
which is partly ascribed to chemotherapy-associated toxic ef-
fects far exceeding the potential survival advantages for these 
individuals.10,11 Therefore, it is essential to identify the sub-
set of early-stage LUAD patients (TNM I and Ⅱ stage) with 
high possibility of recurrence and death, for whom additional 
systemic chemotherapy is required.8,12

Immune escape has been considered as an emerging hall-
mark of lung cancer.13 Novel and promising immune check-
point inhibitors' (ICIs) treatment targeted programmed death 
1(PD-1)/programmed death ligand 1 (PD-L1) has been re-
vealed a prominent and durable response in approximately 
20% NSCLC patients.14 The ideal method of patient selec-
tion for the optimal improvement in the effectiveness of 
frontline immunotherapy for NSCLC remains to be deter-
mined.15 The levels of immunosuppressive molecules (such 
as PD-L1, PD-1, and indoleamine 2,3-dioxygenase [IDO]), 
mutational landscape, and burden as well as mismatch re-
pair deficiency have been identified as potential predictors 
of patient's response to ICIs therapy.16,17 For example, a 
significantly increased progression-free survival (PFS) was 
revealed in anti-PD-1 monotherapy (Nivolumab) combined 
with anti-CTLA-4 monotherapy (Ipilimumab) versus che-
motherapy alone in NSCLC individuals with a high tumor 
mutational burden (TMB) rather than in those with a low 
TMB.18,19 The subset of NSCLC cases with strongly PD-L1-
positive neoplasms is the primary driver of clinical benefit 
from anti-PD-1 monotherapy (Pembrolizumab) in the whole 
research population.20 Additionally, certain immune-associ-
ated clinicopathological parameters, such as enhanced levels 
of tumor-infiltrating cytotoxic lymphocytes (CTLs), seem 
to be prognostic biomarkers and are significantly correlated 

with better prognosis in early-stage LUAD, further highlight-
ing the significance of multifarious components of the im-
mune system during the initiation and progression of lung 
cancer.21 Thus, comprehensive exploration of the complex 
cross-talk between tumor and immune microenvironment 
will be instrumental in evaluating their prognostic potential 
in early-stage LUAD and optimizing tumor-associated immu-
notherapy strategies.22

Tumor suppressor p53, a transcription factor, exerts its 
tumor suppressive function primarily via its transcriptional 
modulation of its downstream target genes.23 The products 
of p53 target genes are proved to participate in a sequence 
of crucial biological pathways, including cell proliferation 
and apoptosis, DNA damage repair, anti-oxidant function, 
metabolism and angiogenesis as well as immunoreaction, 
thus making contributions to the tumor-suppression effect 
of p53.24-26 TP53, the encoding gene of p53 protein, is the 
most commonly mutated gene in multiple cancers and is sub-
sistent in approximately 37%-50% LUAD cases.27-29 Mutant 
p53 potentially triggers chromosomal/genomic instability 
and further results in a high TMB, which is frequently related 
to more aggressive malignancy and unsatisfactory prognosis 
in LUAD.30-32 Nevertheless, several studies have highlighted 
that TP53-mutated LUAD is characterized with higher PD-L1 
expression by malignant cells, boosted T-cell infiltration and 
tumor immunogenicity, leading to an increased response to 
ICIs.7,32-34

Therefore, TP53 mutation burden is a pivotal determinant 
and biomarker for targeted therapy response and prognosis 
of patients.

In our report, we combined TP53 mutation status infor-
mation with mRNA expression profiles to investigate the as-
sociation between TP53 mutation and immune landscape in 
early-stage LUAD. An individualized IPM on the basis of im-
mune-related gene whose expression is influenced by TP53 
mutation status was developed and validated in different pop-
ulations and platforms, which can be served as a promising 
prognostic signature to improve early-stage LUAD patient 
management.

2 |  MATERIALS AND METHODS

2.1 | Data source and patient selection

We retrospectively analyzed the raw data of somatic single 
nucleotide mutation, mRNA expression, and corresponding 
clinical information of early-stage LUAD patients from four 
public datasets, including The Cancer Genome Atlas (TCGA) 
database and three independent datasets retrieved from Gene 
Expression Omnibus (GEO; GSE72094 based on platform 
GPL15048, GSE42127 based on platform GPL6884 and 
GSE31210 based on platform GPL570). Only early-stage 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42127
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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LUAD cases with sufficient clinical annotation were incor-
porated into our study. Certain clinicopathological variables, 
such as age at diagnosis, gender, race, TP53 mutant infor-
mation, status of residual tumor, TNM stage, survival time, 
and survival status, were extracted for each patient. A total 
of 1020 early-stage LUAD patients were included, consist-
ing of 397 cases from TCGA, 336 cases from GSE72094, 
111 cases from GSE42127, and 176 cases from GSE31210. 
We selected the TCGA dataset as independent training co-
hort. The remaining three GSE datasets were merged into one 

meta-GEO as validation cohort. Both gene expression data 
and clinicopathological information for early-stage LUAD 
are publicly available. All analyses in our study were per-
formed strictly followed to the guidelines and regulations of 
above databases. The flow chart of overall study design was 
illustrated in Figure 1.

Specifically, the somatic mutation status of 561 LUAD 
cases (workflow type: SomaticSniper Variant Aggregation 
and Masking) and RNA sequencing (RNA-seq) data and 
the corresponding clinicopathologic parameters of 504 

F I G U R E  1  The flow diagram of our study. DEGs, differently expressed genes; FC, fold change; FDR, false discovery rate; LASSO, least 
absolute shrinkage and selection operator; ROC, receiver operating characteristic; OS, overall survival

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42127
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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early-stage LUAD samples were extracted from the TCGA 
(https://tcga-data.nci.nih.gov/tcga/; up to May 30th, 2020).35 
The gene symbols were annotated using “clusterProfiler” R 
package.36 Of above early-stage LUAD patients, a total of 397 
cases with mRNA expression profiles, TP53 mutant status 
and clinical data were selected for subsequent analysis in our 
study. The RNA-seq data were handled through log2-scale 
transformation and was further applied to trimmed mean of 
M values (TMM) normalization via “edgeR” R package.37 
Average expression value was estimated and utilized when 
multiple expression values of the same gene were detected.35

Microarray data and the corresponding clinical infor-
mation of early-stage LUAD individuals from GSE72094, 
GSE42127, and GSE31210 were downloaded from Gene 
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) through “GEOquery” R package.38 To accord 
with standard normal distribution, these data were eliminated 
batch effects via “sva” R package and normalized by scale 
function of “limma” R package, which were further merged 
into a meta-GEO cohort (including 623 early-stage LUAD 
patients) to externally validate the practicability of the IPM.35

2.2 | Gene set enrichment analysis

To investigate the underlying association between TP53 
mutant status and immune-associated biological pathways 
in early-stage LUAD, gene set enrichment analysis (GSEA) 
was conducted between early-stage LUAD cases without 
(n = 218) and with (n = 179) TP53 mutation in the TCGA co-
hort through GSEA software downloaded from https://www.
broad insti tute.org/gsea/.39 p < 0.05 was considered statisti-
cally significant.

2.3 | Differentially expressed genes analysis 
based on TP53 status

DEGs between TP53MUT and TP53WT early-stage LUAD 
were analyzed by “limma” R package.40 |log2

fold change (FC)| > 1 
and false discovery rate (FDR)  <  0.01 were considered as 
the cutoff values to identify DEGs. All TP53-related DEGs 
and above immune-related genes obtained from GSEA were 
overlapped to acquire immune-associated DEGs between 
TP53WT and TP53MUT early-stage LUAD individuals.

2.4 | Construction and validation of an 
immune prognostic model

A total of 397 early-stage LUAD patients in the TCGA da-
tabase had sufficient information, including mRNA expres-
sion profiles, TP53 mutant status, survival time and survival 

status. All TP53-related immune DEGs and the survival data 
of 397 cases were analyzed by univariate Cox regression 
analysis utilizing “survival” R package.41 When p value was 
below 0.05 and |hazard ratio (HR)|was not equal to 1, the cor-
responding DEGs were considered as prognostic immune-
related genes, which were all incorporated into subsequent 
investigation.

LASSO Cox analysis was implemented through “glm-
net” R package, further determining the most significantly 
prognostic immune-related DEGs.42 The penalization coef-
ficient was used for evaluating the weight of model param-
eters. Nonsignificant indicators were shrunk to zero, while 
residual DEGs were applied for establishing a prognostic risk 
score model. Subsequently, an IPM was constructed based 
on corresponding coefficients of the prognostic DEGs: risk 
score  =  βmRNA1 * ExprmRNA1 + βmRNA2 * ExprmRNA2 + ⋯ 
+ βmRNAn * ExprmRNAn, where Expr is the DEG expression 
level and β is the LASSO Cox regression coefficient. All ear-
ly-stage LUAD cases in the TCGA dataset were stratified into 
the high- or low-risk group according to the optimal cutoff 
value identified by X-tile 3.6.1 software.43

To determine the distinguishing capability of the IPM for 
patients' prognosis, the differences of overall survival (OS) 
between high- or low-risk group were compared through 
Kaplan–Meier curves with log-rank test using “survival” R 
package.41 To evaluate the predictive efficiency of the IPM, 
the time-dependent receiver operating characteristic (ROC) 
curve with area under the curve (AUC) value were developed 
through “survival ROC” R package.44 Similarly, the identical 
median value and formula of risk score based on the TCGA 
cohort were further implemented in a meta-GEO validation 
group to identify the robustness of our IPM.

2.5 | Estimation of immune cell 
type fractions

CIBERSORT, a deconvolution algorithm described by 
Alizadeh et al, has the capability to quantify cell fractions 
from abundant tissue gene expression profiles. To detect the 
relative fractions of 22 infiltrating immune cell types in the 
early-stage LUAD samples, the CIBERSORT (http://ciber 
sort.stanf ord.edu/) and the LM22 were utilized.45 LM22, the 
leukocyte gene signature matrix with 547 genes, is an ap-
proach to accurately differentiate 22 human hematopoietic 
cell phenotypes, including B cells, T cells, natural killer (NK) 
cells, macrophages, dendritic cells (DCs), and myeloid sub-
sets. CIBERSORT generates a p value for the deconvolution 
of each specimen through Monte Carlo sampling, thus measur-
ing the confidence of the results. When p value is below 0.05, 
the outcome of the concluded fractions of immune cell popu-
lations generated through CIBERSORT is considered receiv-
able.45 Therefore, in our report, CIBERSORT integrated 

https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42127
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.broadinstitute.org/gsea/
https://www.broadinstitute.org/gsea/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/


810 |   WU et al.

with LM22 were applied for quantifying the percentage of 
immune cells in TP53MUT and TP53WT early-stage LUAD 
samples in the TCGA database. Patients with a CIBERSORT 
p < 0.05 were selected for subsequent analysis.

2.6 | Independence of the IPM from 
conventional clinicopathological factors

A total of 397 early-stage LUAD cases with sufficient clin-
icopathological data such as age, gender, race, TP53 mutant 
status, residual tumor status, TNM stage, and survival data 
were subjected to subsequent analysis. Univariate and mul-
tivariate Cox regression analysis were applied for exploring 
whether the predictive capacity of an IPM was independent 
of conventional clinicopathological variables.

2.7 | Development and 
validation of nomogram model

We incorporated all statistically significant clinicopathologi-
cal parameters identified via multivariate Cox analysis and 
further established a visualized nomogram model through 
“rms” and “survival” R package, thus predicting the 3-,5-
,10-year OS probability of patients.46,47 The predictive ca-
pability of the nomogram was evaluated through measuring 
discrimination and calibration utilizing a bootstrap approach 
under 1000 resampling. Discrimination was assessed via 

Concordance index (C-index). The C-index is closer to 1, 
implying more accurate predictive ability of the nomogram 
model.48 Calibration curves were applied for evaluating the 
consistency between the predicted survival probability of 
nomogram and the actual observed possibility. The 45 refer-
ence line indicated the optimal predictive performance.46 The 
ROC curve with AUC value and the decision curve analysis 
(DCA) were generated through using “survival ROC” and 
“rmda” R package, respectively, which can evaluate the pre-
dictive precision and clinical utility of nomogram.44,49

3 |  RESULTS

3.1 | Correlation between TP53 mutations 
and immune phenotype in early-stage LUAD

As revealed in Figure  2, TTN had the highest mutant fre-
quency (50.35%) in LUAD patients. TP53 was the second 
most common mutant gene, accounting for approximately 
50.00% of LUAD cases, followed by CSMD3 (40.24%), 
LRP1B (36.93%), KRAS (28.05%) and PAPPA2 (19.69%). 
TP53 mutations predominantly consisted of missense muta-
tion, nonsense mutation, splice site mutation, and frameshift.

We further illuminated how the immune-associated bi-
ological processes and genes differ between TP53MUT 
(n = 179) and TP53WT (n = 218) early-stage LUAD patients 
based on their mRNA expression profiles and clinical data 
extracted from the TCGA database. GSEA results revealed 

F I G U R E  2  Somatic mutation landscape of lung adenocarcinoma (LUAD) patients in the TCGA database, which was obtained from the Fire 
Browse platform (http://fireb rowse.org/)

http://firebrowse.org/
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that seven immune-associated pathways were significantly 
enriched in TP53WT early-stage LUAD, including organ or tis-
sue specific immune response (normalized enrichment score 
(NES) = 1.836, size = 15, p < 0.0001), regulation of humoral 
immune response (NES = 1.745, size = 47, p = 0.010), response 
to interleukin 6 (IL-6; NES = 1.731, size = 25, p = 0.006), 
cellular response to IL-6 (NES = 1.641, size = 21, p = 0.017), 
complement activation (NES = 1.633, size = 44, p = 0.024), 
regulation of macrophage activation (NES = 1.569, size = 24, 
p = 0.035), antimicrobial humoral response (NES = 1.522, 
size = 25, p = 0.047; Figure 3; Table S1). Conversely, GSEA 
results based on hallmark gene sets further demonstrated that 
there were no statistically significant immune-associated bio-
logical processes enriched in TP53MUT early-stage LUAD pa-
tients. Several cell cycle-associated signaling pathways were 
significantly enriched in early-stage LUAD with mutated 
TP53, such as chromosome segregation, mitotic nuclear divi-
sion, DNA replication, cell cycle G2/M phase transition and 
DNA repair (p < 0.05; Table S2).

3.2 | Immune-associated DEGs between 
TP53WT and TP53MUT early-stage LUAD

A total of 146 immune-associated genes were acquired from 
above seven immune-related pathways. Simultaneously, 
there were 6151 TP53 status-associated DEGs, including 
1856 downregulated DEGs and 4295 upregulated DEGs in 
TP53WT early-stage LUAD (FDR < 0.01 and |log2FC| > 1). 

Consequently, of the 6151 DEGs investigated, 67 immune-
associated DEGs between TP53MUT and TP53WT early-stage 
LUAD were determined through the overlapping analysis 
(Table S3).

3.3 | Establishment of an IPM based on the 
TCGA database

To investigate the prognostic role of 67 immune-associated 
DEGs in patients, we performed univariate Cox analysis 
and further found that six of 67 DEGs, including C8B, C6, 
PLA2G1B, Ectonucleoside triphosphate diphosphohydrolase 
family member 2 (ENTPD2), Macrophage migration in-
hibitory factor (MIF) and C8A, were significantly related to 
patients' OS (p < 0.05; Table 1). Moreover, LASSO Cox anal-
ysis was conducted to identify two immune-associated DEGs 
(ENTPD2 and MIF) with the optimal prognostic efficiency in 
patients. In the TCGA cohort, ENTPD2 (HR = 1.12, 95% CI: 
1.02–1.24, p = 0.0243) and MIF (HR = 1.21, 95% CI: 1.02–
1.43, p = 0.0277) were considered as risky genes in early-
stage LUAD and were ultimately chosen to establish an IPM 
(Table 1). The following formula can be used to calculate the 
risk score of each patient:IPM risk score = 0.098 * ENTPD2 
expression value +0.168 * MIF expression value. We esti-
mated the risk score of every patient and identified optimal 
cutoff value via X-tile software.

All 397 early-stage LUAD cases were stratified into 
high- or low-risk group in accordance with the optimal 

F I G U R E  3  Gene set enrichment analysis (GSEA) results of significant immune-associated biological processes enriched in TP53WT early-
stage lung adenocarcinoma (LUAD) individuals. TP53 mutated, TP53MUT
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cutoff point (0.99). Survival analysis revealed that a higher 
risk score was correlated with significantly worse progno-
sis of cases in the TCGA training database (HR  =  1.85, 
95% CI: 1.27–2.72, p = 0.002; Figure 4A). The risk score 
distribution, heatmap concerning two immune genes’ ex-
pression, and survival status for every patient were illus-
trated in Figure 4B. There was a high uniformity between 
the expression levels of ENTPD2 and MIF and the IPM 
risk score. Specifically, the high-risk cases displayed sig-
nificantly enhanced levels of ENTPD2 and MIF compared 
with their low-risk counterparts. The time-dependent re-
ceiver operating characteristic (ROC) curve and the corre-
sponding area under the ROC curves (AUC) was applied 
for evaluating the prognostic accuracy of our IPM. The 
AUC values for OS of early-stage LUAD were 0.612 (95% 
CI: 0.466–0.736) at 0.5  years, 0.662 (95% CI: 0.594–
0.751) at 1 years, 0.658 (95% CI: 0.598–0.721) at 2 years, 
0.707 (95% CI: 0.646–0.763) at 3 years and 0.645 (95% CI: 
0.543–0.738) at 5 years (Figure 4C).

3.4 | Validation of an IPM in a meta-
GEO cohort

A meta-GEO cohort composed of 623 early-stage LUAD 
cases was utilized to externally validate the robustness of 
our IPM. The expression values of ENTPD2 and MIF gene 
in the meta-GEO validation cohort were normalized, with 
an average value of 0 and a standard deviation (SD) of 1.50 
On the basis of the identical score formula and cutoff point 
in the TCGA training group, all cases in a meta-GEO group 
were categorized into high- or low-risk groups. As re-
vealed in Figure 4D, cases with high risk score were char-
acterized with an inferior prognosis compared with those 
in the low-risk group (HR  =  2.10, 95% CI: 1.47–3.01, 
p < 0.001), which was roughly consistent with the results 
in the TCGA group. Figure 4E illustrated the IPM score, 
gene expression and survival status of early-stage LUAD 

cases in the meta-GEO validation cohort. Moreover, the 
diagnostic performance of the IPM attained an AUC of 
0.645 (95% CI: 0.552–0.715) at 0.5 years, 0.684 (95% CI: 
0.612–0.749) at 1  years, 0.629 (95% CI: 0.515–0.633) at 
2 years, 0.605 (95% CI: 0.539–0.645) at 3 years and 0.738 
(95% CI: 0.637– 0.758) at 5 years (Figure 4F). Therefore, 
these findings highlight that the IPM is robust and applica-
ble in varying populations and platforms.

Recently, Zuo et al. established a novel 8-gene prognos-
tic signature for predicting the long-term OS of patients with 
early-stage non-small-cell lung cancer (NSCLC).51 Firstly, 
they investigated four lung cancer datasets to estimate DEGs 
between early-stage NSCLC and normal adjacent lung tis-
sue. Furthermore, Cox proportional hazards models was per-
formed on those DEGs to determine the candidate prognostic 
genes. Ultimately, a risk score model for these hub genes was 
developed in the TCGA cohort. Similarly, in 2020, Liang 
et al also proposed a promising 21-gene-based prognostic 
immune prediction model for early-stage LUAD patients in 
the TCGA cohort.52 The C-index, a frequently utilized eval-
uation indicator for survival models, was estimated through 
“pec” R package utilizing a bootstrap manner under 1000 re-
sampling, thus comparing the predictive performance of the 
previously published prognostic signatures and our IPM. A 
higher C-index value indicates the more favorable predictive 
performance of the model.53 The C-index of our IPM to pre-
dict 1 to 5-year OS surpassed that of the 8-gene and 21-gene 
prognostic signatures in TCGA and meta-GEO group, high-
lighting that the IPM displayed relatively desirable perfor-
mance to predict the prognosis of early-stage LUAD patients 
(Figure 4G,H).

3.5 | Survival analysis of the IPM based on 
TP53 status

As revealed in Figure 5A, TP53 mutant early-stage LUAD 
patients exhibited a 1.66-fold higher risk (HR = 1.66, 95% 
CI: 1.16–2.38, p = 0.006) than patients without TP53 mu-
tation. We stratified all cases in the TCGA group into two 
subgroups based on TP53 status, thus uncovering whether 
the predictive power of the IPM was independent of TP53 
status. The results indicated that high risk score exerted 
a significantly negative effect on the prognosis of early-
stage LUAD patients in TP53WT subgroup (HR  =  1.96, 
95% CI: 1.14–3.40, p  =  0.016; Figure  5B) and TP53MUT 
subgroup (HR  =  1.74, 95% CI: 1.01–2.97, p  =  0.044; 
Figure  5C), respectively. Similarly, correlation analysis 
also demonstrated that there was a negative association be-
tween IPM risk score and survival time in both TP53WT 
(R  =  −0.26, p  =  0.00012) and TP53MUT (R  =  −0.42, 
p  =  9.9e-09) subgroups (Figure  5D). Furthermore, the 
predictive performance of our IPM was independent of 

T A B L E  1  Univariate Cox analysis of immune-associated DEGs 
between TP53WT and TP53MUT early-stage LUAD

Gene HR (95% CI)
p 
value

C8B 0.92 (0.86–0.98) 0.0105

C6 0.91 (0.85–0.98) 0.0138

PLA2G1B 0.92 (0.86–0.99) 0.019

ENTPD2 1.12 (1.02–1.24) 0.0243

MIF 1.21 (1.02–1.43) 0.0277

C8A 0.91 (0.84–0.99) 0.0358

Bold highlights the significant genes or parameters which are emphasized and 
discussed in the main manuscript.
Abbreviations: TP53MUT, TP53 mutated; TP53WT, TP53 wild-type.
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TP53 status via univariate and multivariate Cox analysis 
(Figure 5E). Concerning that a majority of TP53 alterations 
were missense mutation (106/179) in our report, we then 
investigated whether the IPM influenced the prognosis of 
patients in different TP53 mutation subtypes. As revealed 
in Figure  5F, cases with high risk score were correlated 
with diminished survival in the TP53 missense mutation 
subgroup (HR = 2.62, 95% CI: 1.17–5.87, p = 0.019).

3.6 | Strengthened immune response in 
early-stage LUAD patients with low IPM 
risk score

Gene set enrichment analysis was further conducted to dis-
close immune-related processes between low-risk (n = 182) 
and high-risk (n = 215) early-stage LUAD cases in the TCGA 
training cohort. Cases with low risk score were significantly 

F I G U R E  4  Prognostic analysis of an immune prognostic model (IPM). All early-stage lung adenocarcinoma (LUAD) cases were stratified 
into high- and low-risk groups based on median risk score in (A–C) the TCGA training cohort and (D–F) the meta-GEO testing cohort. (A and D) 
Kaplan–Meier curves revealed that individuals with high risk score displayed remarkably diminished overall survival (OS) than those with low 
risk score. (B and E) The risk score distribution was consistent with the heatmap of two immune-related prognostic genes' expression and survival 
status of cases. The black dotted line signals the cutoff of IPM risk score to stratify cases into low- and high-risk groups. (C and F) Time-dependent 
ROC curves of the IPM demonstrated the relatively satisfactory predictive performance. (G and H) Prognostic prediction efficiency was evaluated 
between an IPM and 21-gene signature as well as 8-gene signature through estimating the C-index in both cohorts



814 |   WU et al.

related to several immunological pathways, including regula-
tion of adaptive immune response (NES = 1.576, size = 33, 
p  =  0.041), cytokine production involved in immune re-
sponse (NES  =  1.573, size  =  16, p  =  0.034), regulation 
of production of molecular mediator of immune response 
(NES  =  1.554, size  =  26, p  =  0.037), and thymic T-cell 
selection (NES  =  1.549, size  =  19, p  =  0.048; Table  S4). 
Conversely, there was no statistically significant immune-as-
sociated biological processes enriched in patients with high 
risk score (Table S5). Thus, low IPM risk score potentially 
portends an enhanced immune phenotype while attenuated 
immune response is prone to occur in those cases with high 
risk score.

3.7 | Immune landscapes between early-
stage LUAD patients with low and high 
risk score

The discrepancies concerning the compositions of 22 tumor-in-
filtrating immune cells between low- and high-risk early-stage 

LUAD cases were evaluated through CIBERSORT combined 
with LM22 signature matrix. The distribution of the risk score, 
clinicopathologic characteristics and immune cell composition 
were evaluated in the TCGA cohort. A higher risk score was 
significantly correlated with more advanced TNM stage and 
the status of with tumor (Figure 6A). Additionally, the propor-
tions of immune cells were diverse among different early-stage 
LUAD samples, highlighting that alterations of intra-tumoral 
immune cells potentially serve as inherent characteristics to 
represent individual variations (Figure  6A). Generally, the 
five most common immune cell fractions in early-LUAD tis-
sues were CD4+ T cells, DCs, NK cells, CD8+ T cells and B 
cells, and the sum of their average proportions was over 50% 
(Figure 6B). As revealed in Figure 6C, patients with low risk 
score were characterized with an increased proportion of rest-
ing DCs (p = 0.0168) and eosinophils (p = 0.0089). Conversely, 
cases in the high-risk group had higher infiltration of activated 
mast cells (p = 0.0413) and monocytes (p = 0.0389). We per-
formed principal components analysis (PCA) to identify the dif-
ference between low- and high-risk early-stage LUAD patients 
on the basis of above-identified immune cell subpopulations. 

F I G U R E  5  Prognostic analysis of early-stage lung adenocarcinoma (LUAD) patients in multiple subgroups stratified by TP53 status. Kaplan–
Meier curves of the overall survival (OS) difference between high- and low-risk cases in (A) the whole TCGA cohort, (B) TP53WT subgroup 
and (C) TP53MUT subgroup. (D) Correlation analysis between immune prognostic model (IPM) risk score and patient's OS. (E) Univariate and 
multivariate Cox regression analysis of the prognostic association between an IPM and TP53 status. (F) Kaplan–Meier curves of the OS difference 
between high- and low-risk patients in the TP53 missense mutation subgroup. TP53MUT, TP53 mutated; TP53WT, TP53 wild-type
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As showed in Figure 6D, immune cell subpopulations stratified 
high-risk and low-risk cases into two discrete sections, empha-
sizing that the immune landscape of early-stage LUAD cases in 
the low-risk group was greatly different from those with high 
risk score. The heterogeneity of immune microenvironment in 
early-stage LUAD potentially exerts significant implications 
for identifying prognosis.

In order to unravel the associations between the IPM risk 
score and responses to immunotherapy of early-stage LUAD 
patients, we specially focused on the relationship between 

IPM risk score and the levels of crucial immunotherapy-re-
lated genes. There was a significantly negative correlation 
between risk score and the expression of CD8A (Pearson 
correlation coefficient [PCC]  =  −0.138, p  =  0.0058) and 
CD4 (PCC = −0.258, p = 1.823e-07). In contrast, the IPM 
risk score was significantly positively associated with PD-L1 
(also known as CD274, PCC = 0.163, p = 0.0011), CTLA-4 
(PCC  =  0.141, p  =  0.005) and TIGIT (PCC  =  0.109, 
p = 0.031; Figure 7A; Table 2), whereas there was no sig-
nificant correlation between risk score and the levels of 

F I G U R E  6  Distribution of the immune prognostic model (IPM) risk score, clinical characteristics and immune cell subpopulations of early-
stage lung adenocarcinoma (LUAD) patients in the TCGA cohort. (A) Heatmaps summarizing the fraction of intra-tumoral immune cells and 
clinical characteristics between high- and low-risk patients. (B) Bar charts of immune cell subset proportions between high- and low-risk patients. 
(C) Violin plots of significantly different fractions of immune cells between high- and low-risk patients. (D) The principal component analysis 
(PCA) based on immune cells subpopulations presenting a significant distinction between high- and low-risk cases
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TIM-3, LAG3, IDO1, and CD8B (Table 2). Similarly, violin 
plots depicted in Figure  7B illustrated that cases with low 
IPM risk score had significantly increased levels of CD4 and 
CD8A while significantly diminished expression of PD-L1, 
CTLA-4, and TIGIT compared with the high-risk patients 
(p < 0.05). Thus, the expression levels of pivotal immuno-
therapy-associated genes are potentially correlated with the 
risk stratification of early-stage LUAD patients.

3.8 | Analysis of IPM-associated biological 
function and pathway

GO analysis was performed to predict the potential biological 
significance of immune-associated DEGs between the high- 
and low-risk groups. A total of 17 immune-associated DEGs 
were obtained through overlapping 178 risk score-associated 
DEGs and 94 IPM-related immune genes, which were con-
sidered as risk score-associated immune DEGs (Figure 8A). 
Those genes were submitted for GO analysis to reveal the 
underlying biological functions and pathways (Figure 8B,C). 
These results demonstrated that risk score-associated immune 
DEGs in the TCGA cohort were primarily enriched in the hu-
moral immune response, antimicrobial humoral response and 
positive regulation of cytokine secretion (Table S6).

3.9 | The IPM is independent of traditional 
clinicopathological factors

Univariate and multivariate Cox regression analysis were 
applied for assessing the contribution of an IPM as an inde-
pendent prognostic parameter to the OS of early-stage LUAD 
cases in the TCGA cohort. As revealed in Figure 9A, univari-
ate Cox analysis demonstrated that several clinicopathologic 
parameters, such as TP53 status, TNM stage, age and IPM 
risk score, exerted an effect on the prognosis of early-stage 
LUAD cases. Above significant variables were incorporated 

F I G U R E  7  Correlation analysis between the immune prognostic model (IPM) and pivotal immunotherapy-associated moleculars. (A) Circular 
plot of the correlation between the IPM risk score and the expression of immune checkpoint regulators. (B) Violin plots of immunotherapy-
associated gene levels between high- and low-risk early-stage lung adenocarcinoma (LUAD) patients

T A B L E  2  Correlation of immunotherapy-related genes and IPM 
risk score in early-stage LUAD patients

Variable 1 Variable 2

Pearson 
correlation 
coefficient p value

Risk score CTLA4 0.1406689 0.004986

Risk score PD-L1 0.1628738 0.001127

Risk score TIM−3 0.1874968 0.1511717

Risk score LAG3 0.0623279 0.2153

Risk score TIGIT 0.1085566 0.03058

Risk score IDO1 −0.1572216 0.061676

Risk score CD4 −0.2581735 1.823e-07

Risk score CD8A −0.1381627 0.005826

Risk score CD8B −0.06999592 0.1639

Bold highlights the significant genes or parameters which are emphasized and 
discussed in the main manuscript.
Abbreviations: IPM, immune prognostic model; LUAD, lung adenocarcinoma.
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into the following multivariate Cox regression analysis. The 
findings demonstrated that TNM Ⅱ stage (HR = 2.61, 95% 
CI: 1.81–3.75, p < 0.001), high risk score (HR = 2.09, 95% 

CI: 1.43–3.06, p < 0.001) and age over 60 years (HR = 1.02, 
95% CI: 1.00–1.04, p  =  0.018) were adverse prognostic 
factors in early-stage LUAD (p  <  0.05). Altogether, these 

F I G U R E  8  Functional analysis of the immune prognostic model (IPM). (A) Heatmap of risk score-associated immune DEGs in early-stage 
lung adenocarcinoma (LUAD) patients in the TCGA cohort. (B) Circular plot and (C) Sankey plot of the significantly biological pathways enriched 
in risk score-associated immune DEGs. DEGs, differently expressed genes

F I G U R E  9  Association between the immune prognostic model (IPM) and other clinicopathologic variables of early-stage lung 
adenocarcinoma (LUAD) patients in the TCGA cohort. (A) Forest plot of univariate and multivariate Cox regression analysis to assess the 
association between IPM and conventional prognostic factors. (B) The C-indexes were estimated to compare the prognostic efficiency between the 
IPM and other traditional clinical variables. (C) Nomogram for predicting 3-, 5-, and 10-year OS for early-stage LUAD patients. (D) Calibration 
curve of nomogram concerning consistency between predicted and observed 3-, 5-, and 10-year outcomes in the TCGA cohort. Gray line at 45° 
represents perfect prediction, and red line represents the actual performances of the nomogram. C-index, Concordance index
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results indicated that the risk score was correlated with OS 
and the predictive capability of the IPM was independent of 
traditional clinicopathological variables for the prognosis of 
early-stage LUAD cases.

Moreover, we made a comparison of the C-index between 
our IPM and traditional clinicopathological factors. Among 
six prognosis-predictive parameters (including TP53 mutant 
status, gender, TNM stage, age, race and residual tumor), 
our IPM displayed the greatest average C-index (0.625) than 
other traditional clinicopathological parameters (0.509 to 
0.579; Figure  9B). Thus, above findings suggested a more 
satisfactory capability of the IPM to estimate the OS of ear-
ly-stage LUAD cases.

3.10 | Construction and identification of 
a nomogram model based on the IPM

A nomogram model was further developed through inte-
grating all significant parameters (the IPM, TNM stage and 
age) identified via multivariate Cox analysis, which can 
confer physicians with a quantitative method to estimate the 

survival of early-stage cases. In the nomogram model, above 
parameters were assigned scores based on a point scale with 
a range of 0 to 100. The score of each parameter was identi-
fied through plotting upward a straight line. The scores of the 
parameters of each patient were added up and considered as 
the total points. For each early-stage LUAD patient, the sur-
vival rate of 3, 5, and 10 years was estimated through plotting 
downward a perpendicular line from the total point axis to 
the result axis. Specifically, one early-stage LUAD patient at 
TNM stage Ⅱ (100 points), with high risk (66 points) and age 
over 60 years (17 points) obtained a total point of 183. The 
perpendicular line plotted from the total point axis at a nu-
meric value of 183 to the result axis revealed that the survival 
probability of 3, 5, and 10  years was 63%, 35% and 19%, 
respectively. Thus, TNM stage made the greatest contribu-
tions to risk points with a range of 0 to 100, followed by IPM 
risk score (ranging from 0 to 66) and age (ranging from 0 to 
17; Figure 9C).

The nomogram displayed a relatively desirable C-index 
of 0.709 (95% CI: 0.615–0.779). The deviation correction 
line was close to the 45-degree reference line in the calibra-
tion curves, indicating the satisfactory consistency between 

F I G U R E  1 0  The predictive efficiency and clinical utility were compared between nomogram and other clinicopathologic characteristics of 
early-stage lung adenocarcinoma (LUAD) patients in the TCGA cohort. The time-dependent receiver operating characteristic (ROC) curves of the 
nomogram model for (A) 3-year, (B) 5-year, and (C) 10-year overall survival (OS) of patients. (D) The decision curve analysis (DCA) curves of the 
nomogram model for patients' survival
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model prediction and practical observation in 3-, 5-, and 
10-year OS of patients (Figure 9D). We made a contrast of 
the predictive efficiency of nomogram model and additional 
clinical variables (such as age, TP53 status and IPM as well 
as TNM stage) through establishing time-dependent ROC 
curves. Concerning the ROC curve of 3-year OS, nomo-
gram model achieved the highest AUC of 0.842, followed by 
IPM (AUC = 0.78), TNM stage (AUC = 0.62), TP53 status 
(AUC = 0.609) and age (AUC = 0.542; Figure 10A). The 
nomogram to predict 5-year OS achieved an AUC value of 
0.87, which was more satisfactory than that of IPM (0.742), 
TNM stage (0.617), TP53 status (0.586) and age (0.585; 
Figure 10B). The AUC for the nomogram, IPM, TNM stage, 
TP53 status and age to predict 10-year OS were 0.916, 
0.717, 0.632, 0.641 and 0.609, respectively (Figure  10C). 
Furthermore, DCA curve was established to evaluate the 
clinical utility and benefit of the nomogram and additional 
parameters. The DCA of the nomogram displayed the great-
est net benefits, followed by TNM stage, IPM, TP53 status 
and age (Figure  10D). Collectively, above findings high-
lighted that the nomogram, constituted by IPM, TNM stage 
and age, is an optimal model with relatively desirable clinical 
utility to predict long-term OS of early-stage LUAD.

4 |  DISCUSSION

A growing number of publications have demonstrated the 
complicated interaction between the immune microenviron-
ment and the malignant transformation and development of 
LUAD.54 TP53 mutant status is associated with the percent-
ages of immune cell infiltration and the expression levels of 
immune checkpoints, which potentially serves as an indi-
cator for evaluating the effectiveness of immunotherapy in 
LUAD.55,56 Thus, reliable prognostic biomarkers associated 
with the tumor immune landscape and TP53 status poten-
tially hold great promise for recognizing promising molecu-
lar targets and strengthening patient management in the era 
of immunotherapy.

In our report, we focused on the effect of TP53 mutation on 
modulating the immune landscape in early-stage LUAD based 
on bioinformatic approaches. Initially, we demonstrated that 
TP53WT early-stage LUADs displayed a distinctly intensive 
local immune response compared with TP53MUT counterparts 
through GSEA analysis. Our conclusion is supported by an-
other report where revealed that TP53WT female LUADs rather 
than TP53MUT cases were correlated with the longest survival 
and the increased percentages of certain immune infiltrates, 
such as INF-γ, TNF and macrophages monocytes. While 
immunosuppressive molecule PD-L1 levels were greater in 
TP53MUT LUAD compared with TP53WT counterpart.57,58 
Furthermore, we established a prognostic signature based on 
two immune-associated DEGs (MIF and ENTPD2) whose 

expression was related to the TP53 status and the prognosis 
of early-stage LUAD. Our IPM can further classify clinically 
defined groups of early-stage LUAD patients into subgroups 
with different survival outcomes. High expression levels of 
MIF and ENTPD2 signified high IPM risk score, further indi-
cating the undesirable prognosis in early-stage LUAD.

Migration inhibitory factor is structurally conservative 
homotrimer in mammals and is considered as well-acknowl-
edged functional immune cytokine with a crucial effect on 
host immune system and whole inflammatory cascade. MIF 
is primarily derived from multiple immune cells, such as 
macrophages monocytes, T and B cells, eosinophils, neutro-
phils and mast cells.59-62 MIF is initially proved to impede 
the directionless migration of macrophages in vitro to char-
acterize delayed type hypersensitivity.63,64 MIF can also stim-
ulate the secretion of pro-inflammatory mediators (including 
TNF-α, IL-1β, IL-6, COX2, and IFN-γ).65 MIF has been 
demonstrated to be significantly upregulated in various tu-
mors, including colon cancer,66 prostate cancer,67 malignant 
melanoma,68 head and neck cancer,69 glioblastoma70 and 
breast cancer71 as well as lung cancer.72-77 High expression 
level of MIF usually indicates advanced cancer phenotype 
and unsatisfactory prognosis in above tumors. Specifically, 
the lung cancer cells with resistance to cisplatin facilitates 
M2 polarization of tumor-associated microphages (TAMs) 
through secreting MIF, thus accelerating angiogenesis and 
epithelial-mesenchymal transition (EMT) as well as distant 
metastasis of lung cancer.74 Overexpression of MIF also acti-
vates NF-κB and further upregulates HIF-1α, thus amplifying 
proliferation and Warburg effect in lung cancer.75 CXCR4/
MIF axis positively modulates tumor growth and EMT inter-
action in NSCLC.76 MiR-608 mitigates tumor migration and 
invasion via directly targeting MIF in LUAD.77 Thus, MIF 
can develop into an attractive target for pharmacological in-
tervention for the therapy of lung cancer.

ENTPD2 (also named CD39L1 or NTPDase 2), is con-
sidered as a pivotal ectoenzyme involved in extracellular ATP 
hydrolysis.78,79 AMP is generated via ENTPD2-mediated hy-
drolyzation of extracellular ATP and is further hydrolyzed by 
CD73 to adenosine that stimulates tumor proliferation and 
metastasis as well as drug resistance.79 ENTPD2 upregulation 
is demonstrated in papillary thyroid carcinoma-derived cells, 
esophageal cancer cells, gliomas cells, and liver cancer cells in 
contrast to normal cells.80-83 Overexpression of ENTPD2 is also 
revealed in HCC clinical samples, which also indicates undesir-
able prognosis for HCC. The hypoxic microenvironment stim-
ulates ENTPD2 overexpression mediated by hypoxia-inducible 
factor-1 (HIF-1) in liver cancer cells. ENTPD2 transforms ex-
tracellular ATP into 5′-AMP and further suppresses the differ-
entiation of myeloid-derived suppressor cells (MDSCs), thus 
facilitating the maintenance of MDSCs and the development 
of tumor immunosuppressive microenvironment. Depletion 
of ENTPD2 can impede tumor growth and strengthen the 



820 |   WU et al.

efficiency of immune checkpoint inhibitors.82 Thus, ENTPD2 is 
harnessed by tumor cells to shun immune-mediated demolition.

We also demonstrated an enhanced immune landscape in 
the low-risk group through functional enrichment analysis. 
Specifically, increased proportions of resting DCs and eosin-
ophils while decreased abundance of activated mast cells and 
monocytes were observed in early-stage LUAD cases with low 
risk score. Notably, there were several contradictory findings 
concerning the effect of mast cells on the prognosis of LUAD. 
A report demonstrated that mast cells was associated with an-
giogenesis and unsatisfactory prognosis in stage I LUAD.84 
Mast cells could facilitate growth and metastasis by generat-
ing IL-1β in LUAD progression.85 Conversely, certain studies 
revealed that greater abundance of mast cells was related to 
better prognosis and prolonged survival in early-stage LUAD 
cases.54,86 We also found relatively enhanced expression of 
CD4 and CD8A indicative of a strengthened immune response 
in the low-risk group.7 Conversely, patients with high risk score 
had increased levels of immunosuppressive molecules (such as 
PD-L1, CTLA-4 and TIGIT). Notably, in several reports on the 
anti-PD-1/PD-L1 treatment for NSCLC, PD-L1 expression in 
tumors has been considered as the criteria and a predictive bio-
marker for inferior prognosis. Interestingly, PD-L1-expressing 
NSCLC individuals have a higher possibility to obtain clinical 
benefit from immunotherapy.15,87 Based on the aforementioned 
results, dysregulation of immune contexture is a potential rea-
son for the OS differences between patient subgroups stratified 
by the IPM. The immunosuppressive microenvironment is one 
of the reasons why high-risk subgroup was characterized with 
unsatisfactory clinical outcome.

In benchmark comparisons, our IPM achieved more sat-
isfactory prognostic performance than a novel 21-gene-based 
immune-related gene signature and an 8-gene prognostic 
signature that have been published for early-stage LUAD. 
Additionally, we conducted Cox analysis to identify that 
IPM risk score was an independent prognostic parameter. 
ROC curve with AUC values revealed that our IPM had more 
satisfactory predictive power than traditional prognostic 
variables. We further developed a novel nomogram model 
through leveraging the complementary value of the IPM and 
clinicopathologic characteristics (including age and TNM 
stage), further highlighting that combining both could confer 
an intuitionistic and accurate scoring system to estimate the 
OS of early-stage LUAD in clinical practice.

Several limitations are deserved to be discussed in our re-
search. Initially, our report was retrospective and these public 
databases were devoid of certain crucial clinicopathologic in-
formation (such as smoking and drinking status, family history, 
whether performed by surgical intervention and specific surgery 
types, whether receiving neoadjuvant chemoradiotherapy).46,48 
Thus, further multicenter clinical trials of larger sample size 
and more detailed clinical data are required to externally vali-
date our findings. Furthermore, our IPM was constructed based 

on two immune genes. The molecular functions and biological 
effects of above genes are warranted to be investigated individu-
ally and conjunctively, further favoring their clinical utilization. 
Ultimately, our IPM risk score was estimated in accordance 
with the gene expression values. The intra-tumor heterogeneity 
potentially resulted in sampling bias.

5 |  CONCLUSION

In conclusion, we established and validated a two immune 
gene-based and TP53 status-associated IPM through analyz-
ing the TP53 mutation data, RNA expression, and clinical 
information of early-stage LUADs in multiple independent 
datasets across different platforms. The IPM was consid-
ered as an independent prognostic biomarker for early-stage 
LUAD. A nomogram model including the IPM and other 
clinicopathologic parameters was formulated to quantita-
tively predict the long-term prognosis of early-stage LUAD 
individuals, thus assisting physicians to make better clinical 
decisions.
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