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Abstract.
Background: Cortical gray matter (GM) and white matter (WM) deterioration are signals of neurodegeneration and increased
dementia risk; however, their specific etiologies in dementia-free aging is unclear.
Objective: The objective of this study was to examine potentially modifiable risk factors of GM and WM degeneration in a
well-characterized cohort of dementia-free elderly.
Methods: 96 Okinawan elderly participants (age 83.6) from the Keys to Optimal Cognitive Aging Project (KOCOA) under-
went MRI and cognitive evaluation. Serum markers of inflammation (interleukin-6 (IL-6), high sensitivity C-reactive protein),
cerebrovascular disease (systolic blood pressure (SBP) 140+, hemoglobin A1C (HgbA1C), total cholesterol), and essential
minerals (copper (Cu), magnesium, and calcium) were examined in relation to mean cortical thickness (MCT) and white mat-
ter hyperintensities (WMH), adjusting for age and gender. Voxel-based morphometry (VBM) analyses identified relationships
between regional GM density and the above markers.
Results: Decreased MCT was associated with SBP 140 + (p = 0.029) and increased serum IL-6 (p = 0.036), HgbA1C
(p = 0.002), and Cu (p = 0.025). In VBM analyses, increased IL-6, HgbA1C, and Cu were associated with decreased GM
density in temporal lobe regions. HgbA1C (p = 0.004) was associated with greater WMH volume.
Conclusions: Peripheral markers of Cu, CVD risk, and inflammation are associated with MRI-markers of decreased
brain health in dementia-free Okinawan elderly, with regional cortical thinning in areas involved in early accumulation
of Alzheimer’s disease pathology. Results identify potentially modifiable biomarkers as targets in the prevention of dementia
in older individuals.
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INTRODUCTION

Changes in brain volume and structure have been
associated with both increased age [1] and early
neurodegeneration, particularly Alzheimer’s disease
(AD) [2, 3], with brain atrophy being associated
of AD pathology in an older population [4, 5].
Multiple risk factors have been associated with
poorer brain health and include those associated
with cerebrovascular disease (CVD), inflammation,
and certain micronutrients. It is conceivable that
early cortical injury in AD-vulnerable regions asso-
ciated with chronic disease and lifestyle influences
may decrease cognitive and neuronal reserve in
older individuals, leaving them more susceptible
to clinical manifestations of age and AD-related
pathologies.

Cortical thickness measures can detect early brain
change in older individuals, with regional decline
in cortical thickness observed prior to the clinical
onset of AD [6]. Furthermore, ante-mortem medial
temporal lobe thickness has been related to in-vivo
and post-mortem AD pathology markers [7]. In
dementia-free elderly, preserved cortical thickness
has been associated with superior cognitive perfor-
mance [8], distinguishing “super agers” from those
susceptible to the more commonly observed, age-
related cognitive decline [9], supporting this use of
cortical thickness as a strong biomarker of healthy
aging.

T2-weighted MRI white matter hyperintensities
(WMH) are an imaging hallmark of underlying small
vessel ischemic disease [10]. WMHs are commonly
observed in advanced age and confer increased risk
of cognitive and motor impairment [11, 12], stroke,
and overall mortality [13].

Recent studies have shown lifestyle factors, such
as diet and exercise, to be associated with corti-
cal thickness [14–16] and WMHs [17], indicating
the likelihood that certain preventative measures
may retard or delay cortical volume loss and
WMH accumulation in the elderly. Individual
serum biomarkers and specific risk factors related
to structural brain change are not well estab-
lished, and may lead to specific interventions
aimed at improving cognitive health in our grow-
ing elderly population. Accordingly, the objective
of this study was to examine peripheral markers
and potentially modifiable risk factors associated
with cortical thickness and WMHs in a well-
characterized cohort of dementia-free Okinawan
elderly.

MATERIALS AND METHODS

Subjects

96 dementia-free Okinawan participants from the
Keys to Optimal Cognitive Aging Project (KOCOA),
underwent detailed cognitive and neurological
testing and MRI. The KOCOA project is a prospec-
tive pilot cohort study of community-dwelling elderly
aged 80 years or older living in Ginowan City in Oki-
nawa, Japan. The study was approved by the Ethics
Committee and the Intuitional Review Board of the
University of the Ryukyus. Informed consent was
obtained from all participants prior to enrollment
in the study. Details of the study recruitment and
methods have been published elsewhere [18, 19]. In
brief, subjects were recruited from those participat-
ing in one of 22 government-funded senior centers. A
total of 196 volunteers (mean age: 85.2 years, range:
80–98) were followed annually, between Novem-
ber 2007 and March 2010, for a total of three time
points. Cognitive function was evaluated by a trained
examiner using the Japanese version of the 30-point
Mini-Mental State Examination (JMMSE) [20, 21] as
a measure of global cognitive function. 114/196 sub-
jects had brain MRI corresponding to their baseline
clinical evaluation. For the current study, we included
those without frank dementia, defined as JMMSE >
20, Clinical Dementia Rating Scale (CDR) [22] score
< 1.0, and without evidence of functional impairment
on Instrumental Activities of Daily Living (IADL),
including using the telephone, shopping, bill pay-
ing, preparing meals, and banking, leaving a total of
96 subjects included in this analysis. Eighty-five of
these subjects had fluid attenuated inversion recovery
(FLAIR) images for WMH analysis.

As part of their participation in the KOCOA study,
all subjects had vital signs, including blood pressure,
recorded at their baseline neurological and cognitive
examination. Laboratory evaluation corresponding
with their baseline visit examined markers of CVD
risk and inflammation, as well as essential minerals
previously shown to be associated with cerebrovascu-
lar or neurodegenerative disease. CVD risk markers
included Hemoglobin A1C (HgbA1C), total choles-
terol (Tchol), and systolic blood pressure ≥ 140 (SBP
140+). Inflammatory markers included interleukin-
6 (IL-6) and high sensitivity C-reactive protein
(hsCRP). Nutrient biomarkers previously shown to
be associated with brain health were obtained, and
included magnesium (Mg), copper (Cu), and calcium
(Ca) [23–25].
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MRI acquisition and analysis

MRI was acquired on a Siemens 1.5T Avanto
system, including T1 sequences: voxel size
0.9 × 0.9 × 1.25 mm3, 256 × 256 imaging matrix,
144 sagittal slices, TR: 1700 ms, TI: 800 ms,
TE: 3.3 ms; FLAIR: 0.9 × 0.9 × 5 mm3, 19 axial
slices, TR: 8500 ms, TI: 2500 ms, TE: 107 ms.
Mean cortical thickness (MCT) was derived using
FreeSurfer (version 5.1). Intracranial volume (ICV)
was determined from a nonlinear registration to stan-
dard MNI space. WMH values were obtained using a
semi-automated algorithm previously described [26].

Voxelwise GM density was calculated using the
standard FSL VBM package (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FSLVBM). T1 images were brain
extracted, non-linearly aligned to the MNI-152 tem-
plate and GM extracted. These images were averaged
to create a study-specific template to which all GM
images were non-linearly aligned, modulated by the
Jacobian and smoothed with an isotropic Gaussian
kernel of sigma 2 mm. Cluster thresholded voxel-
wise GLM was used to explore the relationship
between regional GM density and CVD risk factors
and serum biomarkers of brain health described above
(3dRegAna, AFNI).

Statistical analysis

Multivariable regression models, adjusted for age
and sex, examined the relationships between MRI
MCT and vascular disease (WMH) with peripheral
vascular (HgbA1C, Tchol, SBP140+), inflammatory
(IL-6, hsCRP) and nutrient (Cu, Mg, Ca) markers
of brain health. WMH, hsCRP, and IL-6 were log
transformed in order to obtain normal distribution.
WMH volume was examined as a percentage of
ICV to account for differences in head size. Whole
brain VBM analyses examined relationships between
regional GM density and factors found to be signif-
icant in the above MCT analyses. A final step-wise
linear regression model was run, which included all
variablespreviouslyfoundtobesignificant.Duetorel-
atively small sample size in the current study, we used
type I error rate of 0.05 as a statistical significance.

RESULTS

The mean age of participants was 83.6 (sd
3.0), with 76.6% women. Subject characteristics are
described in Table 1. Multivariable analyses were
adjusted for age and sex.

CVD risk markers

In individual multivariable analyses adjusted for
age and sex, greater HgbA1C (p = 0.002) and SBP
140+ (p = 0.029) were associated with decreased
MCT. Tchol was not associated with MCT. Of
the CVD risk factors examined, only HgbA1C was
related to greater WMH volume after adjustment for
age and sex (p = 0.0038) (Table 2).

Serum inflammatory markers

Decreased MCT was related to greater serum IL-
6 (p = 0.036) after adjustments for age and sex, but
not with hsCRP. Neither of the serum inflammatory
markers were related to WMH volume.

Table 1
Subject characteristics (N = 96)

Mean (sd) Range

Age (y) 83.6 (3.0) 78–92
Sex (% women) 76.6
Education (y) 7.8 (2.4) 0–17
JMMSE 26 (2.5) 21–30
CDR = 0 (%) 71.4

(vs % of CDR = 0.5)
BMI 24.3 (3.2) 17–33.9
WMH volume 11.6 (10.4) 0.59–61.1

(cc, n = 85 with FLAIR)
HgbA1C 5.59 (0.66) 4.5–8.1
SBP > 140 (%) 58.3
Total cholesterol 211.18 (39.97) 123–356
Interleukin-6 3.92 (7.56) 0.9–74.2
hsCRP 0.29 (0.55) 0.01–3.96
Copper 125.51 (20.56) 67.1–191.2
Magnesium 2.36 (0.17) 1.9–3.0
Calcium 9.52 (0.36) 8.6–10.7

JMMSE, Japanese Mini-Mental State Exam; CDR, Clinical
Dementia Rating; BMI, body mass index; WMH, white matter
hyperintensity; HgbA1C, hemoglobin A1C; SBP, systolic blood
pressure; hsCRP, high sensitivity C-reactive protein.

Table 2
Results of multivariable linear regression analyses of CVD, Inflam-
matory, and Micronutrient factors related to structural brain health,

age and sex adjusted (p < 0.05)

MCT Estimate WMH Estimate
(p-value) (p-value)

CVD RISK
HgbA1C –0.08 (0.002) 0.03 (0.038)
SBP > 140 –0.04 (0.029) NS
Tchol NS NS

Inflammatory Markers
IL-6 –0.06 (0.036) NS
hsCRP NS NS

Micronutrients
Cu –0.002 (0.025) 0.001 (0.07)
Magnesium NS NS
Calcium NS NS

CVD, cerebrovascular disease; HgbA1C, hemoglobin A1C; SBP,
systolic blood pressure; Tchol, total cholesterol; IL-6, interleukin-
6; hsCRP, high sensitivity C-reactive protein; Cu, copper.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
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Table 3
Regions in which VBM identified significantly reduced GM den-

sity in comparison with increased HgbA1c (p < 0.05)

Talairach Region Coordinates Cluster size
side X Y Z Voxels Volume

(cm3)

Middle Temporal Gyrus R –52 10 –25 781 6.25
and Temporal Pole

Lateral Occipital Cortex L 23 85 26 660 5.28
Superior Frontal Gyrus R –14 –20 55 470 3.76

Micronutrients

Decreased MCT was associated with greater serum
Cu (p = 0.025), but not with either Mg or Ca, after
adjustments for age and gender. There was a weak
relationship between higher serum Cu and greater
WMH volume after adjustments for age and sex
(p = 0.07). Mg and Ca were not related to MRI WMH
burden.

Final model of cortical thickness

A mixed linear step-wise regression was performed
composed of all variables previously shown to be
associated with MCT, which included: HgbA1C, SBP
140+, Cu, and IL-6, adjusted for age and sex (prob-
ability to enter and leave, p = 0.25). All variables of
interest remained in the model, with greater HgbA1C
(p = 0.001), Cu (p = 0.024), and SBP 140+ (p = 0.013)
remaining significantly related to decreased MCT,
and IL-6 having attenuated its significance (p = 0.092)

Voxel-based morphometry

Voxel-wise analyses demonstrated that increased
HgbA1C was associated with decreased GM density
in the right middle temporal gyrus and temporal pole,
left lateral occipital cortex, and right superior frontal
gyri (Table 3, Fig. 1). Increased IL-6 was related to
decreased GM density in the left inferior and mid-
dle temporal gyri (Table 4, Fig. 1). Greater serum
Cu was related to more widespread cortical thinning,
with regions of greatest impact being within medial
frontal, medial temporal and parahippocampal struc-
tures (Table 5, Fig. 1). SBP 140+ was not related to
regional GM thinning in VBM analysis.

DISCUSSION

Greater cortical thickness in older individuals
has been associated with immunity from the typ-
ically observed decline in cognitive performance,

separating“superagers” fromthosewhohaveacceler-
ated cortical thinning and poorer cognition commonly
associated with aging [9]. These studies, and other
investigationsdemonstratinglifestylepreferencesand
interventions to be associated with improvements in
structural brain measures [14, 15], support the likely
existence of modifiable targets associated with corti-
cal thickness and cognitive health.

In this study, CVD risk factors of greater HgbA1c
and SBP 140+ were associated with decreased MCT,
with greater HgbA1c being associated with regional
reductions of cortical density within the medial tem-
poral lobe. Previous studies have found associations
between CVD risk factors and brain atrophy [27],
specifically in relation to blood glucose levels [28]
and hypertension [29].

Diabetes is a known risk factor for cognitive
impairment, including both vascular and Alzheimer’s
dementias [30], with cognitive changes likely to occur
in older individuals [30]. Like others, we found asso-
ciations between diabetic risk and WMH burden
[31, 32] implicating cerebrovascular disease as a
significant contributor to cognitive impairment in
diabetic elderly. It has been shown, however, that
the risk for AD in diabetics remains strong even
after controlling for CVD risk factors, supporting
shared molecular pathways between AD and dia-
betes, including greater neuronal insulin resistance,
amyloid-� (A�) aggregation, tau hyperphosphory-
lation, and reduced A� clearance [30, 33], all of
which might be possible contributors to early cortical
changes.

HTN is also a strong risk factor for vascular demen-
tia [34] with likely mediation via associations with
arteriolosclerosis, endothelial dysfunction, and sub-
sequent small vessel ischemic disease. In this study
of older, non-demented, Okinawan participants, SBP
140+ was not associated with MRI WMH burden,
indicating detrimental effects of chronic hyperten-
sion on brain health that are independent of the effects
associated with typical CVD. Previous studies have
demonstrated associations between HTN and cor-
tical thickness, possibly due, in part, to decrease
cortical perfusion resulting from impaired autoreg-
ulatory cerebrovascular response [29, 35]. Finally,
both greater blood glucose and SBP increase the risk
for cortical microinfarcts [30, 36], further explaining
possible associations between these CVD risk factors
and cortical thickness measures.

An equitable balance between pro- and anti-
inflammatory responses is thought to separate older
individuals experiencing longevity and successful
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Fig. 1. VBM analysis with cluster thresholding to account for false positive rates. Colored voxels indicate regions of decreased GM density
significantly associated with higher HgbA1C (a), Copper (b), and IL-6 (c), age and sex adjusted (p < 0.05).

Table 4
Regions in which VBM identified significantly reduced GM den-

sity in comparison with increased IL-6 (p < 0.05)

Talairach Region Coordinates Cluster size
side X Y Z Voxels Volume

(cm3)

Inferior and Middle L 56 11 –30 698 5.58
Temporal Gyrus

aging from those more susceptible to increased
morbidity, and decreased survival [37]. IL-6 is a pro-
inflammatory cytokine produced by both immune
and non-immune cells, including adipocytes, which
contribute up to 35% of circulating IL-6 levels
[38]. Previous studies have reported associations
between IL-6 and chronic disease of aging, includ-
ing those related to impaired cognitive function

Table 5
Regions in which VBM identified significantly reduced GM den-

sity in comparison with increased copper (p < 0.01)

Talairach Region Coordinates Cluster size
side X Y Z Voxels Volume

(cm3)

Middle Frontal Gyrus L+ R 3 –37 46 565 4.52
Parahippocampal Gyrus R –25 11 –30 561 4.49
Middle Temporal Gyrus R –57 26 –9 519 4.15
Parahippocampal Gyrus L 23 12 –29 506 4.05
Intracalcarine Cortex L 50 70 3 456 3.65
Lateral Occipital Cortex R –46 65 40 437 3.5
Temporal Pole R –57 –2 27 427 3.42

[39, 40], even after controlling for vascular risk fac-
tors [41]. Findings from this study are consistent
with others showing associations between IL-6 and
structural brain changes [42–44]. Few studies have
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examined IL-6 in relation to cortical thickness specif-
ically. Our findings are consistent with one previous
study of older individuals demonstrating relation-
ships between IL-6 and both cross-sectional and
longitudinal regional cortical thinning that included
temporal lobe structures [42]. We did not observe
a relationship between hsCRP and cortical thick-
ness in this study. Previous investigations examining
brain volume change with CRP have demonstrated
conflicting results, with some reporting significant
correlations with regional GM volume [45], and oth-
ers finding either no relationship [46] or weaker
relationships compared with that observed between
brain structure and IL-6 [43, 44]. In the present study,
neither CRP nor IL-6 were related to WMH, findings
similar to many previous reports [43, 46–48], with a
few exceptions [44, 49].

This study is one of this first to examine circulat-
ing Cu levels in relation to human brain structure,
showing regional effects of Cu on medial tempo-
ral lobe structures known to be involved in early
accumulation of AD pathology. In animal mod-
els fed a high cholesterol diet, even low doses of
dietary Cu have been shown to result in accumula-
tion of A� and worse cognitive performance [50, 51].
Recent investigations have demonstrated Cu to accu-
mulate within the brain capillaries of older mice,
thought to cause disruption of A� clearance across
the blood-brain barrier through its down-regulation of
endothelial low-density lipoprotein receptor-related
protein 1 (LRP1), with additional effects on A� pro-
duction and neuroinflammation in transgenic mice
overexpressing A� precursor protein [52, 53]. In
humans, the overall effects of Cu appear mixed,
with dietary and serum Cu levels associated with
decreased blood pressure and cholesterol, but higher
markers of peripheral inflammation, oxidative stress
[54], and HgA1C [55] and with increased risk for con-
version from MCI to AD [25]. Importantly, we found
greater Cu levels to be related to MCT in the final
model adjusted for IL-6 and HbgA1C, indicating its
effects to be independent of these secondary inflam-
matory and blood glucose/insulin resistance markers.
It is possible, however, that the relationship between
serum Cu and cortical thinning was driven by other
inflammatory or oxidative stress markers previously
associated with serum Cu, but not explicitly exam-
ined in this study. Interestingly, a weak association
between serum Cu and WMH burden was observed in
this population. Previous studies have demonstrated
a role of Cu in the development of atherosclerotic
disease through the generation of reactive oxygen

species. It is likely that this relationship is bipha-
sic, with both Cu deficiency and excess Cu causing
enhanced atherogenesis, although the argument has
been made that even “normal” levels of Cu may con-
tribute to atherosclerotic disease in older individuals
(for a review, see [56]). This is one of the first studies
to investigate the relationship between MRI WMH
and serum Cu levels in an elderly population, and
findings may indicate a more important role for Cu
in age-related cerebrovascular dysfunction than pre-
viously recognized. Future examination of the effects
of Cu on GM and WM integrity in other cohorts will
be necessary to fully elucidate these relationships.

This study has several limitations, including the
lack of longitudinal MRI to investigate risk factors
for rates of cortical thinning and detailed dietary
and medication information on study participants.
In addition, inflammatory markers examined in this
study were peripheral, and direct effect on the
CNS can only be surmised. A direct link between
peripheral and central inflammation is biologically
plausible, however, with possible pathways includ-
ing active passage across the blood-brain barrier and
passive diffusion from the choroid plexus (see Rosano
[57] for review). Future studies investigating periph-
eral in relation to central inflammatory markers (i.e.,
using novel PET ligands) will be necessary to validate
these relationships.

In this study of highly characterized, dementia-
free, Okinawan elderly, MCT was associated with
SBP 140+ and greater serum HgbA1C, IL-6, and
Cu, with specific regional effects observed within
the temporal lobe, an area known to be susceptible
to the accumulation of AD pathology prior to
clinical manifestation of dementia. In addition,
greater HgbA1C and to a lesser extent, serum Cu,
were related to greater CVD burden. The identified
peripheral markers and risk factors predictive of
worse brain structure are all potentially modifiable,
and thus represent specific targets for prevention and
intervention therapies aimed at maintaining brain
health and increasing resistance to age and neu-
rodegenerative disease-related decline in cognitive
function in older individuals.
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