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Abstract: The spread of studies on biodiversity in different environmental contexts is particularly
fruitful for natural product discovery, with the finding of novel secondary metabolites and
structural models, which are sometimes specific to certain organisms. Within the large class
of the epipolythiodioxopiperazines, which are typical of fungi, thiosilvatins represent a homogeneous
family that, so far, has been reported in low frequency in both marine and terrestrial contexts.
However, recent observations indicate that these compounds have been possibly neglected in
the metabolomic characterization of fungi, particularly from marine sources. Aspects concerning
occurrence, bioactivities, structural, and biosynthetic properties of thiosilvatins are reviewed in
this paper.
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1. Introduction

A huge chapter on research on biodiversity is represented by studies concerning the biochemical
properties of the manifold organisms which are part of natural ecosystems. Novel secondary metabolites
are continuously discovered, disclosing a surprising chemodiversity in terms of both structural and
biosynthetic aspects. Although most classes of compounds are spread throughout the several kingdoms
of nature, a certain specificity results in some cases.

An example in this respect is represented by the epipolythiodioxopiperazines (ETPs), so far
only reported from fungi [1]. ETPs are a large and structurally diverse class of bioactive secondary
metabolites originating from diketopiperazines and characterized by the presence of a disulfide bridge
or a polysulfide dioxopiperazine six-membered ring. Due to their bioactivities, ETPs are receiving
attention in recent years [2].

This review is focused on thiosilvatins, a specific family of ETPs resulting from the enzymatic
assemblage of two amino acids (i.e., l-tyrosine/l-phenylalanine and glycine), generally integrated with
two methylated sulfur atoms. Unlike a related family including hyalodendrin, gliovictin, and their
analogues, in this homogeneous group of compounds, the pivotal nitrogen deriving from the aromatic
amino acid is not engaged in structural modifications other than methylation (Figure 1).
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Figure 1. Basic structure of thiosilvatins. 

The finding of natural products displaying this kind of molecular structure only started in the 
1980s [3], and even nowadays reports are quite infrequent. The present paper provides a review of 
the current knowledge concerning occurrence, bioactivities, structural, and biosynthetic aspects of 
these compounds. To ensure a comparative examination of the several structures reviewed herewith, 
the name of some compounds was adapted to conform to previously characterized analogs. 

2. Structures and Chemical Properties 

(3R,6R)-1,4-Dimethyl-3-(4-(3-methyl-2-butenyloxy)benzyl)-3,6-bis(methylthio)piperazine-2,5-
dione (1), the founder product of this compound series, was isolated for the first time in 1981 along 
with its deprenyl analogue (16) [3]. Subsequently, 1 was named cis-bis(methylthio)silvatin when the 
only sulfur bridged thiosilvatin, dithiosilvatin (2), was characterized and submitted to a reductive 
methylation giving 1 and its epimer in C-6 (3) [4] (Figure 2). 
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Figure 2. Structures of cis-bis(methylthio)silvatin (1, NM = 408 U), dithiosilvatin (2, NM = 378 U), 
trans-bis(methylthio)silvatin (3, NM = 408 U). 

The most relevant structural modifications observed in this class of compounds are in the 
number of sulfurs, the degree of methylation of heteroatoms, and the presence of a dimethyl allylic 
chain (Table 1). A controversial issue concerning thiosilvatins could be represented by nomenclature. 
In fact, several compounds were inconsistently designated with trivial names, abbreviations, or 
according to the IUPAC standards, which generally are not linked to the name of the founder 
compound. For instance, Sch 54794 (4) and Sch 54796 (5) have the same structures and 
stereostructures of 1 and 3, but their amino functions are not methylated; consequently, they could 
be respectively named cis- and trans-dinor-bis(methylthio)silvatin [5]. Likewise, cis-3-(4-
hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)-2,5-piperazinedione (16) and trans-6-(4-
hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione (17) were named in the 
original manuscripts according to IUPAC standards [3,6], but they could be easily named 
respectively cis- and trans-deprenyl-bis(methylthio)silvatin. 

Many difficulties in nomenclature derive from the stereostructural aspects. Concerning 
compounds 25–27, they were not named in the original manuscript [7]; however, a trivial name can 
be assigned according to their structurally related compound bilain B. However, the absence of a 
complete stereostructure determination prevents clarifying if compound 25 is actually its epimer or 
rather its diasteroisomer. 

In recent years, names of some new compounds, such as saroclazines, fusaperazines, and bilains, 
were assigned considering their sources, rather than referring to their structural relationships. For 
the reasons explained above, in Table 1 some compounds have also been renamed according to the 
founder compound. 
  

Figure 1. Basic structure of thiosilvatins.

The finding of natural products displaying this kind of molecular structure only started in the
1980s [3], and even nowadays reports are quite infrequent. The present paper provides a review of the
current knowledge concerning occurrence, bioactivities, structural, and biosynthetic aspects of these
compounds. To ensure a comparative examination of the several structures reviewed herewith, the
name of some compounds was adapted to conform to previously characterized analogs.

2. Structures and Chemical Properties

(3R,6R)-1,4-Dimethyl-3-(4-(3-methyl-2-butenyloxy)benzyl)-3,6-bis(methylthio)piperazine-2,5-dione
(1), the founder product of this compound series, was isolated for the first time in 1981 along with its
deprenyl analogue (16) [3]. Subsequently, 1 was named cis-bis(methylthio)silvatin when the only sulfur
bridged thiosilvatin, dithiosilvatin (2), was characterized and submitted to a reductive methylation
giving 1 and its epimer in C-6 (3) [4] (Figure 2).
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Figure 2. Structures of cis-bis(methylthio)silvatin (1, NM = 408 U), dithiosilvatin (2, NM = 378 U),
trans-bis(methylthio)silvatin (3, NM = 408 U).

The most relevant structural modifications observed in this class of compounds are in the
number of sulfurs, the degree of methylation of heteroatoms, and the presence of a dimethyl
allylic chain (Table 3). A controversial issue concerning thiosilvatins could be represented by
nomenclature. In fact, several compounds were inconsistently designated with trivial names,
abbreviations, or according to the IUPAC standards, which generally are not linked to the
name of the founder compound. For instance, Sch 54794 (4) and Sch 54796 (5) have the
same structures and stereostructures of 1 and 3, but their amino functions are not methylated;
consequently, they could be respectively named cis- and trans-dinor-bis(methylthio)silvatin [5].
Likewise, cis-3-(4-hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)-2,5-piperazinedione (16) and
trans-6-(4-hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione (17) were named in the
original manuscripts according to IUPAC standards [3,6], but they could be easily named respectively
cis- and trans-deprenyl-bis(methylthio)silvatin.
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Table 1. Thiosilvatins reported as natural products. Compound names proposed in this review
are underlined.

Code Compound Structure Formula, Nominal Mass
(U)
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Table 2. Cont.

Code Compound Structure Formula, Nominal Mass
(U)
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Table 3. Cont.

Code Compound Structure Formula, Nominal Mass
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Many difficulties in nomenclature derive from the stereostructural aspects. Concerning compounds
25–27, they were not named in the original manuscript [7]; however, a trivial name can be assigned
according to their structurally related compound bilain B. However, the absence of a complete
stereostructure determination prevents clarifying if compound 25 is actually its epimer or rather
its diasteroisomer.

In recent years, names of some new compounds, such as saroclazines, fusaperazines, and bilains,
were assigned considering their sources, rather than referring to their structural relationships. For the
reasons explained above, in Table 3 some compounds have also been renamed according to the
founder compound.

In general, the biosynthesis of secondary metabolites is stereospecific. In fact, the stereochemistry of
chiral carbons in the dioxopiperazinic ring of thiosilvatins is essentially 3R,6R, even if these compounds
display some structural differences. This is observed in strains belonging to unrelated species, such as
Fusarium chlamydosporum [8], Penicillium waksmanii [9], Penicillium brevicompactum [10], Trichoderma
virens [3,11], all producing thiosilvatins with the same stereostructure [i.e., cis-bis(methylthio)silvatin
(1) and its deprenyl analogue (16)] (Tables 3–5).

On the other hand, this is not a common trend in compounds belonging to the ETPs class [2]. In fact,
both stereoisomers (i.e., 3R,6R and 3S,6R) were reported for compounds in the hyalodendrin/gliovictin
family, deriving from the amino acids l-phenylalanine and l-serine [12–14] (Figure 3). Interestingly,
this family also includes a compound named vertihemiptellide A, representing the first dimer resulting
from the formation of disulfide bridges between two hyalodendrin units [15].
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3. Fungal Sources

As introduced above, so far ETPs have been only reported from fungi. More specifically,
thiosilvatins have been detected as secondary metabolites of 22 strains belonging to 17 taxa that
occupy different geographic and climatic zones, terrestrial and marine habitats, and are associated with
different substrates/hosts (Tables 4 and 5). With the exception of a single taxon in the Basidiomycota,
that is Coriolus (=Irpex) consors, all the other strains are representative of taxa in the Ascomycota.
Particularly, they belong to the Sordariomycetes (order Hypocreales, 7 strains/6 taxa; order Xylariales,
1 strain/taxon), and to the Eurotiomycetes (14 strains/9 taxa, all of them in the Eurotiales). Twelve
strains, that is more than half of the total number, belong to the genus Penicillium, well known for
its widespread occurrence in every ecological context including the sea [16]. The species Penicillium
crustosum and T. virens include strains from both kind of sources.
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Table 4. Marine-derived fungal strains producing thiosilvatins.

Species (Strain) Source Geographic Origin Compound Code Ref.

Cordyceps javanicus 1

(961331)
Jaspis cf. coriacea (sponge) Fiji 1, 3 [17]

Fusarium chlamydosporum
(OUPS-N124) Carpopeltis affinis (red alga) Japan 1, 4, 5, 11, 16, 18 [8]

Nigrospora sp. (PSU-F12) Annella sp. (gorgonian) Similan Islands
(Thailand) 5 [18]

Penicillium bilaiae
(MST-MF667) Boat ramp Huon estuary,

Tasmania (Australia) 1, 22, 23, 24 [19]

Penicillium commune
(518)

Muricella abnormalis
(gorgonian)

Danzhou, Hainan
(China) 1 [20]

Penicillium crustosum
(HDN153086) Sediment Prydz Bay (Antarctica) 1, 3, 15 [21]

Penicillium sp. (KMM
4672) Padina sp. (brown alga) Vietnam 19, 20 [22]

Penicillium sp. (2556) Mangrove plant China 4, 5 [23]

Penicillium waksmanii
(OUPS-N133)

Sargassum ringgoldianum
(brown alga) Japan 1, 16, 21 [9]

Sarocladium kiliense
(HDN11-84)

Rhizosphere soil of
Thespesia populnea

(mangrove)
Guangxi (China) 1, 6, 7, 12 [24]

Trichoderma virens (Y13-3) Gracilaria vermiculophylla
(red alga) Yangma Island (China) 16, 17 [6]

1 This strain identified with the older species name of Paecilomyces cf. javanica in the original report.

Table 5. Fungal strains from non-marine sources producing of thiosilvatins.

Species (Strain) Source Geographic Origin Compound Code Ref.

Aspergillus silvaticus
(IFO8173) Soil Tafo (Ghana) 8, 2 [4]

Coriolus (=Irpex) consors
(ATCC11574) ATCC collection 1, 3 [25]

Penicillium amphipolaria
(DAOM695760) Soil Quartermain

Mountains (Antarctica) 14 [26]

Penicillium
brevicompactum

Contaminant in culture of
Ceratocystis ulmi (plant

pathogenic fungus)
Edmonton (Canada) 1, 9, 10, 16 [10]

Penicillium crustosum
(VR4) Viguiera robusta (plant) Brazil 1, 3, 14 [27]

Penicillium crustosum
(MK285663)

Fruiting body of Isaria
cicadae (entomopathogenic

fungus)

Sichuan province
(China) 1, 13, 25, 26, 27 [7]

Penicillium crustosum
(YN-HT-15) Red soil Yunnan (China) 12, 13 [28]

Penicillium roqueforti
(ATCC10110) Blue cheese USA 1 [29]

Penicillium sp. Endophytic in Pinellia
ternata (plant) Nanjing (China) 1 [30]

Tolypocladium sp. Quercus virginiana (plant) Tamalupas (Mexico) 1, 4, 5, 9 [5]

Trichoderma virens 1

(CMI101525)
Soil California, USA 1, 16 [3,11]

1 This strain identified with the older species name of Gliocladium deliquescens in the original report.
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With reference to the specific compounds, 1 undoubtedly represents the most common product of
this family, having been reported as a secondary metabolite of about 2/3 of the strains, while its trans
stereoisomer has been detected in just four of these strains, both marine and terrestrial. Compounds 4,
5, 12, 14 and 16 were also obtained from strains from both environments. Among the rest, compounds
6, 7, 11, 15 and 17–24 have been reported from just a single strain of marine origin, while compounds
2, 8–10, 13, and 25–27 have been only found in terrestrial strains. These data could be indicative of
a relatively higher chemodiversity characterizing marine strains, also considering that reports from
marine sources only started in 1998 when there were already four strains and eight products known
from terrestrial sources (Figure 4). Since 1998, the new products discovered from marine fungi more
than doubled those obtained from non-marine strains. Moreover, in the last two years there were
five reports concerning new thiosilvatins-producing strains from marine sources compared to two
from terrestrial sources, which might imply that a more widespread occurrence at sea is likely to be
disclosed as investigations concerning marine fungal strains progress. Finally, no comparison can be
made between strains of the same species (P. crustosum and T. virens) obtained from both marine and
terrestrial sources, whose secondary metabolite profiles do not match, or share single compounds.
This could be interpreted not only in terms of intraspecific variation, but also as a consequence of the
different culturing and extraction procedures. Moreover, it must also be considered that detection of
some compounds is often impaired by their presence in low quantities, or by inherent difficulties in the
identification depending on their infrequent occurrence. However, the finding of two species from both
marine and terrestrial sources within such a limited strain sample supports a recently-consolidated
inference that most fungal species are able to thrive in different environmental conditions, obliterating
the old misconception that the occurrence of specialized taxa occurs in either marine or non-marine
contexts [16,31,32].
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Figure 4. Head to tail comparison of number of reports dealing with thiosilvatins and number of new
products obtained from marine and non-marine sources.

4. Proposed Biosynthetic Pathways for Thiosilvatins

The biosynthesis of ETPs involves non-ribosomal peptide synthetases (NRPSs), multi-domain
enzymes controlling all activities required to incorporate constituents into their products, and a range of
associated enzymes [33,34]. In fact, the non-ribosomal pathway is frequently used by microorganisms
to produce a wide range of structurally diverse secondary metabolites [35].
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In general, the genes that encode enzymes for secondary metabolite biosynthesis are clustered
in the fungal genome [36]. Some ETP gene clusters, such as the ones involved in sirodesmin and
gliotoxin biosynthesis, were identified by generating mutations in these genes and analyzing secondary
metabolite profiles of the resultant mutants. In fact, the gene deletions may result in abrogation of the
biosynthetic pathway. The comparative analysis of many fungal genome sequences has displayed
similarities between the gliotoxin and sirodesmin clusters, proving the conservation of the main
biosynthetic genes in the ETP clusters. It is thus likely that similar core enzymes are responsible for the
biosynthesis of the ETP backbone, but the structural diversity depends on other genes that appear only
in some clusters, many of them remaining to be fully identified [37–41].

Based on these pieces of evidence, the thiosilvatin biosynthesis was predicted according to the one
reported for gliotoxin [1,42,43]. In fact, similar to other ETPs, thiosilvatins derive from the condensation
of two amino acids which can be further altered by epimerization, methylation, or cyclization. The
origin and mechanism of incorporation of the sulfur atoms into the dipeptide are unclear, and according
to different hypotheses they could be derived from methionine, cysteine, sodium sulfate, or glutathione.
Particularly, the formation of a diiminium intermediate followed by nucleophilic attack of the cysteine
thiolate residue of glutathione is possibly involved (Figure 5) [2,39]. In order to justify the presence
of C-6 epimers on the piperazine ring, two possible mechanisms of nucleophilic attack have been
proposed (Figure 5, reaction mechanism a1).
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An alternative biosynthetic pathway, even if less credited, has been proposed for the sulfurization
of diketopiperazines. Due to the slow rate of dipeptide cyclization, the sulfur insertions and further
chemical transformations might occur while the linear dipeptide is still covalently bound to the
NRPS [44].

A different biosynthetic pathway could be possible for monosulfurate compounds, which represent
an extensive group in the thiosilvatin compounds series, as exemplified in the reaction mechanisms a2,
a3, and b in Figure 5. Sulfur insertion could happen on C-3 or C-6 of the hydroxypiperazine ring in the
iminium intermediate followed by hydroxyl oxidation or water elimination to obtain precursors of 12,
13 and 14, 15.

Silvathione (8) might have a different biosynthetic pathway with monoimmyl intermediate which
involves C-6 and 1N (Figure 5, reaction mechanism c).

Further chemical transformations (e.g., methylation, oxidation) possibly occur on the backbone
of thiosilvatins in order to obtain an ample variety of natural products. In fact, nitrogen and oxygen
atoms can be methylated, while the phenolic hydroxyls are frequently prenylated (i.e., 1–15, 21–24).

5. Biological Activities

Although no conclusive demonstration has been obtained yet, the opinion is prevalent that ETPs
are important for the producing strains in the interaction with other organisms. These compounds have
been reported for a wide array of bioactive properties, including antibiotic, antiviral, cytotoxic and
anti-inflammatory effects. Bioactivities basically depend on thiol-disulphide exchange reactions, and the
relative effects of the single compounds are considered to be somehow related to the oxidation/reduction
status of the sulfurs [1].

Unlike the homologue hyalodendrin/gliovictin family, a few members of which have been
more extensively investigated with reference to their antibiotic and antiproliferative properties, and
mechanisms of action [15,45,46], for thiosilvatins the available data are still quite preliminary for drawing
a clear judgment concerning their biological activity and opportunities for pharmaceutical exploitation.

No antifungal properties could be evidenced in assays carried out with cis-bis(methylthio)silvatin
on Parastagonospora (Septoria) nodorum [19], and yeast strains of Candida albicans [30] and Saccharomyces
cerevisiae [29]. Also, this compound and bilain A did not display antihelmintic activity against the
barber’s pole worm (Haemonchus contortus), a common parasitic nematode of ruminants [19], while
cis-deprenyl-bis(methylthio)silvatin (16) and trans-deprenyl-bis(methylthio)silvatin (17) did not show
toxic effects on Artemia salina and four marine phytoplankton species (Chattonella marina, Heterosigma
akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense) at a concentration of 100 µg mL−1 [6].

Assays concerning antibacterial activity mostly provided negative results, too. In fact, 16 and 17
were inactive against five marine-derived pathogenic Gram-negative bacteria (Vibrio parahaemolyticus,
V. anguillarum, V. harveyi, V. splendidus, and Pseudoalteromonas citrea) in an agar disk-diffusion assay at a
dose of 20 µg/disk [6]. No effects were observed for 1 against Escherichia coli and Bacillus subtilis [19]
and, together with its trans stereoisomer (3), fusaperazine E (14) and trans-dinor-bis(methylthio)silvatin
(5), against Enterococcus faecalis [27]. However, more recently, some extent of antibacterial properties by
cis-bis(methylthio)silvatin have been reported against Staphylococcus aureus (MIC 43.4 µg mL−1) [30], E.
coli and B. subtilis (IC50 30.0 µg mL−1) [29].

In line with the recent trend to screen natural products in the aim of finding new anticancer
compounds, more circumstantial data are available with reference to the antiproliferative activity against
tumor cell lines. In this respect, fusaperazine A (18) and 1 exhibited weak cytotoxic activities against
P388 murine lymphocytic leukaemia cells (ED50 22.8 and 7.7 µg mL−1, respectively) [8], confirming
previous findings concerning the latter compound [9]. In another study cis-bis(methylthio)silvatin was
cytotoxic (0.15 µM) on NS-1 mouse myeloma cells, while bilain A (22) was inactive [19]. Again on
P388 cells, cis-dinor-bis(methylthio)silvatin (4) exhibited weak cytotoxic activity (ED50 21.5 µg mL−1),
whereas its analogue 5 was inactive along with fusaperazine B (11) and 16 [8]. Afterwards, 4 and 5 were
found to remarkably inhibit the growth of two human cell lines HEp2 (larynx carcinoma) and HepG2
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(liver carcinoma) [22]. Citriperazines A and B (19, 20) did not exhibit cytotoxic activity against three
human prostate cancer cells (22Rv1, PC-3 and LNCaP) at concentrations up to 100µM, also without any
significant effect on cell cycle progression [22]. Cytotoxic effects have been also reported for saroclazine
B (7) against HeLa (cervyx uteri carcinoma) cells (IC50 4.2 µM) [24], and fusaperazine F (15) against the
K562 (chronic myelogenous leukemia) cell line (IC50 12.7 µM) [21].

In a quite peculiar assay carried out on zebrafish larvae, 1 and 6-oxo-methylthiosilvatin (12)
promoted gastrointestinal motility via acting on the cholinergic nervous system, while bilains D–F
(25–27) lacking the double bond in the lateral chain were inactive [7].

Finally, on account of the platelet-activating factor (PAF) inhibitory effects also known for other
diketopiperazines [47], a weak activity was displayed by compound 5 in the PAF assay (IC50 50 µM),
while the related 4 was inactive [5].

6. Conclusions

As introduced above, literature concerning the occurrence and properties of thiosilvatins is not
extensive. Although half of the reports refer to strains of Penicillium, the available data show that
biosynthetic aptitude for these compounds can be found in distantly related fungal species, in line with
what is known for the homologue hyalodendrin/gliovictin family, other ETPs, and many mycotoxins.
Actually, this biological phenomenon, known under the name of synapomorphy, is quite difficult to
explain in phylogenetic terms, since it would imply that the genetic base encoding for biosynthesis of
these secondary metabolites was acquired or lost many times along with the separation of lineages
during the evolution of fungi. However, as the work on genome sequencing of fungi progresses,
the evidence is accumulating that biosynthesis of many classes of mycotoxins is controlled by clustered
genes. And the discovery that fungi may exchange gene clusters through the so-called horizontal gene
transfer (HGT) has disclosed a more reasonable biological explanation, according to which fungal
species thriving in the same ecological niche or sharing the same substrate may somehow establish a
successful interaction at the genetic level resulting in modification of their metabolome [48,49].

In this respect, the occurrence in clusters of genes involved in the biosynthesis of ETPs has been
demonstrated in the case of some major members of this class, such as gliotoxin [50], sirodesmin [37],
and verticillin [51]. Moreover, gene clusters with all eight genes encoding for the common ETP moiety
have been found in several unrelated ascomycetes species [1]. Following assumptions in comparative
genomics, more recent evidence indicates that such a cluster may be present even in fungal species
which so far have not been reported for production of these compounds [52].

The accumulation of data concerning metabolomics of fungal strains/species is fundamental in
order to provide more circumstantial support to this theory and to shed light on the circumstances which
make HGT possible. In this regard, thiosilvatins appear to represent a meaningful group of compounds,
characterized by a uniform molecular model, possibly reflecting a definite biosynthetic scheme.

More prompts for developing investigations on the biological properties of thiosilvatins derive
from the availability of more refined bioassays able to elucidate the effects of compounds displaying
low levels of cytotoxicity. An interesting example in this respect is provided by the finding of a
diketopiperazine derivative inhibiting prion replication in the micromolar range, which introduces
these compounds as a promising lead scaffold in the search of products against these problematic
disease determinants [53]. Finally, the very recent finding from a strain of Penicillium roqueforti from
blue cheese [29] introduces the opportunity to better investigate the effects deriving from a dietary
intake of cis-bis(methylthio)silvatin, also in association with the roquefortines and other bioactive
products reported from this species of biotechnological relevance [54,55].
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