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Abstract
In this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have
beenused todevelop theneutrosophic differential calculus.Byconsideringdifferent types offirst- and second-order derivatives,
different kind of systems of derivatives have been developed. This is the first timewhere a second-order neutrosophic boundary-
value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have
been examined to explain different systems of neutrosophic differential equation.

Keywords Neutrosophic differential calculus · Second-order neutrosophic differential equation · Neutrosophic boundary-
value problem · Generalized neutrosophic derivative

Introduction

In 1965, Lotfi A Zadeh [1,2] introduced fuzzy set theory.
After that, there are various kinds of generalizations of fuzzy
sets which have been introduced by many researchers [3–6].
Neutrosophic set is one of them. Smarandache [5–7] gives
the concept of neutrosophic set theory to explain more com-
plex system than fuzzy where the falsity-membership value
is not the complement of truth membership value and an
indeterminacy in play about the assignment of values of
truth membership and falsity-membership function. After
the invention of neutrosophic set, a new branch came in the
field of fuzzy mathematics, which needs further develop-
ment of the different fields of neutrosophic mathematics like
Neutrosophic Vector Space [8], Neutrosophic Topological
Space [9], Neutrosophic Group Theory [10], Neutrosophic
Ring Theory [11], and Neutrosophic Differential Equation
[12,13], etc. In the recent time, many researchers are still
working on the development of neutrosophic set theory and
its various types of applications. Topal et al. [14] used neu-
trosophic environment to construct Bezier surface modeling
for data problems. In [15], Broumi et al. introduced the uni-
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form single-valued neutrosophic graph and they also develop
an algorithm to compute the complement of single-valued
neutrosophic graph. Also Broumi et al. [16] applied neutro-
sophic set theory in some computing procedures in Matlab
for operational matrices. After that, Broumi et al. [17–19]
used neutrosophic environment to solve some shortest path
problems. Saranya et al. [20] proposed a computer-based
application, which helps to find the values of union, inter-
section, compliment, and inclusion of any two neutrosophic
set. Gulistan et al. [21] extended the concept of neutrosophic
cubic sets with the help of neutrosophic sets, cubic sets, and
complex fuzzy sets. Du et al. [22] introduced neutrosophic Z-
number and their operations. Aslam [23] used neutrosophic
statistical intervalmethod to introduced a new sampling plan.
Edalatpanah [24] proposed a new algorithm to solve the
neutrosophic linear programming, where the variables were
taken as triangular neutrosophic number. Recently, Salama et
al. [25] proposed a diagnostic system of corona virus which
is based on the neutrosophic system.

Neutrosophic calculus

In our literature review, we have seen that the neutrosophic
precalculus and neutrosophic calculus were first studied by
Smarandache [26], which is based on the existing definition
of calculus. Neutrosophic derivative was first introduced by
Smarandache [26]. Neutrosophic derivative is the extension
of fuzzy derivative. The granular derivative(gr-derivative)
is a new type of neutrosophic derivative, which was intro-
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duced by Son et al. [27]. Also, Son et al. [27] gave the
gr-partial derivative of neutrosophic-valued several variable
function. The neutrosophic granular fractional derivativewas
also given by Son et al. [27]. Again Son et al. investigated
the if and only if condition for the existence of gr-derivative
of neutrosophic-valued function.

Neutrosophic integral calculus plays very important role
in the field of neutrosophic calculus. Neutrosophic integral
is the extension of fuzzy integral, which was first introduced
by Smarandache [26]. In the article [28], they have studied
the neutrosophic calculus using measure theory and neutro-
sophic probability theory. In the recent time, there are only
few works which have been done on neutrosophic integral
calculus. Therefore, there are lots of scope to develop the
neutrosophic integral calculus.

Neutrosophic differential equation

Before discussing about neutrosophic differential equation,
we should know about fuzzy differential equationwhichmay
be modified or generalized for neutrosophic environment.
The theory of fuzzy differential equation was first introduced
by Kaleva [29], which had been developed in the form of
Hukuhara derivative. After that there are various types of
work on fuzzy differential equation which have been studied
bydifferent researchers andvarious types ofworkon this field
are still going on. Some of these important work, which may
help to develop the work on neutrosophic differential equa-
tion, have been listed here. Seikkala [30] introduced fuzzy
initial value problem, where he applied extension principle
and extremal solutions of deterministic initial value prob-
lems to solve the fuzzy differential equation. Then, Bede et
al. [31] introduced strong generalized differentiability and
weak generalized differentiability; with the help of this gen-
eralized differentiability, they have obtained the solution of
fuzzy differential and partial differential equation. Laksh-
mikantham et al. [32] studied the conditions for the existence
and uniqueness of the solution of boundary-value problem
in fuzzy environment. Then, Lakshmikantham et al. [32]
and O’Regan et al. [33] show that the second-order fuzzy
boundary-value problem is equivalent to Fredholm integral
equation. However, Bede [34] prove that there assertion does
not true by a counter example. Ma et al. [35] introduced a
numerical technique based on classical Eulermethod to solve
fuzzy differential equation. Then, Abbasbandy et al. [36]
presented an another numerical technique based on Taylor
Method of order p to solve fuzzy differential equation. After
that, Bede [37] proposed the characterization theorems to
solve the fuzzy differential equation.Khastan et al. [38] intro-
duced a new concept to solve fuzzy boundary-value problem
using a generalized differentiability where they investigate
the problem tofind solutions in different (n,m)-system,where
n,m ∈ {1, 2}. Tapaswini et al. [39] proposed polynomial col-

location method to solve fuzzy differential equation. In the
recent time, Balakrishnan et al. [40] studied the fifth-order
Milne–Simpsonmethod to find the solution of fuzzy differen-
tial equation using interval-valued fuzzy number. There are
many researchers, who are still working for analytical and
numerical solution of fuzzy differential equation [41–43].
Now, all the above work may be modified and generalized
for neutrosophic environment.

In the recent time, researcher is also working on neutro-
sophic differential equation. Sumanthi et al. [12] proposed a
method to solve differential equation involving neutrosophic
numbers with an application in the field of bacteria culture
model. Thereafter, Sumanthi et al. [13] discuss about the
solution a neutrosophic differential equationwhere they have
taken trapezoidal neutrosophic number as boundary condi-
tions. Recently, Son et al. [27] introduced some derivatives
in the form of fractional order and they also introduced the
concept of neutrosophic derivatives in fractional calculus.

Motivation

In our literature review, we have been seen that there are few
works have been done on neutrosophic differential equation.
However, there are almost no work have been done on neu-
trosophic boundary-value problem and neutrosophic initial
value problem. Therefore, there is a big scope and opportu-
nity towork in these area. Since there is notmuchworkwhich
have been done, then we must develop the basic properties
and results which are needed for the proper development of
this topic. Now, a proper development of basic differential
equation already have been done in crisp and fuzzy environ-
ment which motivates us to think about the similar types of
development and modification in neutrosophic environment.
In the future, this article may help the other researcher for
the further development of this topic.

Novelty

To build a theory of neutrosophic differential equation, the
second-order neutrosophic boundary-value problem is devel-
oped in this article.
The objective of this article are presented as follows :

• To present some properties of neutrosophic number.
• Toprove the neutrosophic derivative [26] and generalized

neutrosophic derivative [44] are equivalent.
• To present (n,m)-types differentiability of neutrosophic-
valued function.

• To prove subtraction of two first-order and second-order
neutrosophic differentiable function is also differen-
tiable.

• To prove multiplication of two neutrosophic differen-
tiable function is also differentiable.
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• To define two-point neutrosophic boundary-value prob-
lem in different (n,m) system, where n,m ∈ {1, 2}.

• To solve two-point neutrosophic boundary-value prob-
lem and investigate the solutions in different (n,m)-
system.

In this article, we are going to develop the theory of neu-
trosophic differential equation. To do that we are going to
develop some properties of neutrosophic number in the form
of some propositions.We are going to present some theorems
on neutrosophic derivative, which will help us to develop this
article.

Structure of the paper

The article has been organized as follows: some mathemati-
cal preliminaries have been given in Sect. 2, which is related
to our article. Section 3 contains some properties of neu-
trosophic number, definitions, and propositions. In Sect. 4,
generalized neutrosophic derivative has been given in the
form of some definitions and theorems. The neutrosophic
boundary-value problem has been defined in Sect. 5. Some
test examples have been investigated in Sect. 6. Finally, a
brief conclusion about this article has been given in Sect 7.

Preliminaries

Definition 2.1 [45]An single-valued neutrosophic set (SVN-
set) N over the universal set U is a neutrosophic set over U,
but the truth, indeterminacy, and falsity-membership function
are, respectively, defined by TN : U → [0, 1], IN : U →
[0, 1], FN : U → [0, 1].

Definition 2.2 [13] A neutrosophic set N over the set of real
numbersR is said to be neutrosophic number if its satisfy the
following properties.

1. N is normal ie., there exists x0 ∈ R, such that TN (x0) =
1.(IN (x0) = FN (x0) = 0).

2. N is convex for truth function TN (x), i.e., TN (μx1 +
(1 − μ)x2) ≥ min(TN (x1), TN (x2)),∀x1, x2 ∈ R, and
μ ∈ [0, 1].

3. N is concave for indeterministic and falsity functions,
IN (x) and FN (x)„ respectively, i.e., IN (μx1 + (1 −
μ)x2) ≥ max(IN (x1), IN (x2)), and FN (μx1 + (1 −
μ)x2) ≥ max(FN (x1), FN (x2)) ∀x1, x2 ∈ R and μ ∈
[0, 1].

Definition 2.3 [45] A single-valued triangular neutrosophic
number (SVTN-number) N = 〈(p, q, r); ρN , νN , κN 〉 is a
special neutrosophic set on R, whose truth, indeterminacy,

and falsity-membership functions are defined by:

TN (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x − p

q − p

)

ρN for p ≤ x ≤ q
(
r − x

r − q

)

ρN for q ≤ x ≤ r

0 Otherwise

IN (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(q − x + νN (x − p))

q − p
for p ≤ x ≤ q

(x − q + νN (r − x))

r − q
for q ≤ x ≤ r

0 Otherwise

FN (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(q − x + κN (x − p))

q − p
for p ≤ x ≤ q

(x − q + κN (r − x))

r − q
for q ≤ x ≤ r

0 Otherwise.

Definition 2.4 [45]A single-valued trapezoidal neutrosophic
number (SVTrN-number) N = 〈(p, q, r , s); ρN , νN , κN 〉 is
a special neutrosophic set on R, whose truth, indeterminacy,
and falsity-membership functions are defined by:

TN (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
x − p

q − p

)

ρN for p ≤ x ≤ q

ρN for q ≤ x ≤ r
(
s − x

s − r

)

ρN for r ≤ x ≤ s

0 Otherwise

IN (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(q − x + νN (x − p))

q − p
for p ≤ x ≤ q

νN for q ≤ x ≤ r
(x − r + νN (s − x))

s − r
for r ≤ x ≤ s

0 Otherwise

FN (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(q − x + κN (x − p))

q − p
for p ≤ x ≤ q

κN for q ≤ x ≤ r
(x − r + κN (s − x))

s − r
for r ≤ x ≤ s

0 Otherwise.

Definition 2.5 [13] Let N be a neutrosophic set. Then,
(α, β, γ )-cut of N is denoted by N(α,β,γ ), where α, β, γ ∈
[0, 1], such that N(α,β,γ ) = {〈TN (x), IN (x), FN (x)〉 : x ∈
U , TN (x) ≥ α, IN (x) ≤ β, FN (x) ≤ γ }.
Definition 2.6 [26]Theneutrosophic derivative of theneutro-

sophic-valued function fNeu(X) is defined by:

f ′
Neu(X) = lim

σ(H)→0
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〈in f f (X + H) − in f f (X), sup f (X + H) − sup f (X)〉
H

,

where 〈a, b〉 denote the open/closed/half open-closed inter-
val and σ(H)=max{|in f H |, |supH |}

When H is an interval, then the definition written as:

f ′
Neu(X) = lim[in f H ,supH ]→[0,0]
[in f f (X + H) − in f f (X), sup f (X + H) − sup f (X)]

[in f H , supH ]
is neutrosophic derivative of the function f (X).

Then, it can be written as:

f ′
Neu(X) = lim

h→0

[in f f (X + H) − in f f (X), sup f (X + H) − sup f (X)]
h

.

Both definitions are the generalizations of the classical
derivative of a function, and then, for the crisp functions and
for the crisp variables, we have:

[in f H , supH ] ≡ h and in f f (X+H) ≡ sup f (X+H) ≡
f (x + h), in f f (X) ≡ sup f (X) ≡ f (x)

Some properties of neutrosophic number

Definition 3.1 [46] Let Ã and B̃ be two single-valued neu-
trosophic set on X = {x1, x2, . . . , xn}. Then, the Hausdorff
distance measure between Ã and B̃ on X is:

DN
Hau( Ã, B̃) = 1

n

n∑

i=1

max

{|TÃ(xi )−TB̃(xi )|, |I Ã(xi ) − IB̃(xi )|, |FÃ(xi )−FB̃(xi )|}.

Proposition 3.1 Let m̃ and ñ be the two neutrosophic num-
bers, and then:

1. (m̃ � ñ)(α,β,γ ) = m̃(α,β,γ ) � ñ(α,β,γ ), where � denotes
any binary operation ′+′,′ −′ and ′×′.

2. (λm̃)(α,β,γ ) = λm̃(α,β,γ ), where λ �= 0 be any real num-
ber.

Proof Proof of this proposition is trivial and it can be done
using extension principle [47]. �
Proposition 3.2 Let a, b, λ ∈ R, a, b ≥ 0 or a, b ≤ 0 and
m̃, ñ ∈ N , where N is the set of all neutrosophic number,
and then:

1. (a + b)m̃ = am̃ + bm̃
2. λ(m̃ + ñ) = λm̃ + λñ.

Proof 1. Since a, b ≥ 0, this implies that a + b ≥ 0
Then, by Proposition 3.1:

[(a + b)m̃](α,β,γ ) = (a + b)m̃(α,β,γ )

= (a + b)〈[mL
α ,mU

α ],
[mL

β ,mU
β ], [mL

γ ,mU
γ ]〉

[(a + b)m̃](α,β,γ )

= (a + b)〈[mL
α ,mU

α ], [mL
β ,mU

β ],
[mL

γ ,mU
γ ]〉

= 〈[(a + b)mL
α , (a + b)mU

α ], [(a + b)mL
β ,

(a + b)mU
β ], [(a + b)mL

γ , (a + b)mU
γ ]〉

= 〈[amL
α + bmL

α , amU
α + bmU

α ],
[amL

β + bmL
β , amU

β + bmU
β ],

[amL
γ + bmL

γ , amU
γ + bmU

γ ]〉
= 〈[amL

α , amU
α ], [amL

β , amU
β ],

[amL
γ , amU

γ ]〉 + 〈[bmL
α , bmU

α ],
[bmL

β , bmU
β ], [bmL

γ , bmU
γ ]〉

= a〈[mL
α ,mU

α ], [mL
β ,mU

β ],
[mL

γ ,mU
γ ]〉 + b〈[mL

α ,mU
α ],

[mL
β ,mU

β ], [mL
γ ,mU

γ ]〉
= am̃(α,β,γ ) + bm̃(α,β,γ );

when a, b ≤ 0, then a + b ≤ 0. The proof of this case of
the Lemma is similar to the above case.

2. Let λ > 0, and then:

(λ(m̃ + ñ))(α,β,γ )

= λ(m̃ + ñ)(α,β,γ ) [byProposi tion 3.1(2)]
= λ(m̃(α,β,γ )

+ñ(α,β,γ )) [byProposi tion 3.1(1)]
= λ〈[mL

α + nLα ,mU
α + nUα ],

[mL
β + nLβ ,mU

β + nUβ ],
[mL

γ + nLγ ,mU
γ + nUγ ]〉

= 〈[λmL
α + λnLα , λmU

α + λnUα ],
[λmL

β + λnLβ , λmU
β + λnUβ ],

[λmL
γ + λnLγ , λmU

γ + λnUγ ]〉
= 〈[λmL

α , λmU
α ], [λmL

β , λmU
β ], [λmL

γ , λmU
γ ]〉

+〈[λnLα , λnUα ], [λnLβ , λnUβ ],
[λnLγ , λnUγ ]〉

= λm̃(α,β,γ )

+λñ(α,β,γ );

for λ < 0, it is similar to the above case.
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This completes the proof of this Lemma.
�

Generalized neutrosophic derivative

Moi et al. [44] found some drawback in the Definition 2.6 of
neutrosophic derivative. Then, they also define the general-
ized neutrosophic derivative as follows.

Definition 4.1 [44]Let f : I → N be a neutrosophic-valued
function and x0 ∈ I . Then, the generalized neutrosophic
derivative of f (x) at x0 is denoted by f ′(x0) and defined by:

1. f ′
Tα = [min{ f ′

T1
(x0;α), f ′

T2
(x0;α)},max{ f ′

T1
(x0;α),

f ′
T2

(x0;α)}], if f ′
T1

(x0;α) , f ′
T2

(x0;α) exists.
2. f ′

Iβ = [min{ f ′
I1
(x0;β), f ′

I2
(x0;β)},max{ f ′

I1
(x0;β),

f ′
I2
(x0;β)}], if f ′

I1
(x0;β) , f ′

I2
(x0;β) exists.

3. f ′
Fγ = [min{ f ′

F1
(x0; γ ), f ′

F2
(x0; γ )},max{ f ′

F1
(x0; γ ),

f ′
F2

(x0; γ )}], if f ′
F1

(x0; γ ) , f ′
F2

(x0; γ ) exists.

f ′(x) is said to be type-1 derivative if [ f ′(x0)](α,β,γ ) =
〈[ f ′

T1
(x0;α), f ′

T2
(x0;α)], [ f ′

I1
(x0;β), f ′

I2
(x0;β)],

[ f ′
F1

(x0; γ ),

f ′
F2

(x0; γ )]〉 and type-2 derivative if [ f ′(x0)](α,β,γ ) =
〈[ f ′

T2
(x0;α), f ′

T1
(x0;α)], [ f ′

I2
(x0;β), f ′

I1
(x0;β)],

[ f ′
F2

(x0; γ ),

f ′
F1

(x0; γ )]〉.
Now, type-1 first-order derivative is denoted by D1

1 f (x0) and
type-2 first-order derivative denoted by D1

2 f (x0).
In the similar way, we can define another types of deriva-

tive of f (x). Now, f ′(x) is said to be:

• type-3 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T1

(x0;α),

f ′
T2

(x0;α)], [ f ′
I1
(x0;β), f ′

I2
(x0;β)], [ f ′

F2
(x0; γ ),

f ′
F1

(x0; γ )]〉

• type-4 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T1

(x0;α),

f ′
T2

(x0;α)], [ f ′
I2
(x0;β), f ′

I1
(x0;β)], [ f ′

F1
(x0; γ ),

f ′
F2

(x0; γ )]〉

• type-5 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T2

(x0;α),

f ′
T1

(x0;α)], [ f ′
I1
(x0;β), f ′

I2
(x0;β)], [ f ′

F1
(x0; γ ),

f ′
F2

(x0; γ )]〉

• type-6 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T1

(x0;α),

f ′
T2

(x0;α)], [ f ′
I2
(x0;β), f ′

I1
(x0;β)], [ f ′

F2
(x0; γ ),

f ′
F1

(x0; γ )]〉

• type-7 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T2

(x0;α),

f ′
T1

(x0;α)], [ f ′
I1
(x0;β), f ′

I2
(x0;β)], [ f ′

F2
(x0; γ ),

f ′
F1

(x0; γ )]〉

• type-8 derivative if [ f ′(x0)](α,β,γ ) = 〈[ f ′
T2

(x0;α),

f ′
T1

(x0;α)], [ f ′
I2
(x0;β), f ′

I1
(x0;β)], [ f ′

F1
(x0; γ ),

f ′
F2

(x0; γ )]〉.

However, we will use only type-1 and type-2 derivative of
f (x) in the rest of this article.

Theorem 4.1 Let N be the set of all neutrosophic number
and f : I → N be neutrosophic-valued function, where the
(α, β, γ )-cut of [ f (x)] = 〈[ fT1(x;α), fT2(x;α)], [ f I1(x;β),

f I2(x;β)], [ fF1(x; γ ), fF2(x; γ )]〉, for each (α, β, γ ). Then,
the Definitions 2.6 and 4.1 of neutrosophic derivative are
equivalent.

Proof Since f : I → N be neutrosophic-valued function.
Then, according to the Definition 2.6, fT1(x;α), fT2(x;α),
f I1(x;β), f I2(x;β), fF1(x; γ ), and fF2(x; γ ) are differen-
tiable on I . If f is type-1 differentiable, then (α, β, γ )-cut of
[D1

1 f (x)] = 〈[ f ′
T1

(x;α), f ′
T2

(x;α)], [ f ′
I1
(x;β), f ′

I2
(x;β)],

[ f ′
F1

(x; γ ), f ′
F2

(x; γ )]〉, i.e., f is generalized neutrosophic
differentiable function of type-1. Again, if f is type-2
differentiable function, then,(α, β, γ )-cut of [D1

2 f (x)] =
〈[ f ′

T2
(x;α), f ′

T1
(x;α)], [ f ′

I2
(x;β), f ′

I1
(x;β)], [ f ′

F2
(x; γ ),

f ′
F1

(x0; γ )]〉, i.e., f is generalized neutrosophic differen-
tiable function of type-2. Therefore, Definition 2.6 implies
Definition 4.1.

Let f : I → N is generalized differentiable function of
type-1, and then, f ′

T1
(x;α), f ′

T2
(x;α), f ′

I1
(x;β), f ′

I2
(x;β),

f ′
F1

(x; γ ), and f ′
F2

(x; γ ) all exist, and the (α, β, γ )-cut of

[D1
1 f (x)] = 〈[ f ′

T1
(x;α), f ′

T2
(x;α)], [ f ′

I1
(x;β), f ′

I2
(x;β)],

[ f ′
F1

(x; γ ), f ′
F2

(x; γ )]〉.
If h > 0, then the (α, β, γ )-cut of [ f (x + h) − f (x)]:

= 〈[ fT1(x + h;α) − fT1(x;α), fT2(x + h;α) − fT2(x;α)],
[ f I1(x + h;β) − f I1(x;β), f I2(x + h;β) − f I2(x;β)],
[ fF1(x + h; γ ) − fF1(x; γ ), fF2(x + h; γ ) − fF2(x; γ )]〉
[By Proposi tion 3.1].

Multiplying
1

h
, then we have from the Definition 4.1 and

Proposition 3.1:

(α, β, γ ) − cut o f

[
f (x + h) − f (x)

h

]

=
〈[

fT1(x + h;α) − fT1(x;α)

h
,

fT2(x + h;α) − fT2(x;α)

h

]

,

[
f I1(x + h;β) − f I1(x;β)

h
,

f I2(x + h;β) − f I2(x;β)

h

]

,
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[
fF1(x + h; γ ) − fF1(x; γ )

h
,

fF2(x + h; γ ) − fF2(x; γ )

h

]〉

.

Taking limit as h → 0, we get:

(α, β, γ ) − cut o f [ f ′(x)] = 〈[ f ′
T1(x;α), f ′

T2(x;α)],
[ f ′

I1(x;β), f ′
I2(x;β)], [ f ′

F1(x; γ ), f ′
F2(x; γ )]〉.

This can be written as:

(α, β, γ ) − cut o f [D1
1 f (x)] = 〈[ f ′

T1(x;α), f ′
T2(x;α)],

[ f ′
I1(x;β), f ′

I2(x;β)], [ f ′
F1(x; γ ), f ′

F2(x; γ )]〉.

Again, f is type-2 differentiable. If h < 0, then:

(α, β, γ ) − cut o f [ f (x + h) − f (x)]

= 〈[
fT1(x + h;α)

− fT1(x;α), fT2(x + h;α) − fT2(x;α)
]
,

[
f I1(x + h;β) − f I1(x;β),

f I2(x + h;β) − f I2(x;β)
]
,

[
fF1(x + h; γ ) − fF1(x; γ ),

fF2(x + h; γ ) − fF2(x; γ )
]〉

[By Proposi tion 3.1].

Multiplying
1

−h
, then we have from the Definition 4.1 and

Proposition 3.1:

(α, β, γ ) − cut o f

[
f (x + h) − f (x)

−h

]

=
〈[

fT2(x + h;α) − fT2(x;α)

−h
,

fT1(x + h;α) − fT1(x;α)

−h

]

,

[
f I2(x + h;β) − f I2(x;β)

−h
,

f I1(x + h;β) − f I1(x;β)

−h

]

,

[
fF2(x + h; γ ) − fF2(x; γ )

−h
,

fF1(x + h; γ ) − fF1(x; γ )

−h

]〉

.

Taking limit as h → 0, we get:

(α, β, γ ) − cut o f [ f ′(x)] = 〈[ f ′
T2(x;α), f ′

T1(x;α)],
[ f ′

I2(x;β), f ′
I1(x;β)], [ f ′

F2(x; γ ), f ′
F1(x; γ )]〉.

This can be written as:

(α, β, γ ) − cut o f [D1
2 f (x)] = 〈[ f ′

T2(x;α), f ′
T1(x;α)],

[ f ′
I2(x;β), f ′

I1(x;β)], [ f ′
F2(x; γ ), f ′

F1(x; γ )]〉.

Therefore, Definition 4.1 implies Definition 2.6.
This completes the proof. �

Definition 4.2 Let f ′ : I → N and g : I → N be the
neutrosophic-valued function and g(x) = f ′(x),∀x ∈ I , i.e.,
(α, β, γ )-cut of g(x) = 〈[gT1(x;α), gT2(x;α)], [gI1(x;β),

gI2(x;β)], [gF1(x; γ ), gF2(x; γ )]〉, where gK1(x; δ) =
min{ f ′

K1
(x; δ), f ′

K2
(x; δ)}, gK2(x; δ) = max{ f ′

K1
(x; δ),

f ′
K2

(x; δ)}, where K = T , I and F , δ = α, β and γ . Then,
the generalized second-order neutrosophic derivative of f (x)
at x0 ∈ I is denoted and defined by f ′′(x0) = g′(x0):

1. g′
Tα = [min{g′

T1
(x0;α), g′

T2
(x0;α)},max{g′

T1
(x0;α),

g′
T2

(x0;α)}], if g′
T1

(x0;α) , g′
T2

(x0;α) exists.
2. g′

Iβ = [min{g′
I1
(x0;β), g′

I2
(x0;β)},max{g′

I1
(x0;β),

g′
I2
(x0;β)}], if g′

I1
(x0;β) , g′

I2
(x0;β) exists.

3. g′
Fγ = [min{g′

F1
(x0; γ ), g′

F2
(x0; γ )},max{g′

F1
(x0; γ ),

g′
F2

(x0; γ )}], if g′
F1

(x0; γ ) , g′
F2

(x0; γ ) exists.

It is said to be type-1 derivative if (α, β, γ )-cut of g′(x0) =
〈[g′

T1
(x0;α), g′

T2
(x0;α)], [g′

I1
(x0;β), g′

I2
(x0;β)],

[g′
F1

(x0; γ ); g′
F2

(x0; γ )]〉 and type-2 derivative if (α, β, γ )-
cut of g′(x0) = 〈[g′

T2
(x0;α), g′

T1
(x0;α)], [g′

I2
(x0;β), g′

I1
(x0;β)],

[g′
F2

(x0; γ ),

g′
F1

(x0; γ )]〉.
By this similar process, we can define the nth-order

derivative of a neutrosophic-valued function.

Definition 4.3 Let f : I → N be a neutrosophic-valued
function andn,m = 1, 2.Then, f (x) is said to be (n,m)-type
differentiable at x0 ∈ I ; if D1

n f (x0) exists on a neighborhood
of x0 as neutrosophic function and it is also m-type differ-
entiable at x0, then second-order neutrosophic derivative of
f (x) at x0 is denoted by D2

n,m f (x0) for n,m = 1, 2.

Theorem 4.2 Let D1
1 f : I → N or D1

2 f : I → N be two
neutrosophic functions. Then:

1. If D1
1 f (x) is type-1differentiable, then f ′

T1
(x;α), f ′

T2
(x;α),

f ′
I1
(x;β), f ′

I2
(x;β), f ′

F1
(x; γ ), and f ′

F2
(x; γ ) are all dif-

ferentiable functions and:

(α, β, γ ) − cut o f D2
1,1 f (x) = 〈[ f ′′

T1(x;α), f ′′
T2(x;α)],

[ f ′′
I1(x;β), f ′′

I2(x;β)], [ f ′′
F1(x; γ ), f ′′

F2(x; γ )]〉.

2. If D1
1 f (x) is type-2differentiable, then f ′

T1
(x;α), f ′

T2
(x;α),

f ′
I1
(x;β), f ′

I2
(x;β), f ′

F1
(x; γ ), and f ′

F2
(x; γ ) are all dif-
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ferentiable functions and:

(α, β, γ ) − cut o f D2
1,2 f (x) = 〈[ f ′′

T2(x;α), f ′′
T1(x;α)],

[ f ′′
I2(x;β), f ′′

I1(x;β)], [ f ′′
F2(x; γ ), f ′′

F1(x; γ )]〉.

3. If D1
2 f (x) is type-1differentiable, then f ′

T1
(x;α), f ′

T2
(x;α),

f ′
I1
(x;β), f ′

I2
(x;β), f ′

F1
(x; γ ), and f ′

F2
(x; γ ) are all dif-

ferentiable functions and:

(α, β, γ ) − cut o f D2
2,1 f (x) = 〈[ f ′′

T2(x;α), f ′′
T1(x;α)],

[ f ′′
I2(x;β), f ′′

I1(x;β)], [ f ′′
F2(x; γ ), f ′′

F1(x; γ )]〉.

4. If D1
2 f (x) is type-2differentiable, then f ′

T1
(x;α), f ′

T2
(x;α),

f ′
I1
(x;β), f ′

I2
(x;β), f ′

F1
(x; γ ), and f ′

F2
(x; γ ) are all dif-

ferentiable functions, and:

(α, β, γ ) − cut o f D2
2,2 f (x) = 〈[ f ′′

T1(x;α), f ′′
T2(x;α)],

[ f ′′
I1(x;β), f ′′

I2(x;β)], [ f ′′
F1(x; γ ), f ′′

F2(x; γ )]〉.

Proof 1. If h > 0, then (α, β, γ )-cut of [D1
1 f (x + h) −

D1
1 f (x)] is:

[D1
1 f (x + h) − D1

1 f (x)]
= 〈[ f ′

T1(x + h;α) − f ′
T1(x;α),

f ′
T2(x + h;α) − f ′

T2(x;α)],
[ f ′

I1(x + h;β) − f ′
I1(x;β),

f ′
I2(x + h;β) − f ′

I2(x;β)],
[ f ′

F1(x + h; γ ) − f ′
F1(x; γ ), f ′

F2(x + h; γ )

− f ′
F2(x; γ )]〉

[By Proposi tion 3.1].

Multiplying
1

h
, then we have from the Definition 2.6 and

Proposition 3.1:

[
D1
1 f (x + h) − D1

1 f (x)

h

]

(α,β,γ )

=
〈[

f ′
T1

(x + h;α) − f ′
T1

(x;α)

h
,

f ′
T2

(x + h;α) − f ′
T2

(x;α)

h

]

,

[
f ′
I1
(x + h;β) − f ′

I1
(x;β)

h
,

f ′
I2
(x + h;β) − f ′

I2
(x;β)

h

]

,

[
f ′
F1

(x + h; γ ) − f ′
F1

(x; γ )

h
,

f ′
F2

(x + h; γ ) − f ′
F2

(x; γ )

h

]

〉.

Taking limit as h → 0, we get:

(α, β, γ ) − cut o f D1
1 f

′(x)
= 〈[ f ′′

T1(x;α), f ′′
T2(x;α)],

[ f ′′
I1(x;β), f ′′

I2(x;β)],
[ f ′′

F1(x; γ ), f ′′
F2(x; γ )]〉.

This can be written as:

(α, β, γ ) − cut o f D2
1,1 f (x)

= 〈[ f ′′
T1(x;α), f ′′

T2(x;α)],
[ f ′′

I1(x;β), f ′′
I2(x;β)],

[ f ′′
F1(x; γ ), f ′′

F2(x; γ )]〉.

2. If h < 0, then:

(α, β, γ ) − cut o f D1
1 f (x + h) − D1

1 f (x)

= 〈[ f ′
T1(x + h;α) − f ′

T1(x;α),

f ′
T2(x + h;α) − f ′

T2(x;α)],
[ f ′

I1(x + h;β) − f ′
I1(x;β), f ′

I2(x + h;β)

− f ′
I2(x;β)],

[ fF ′
1
(x + h; γ ) − f ′

F1(x; γ ),

f ′
F2(x + h; γ ) − f ′

F2(x; γ )]〉
[By Proposi tion 3.1].

Multiplying
1

−h
, then we have from the Definition 2.6

and Proposition 3.1:

[
D1
1 f (x + h) − D1

1 f (x)

−h

]

(α,β,γ )

=
〈[

f ′
T2

(x + h;α) − f ′
T2

(x;α)

−h
,

f ′
T1

(x + h;α) − f ′
T1

(x;α)

−h

]

,

[
f ′
I2
(x + h;β) − f ′

I2
(x;β)

−h
,

f ′
I1
(x + h;β) − f ′

I1
(x;β)

−h

]

,
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[
f ′
F2

(x + h; γ ) − f ′
F2

(x; γ )

−h
,

f ′
F1

(x + h; γ ) − f ′
F1

(x; γ )

−h

]〉

.

Taking limit as h → 0, we get:

(α, β, γ ) − cut o f D1
2 f

′(x)
= 〈[ f ′′

T2(x;α), f ′′
T1(x;α)], [ f ′′

I2(x;β),

f ′′
I1(x;β)], [ f ′′

F2(x; γ ), f ′′
F1(x; γ )]〉.

This can be written as:

(α, β, γ ) − cut o f D2
1,2 f (x)

= 〈[ f ′′
T2(x;α), f ′′

T1(x;α)], [ f ′′
I2(x;β),

f ′′
I1(x;β)], [ f ′′

F2(x; γ ), f ′′
F1(x; γ )]〉.

The proof the third and fourth part of the theorem is similar
to the second and first part, respectively. �

Theorem 4.3 Let f : I → N and g : I → N be the neu-
trosophic differentiable function, such that f (x) is type-1
differentiable function and g(x) is type-2 differentiable func-
tion on I . Then, ( f − g)(x) is also differentiable function on
I and ( f − g)′(x) = f ′(x) − g′(x). Furthermore:

(α, β, γ ) − cut o f ( f − g)′(x)
= 〈[ f ′

T1(x;α) − g′
T2(x;α), f ′

T2(x;α) − g′
T1(x;α)],

[ f ′
I1(x;β) − g′

I2(x;β),

f ′
I2(x;β) − g′

I1(x;β)],
[ f ′

F1(x; γ ) − g′
F2(x; γ ),

f ′
F2(x; γ ) − g′

F1(x; γ )]〉.

Proof Since f is type-1 differentiable, then we have:

〈[

lim
h→0

fT1(x + h;α) − fT1(x;α)

h
, lim
h→0

fT2(x + h;− fT2(x;α)

h

]

,

[

lim
h→0

f I1(x + h;β) − f I1(x;β)

h
,

lim
h→0

f I2(x + h;β) − f I2(x;β)

h

]

,

[

lim
h→0

fF1(x + h; γ ) − fF1(x; γ )

h
, lim
h→0

fF2(x + h; γ ) − fF2(x; γ )

h

]〉

;

this limits are exists. Let i = 1, 2, and then, there exists
UTi (x, h;α), UIi (x, h;β), and UFi (x, h; γ ), such that:

fTi (x + h;α) = fTi (x;α) +UTi (x, h;α) (4.1)

f Ii (x + h;β) = f Ii (x;β) +UTi (x, h;β) (4.2)

fFi (x + h; γ ) = fFi (x; γ ) +UFi (x, h; γ ). (4.3)

Since g is type-2 differentiable, then there existsVTi (x, h;α),
VIi (x, h;β), and VFi (x, h; γ ), such that:

gTi (x;α) = gTi (x + h;α) + VTi (x, h;α) (4.4)

gIi (x;β) = gIi (x + h;β) + VTi (x, h;β) (4.5)

gFi (x; γ ) = gFi (x + h; γ ) + VFi (x, h; γ ). (4.6)

Now, from Eqs. 4.1 and 4.4, we have:

fTi (x + h;α) + gT ′
i
(x;α)

= fTi (x;α) + gT ′
i
(x + h;α)

+UTi (x, h;α) + VT ′
i
(x, h;α), (4.7)

where i = 1, 2 and i ′ = {1, 2}\i .
From Eq. 4.7, we have:

( fTi (x + h;α) − gT ′
i
(x + h;α)) − ( fTi (x) − gT ′

i
(x))

= UTi (x, h;α) + VT ′
i
(x, h;α). (4.8)

Since limh→0
UTi (x, h;α)

h
= f ′

Ti
(x;α) and limh→0

VT ′
i
(x, h;α)

h
=−g′

T ′
i
(x;α).

Now, multiplying Eq. 4.8 by
1

h
and taking limit h → 0,

we have:

( fTi − gT ′
i
)′(x;α) = f ′

Ti (x;α) − g′
T ′
i
(x;α).

By the similar argument, we have:

( f Ii − gI ′
i
)′(x;β) = f ′

Ii (x;β) − g′
I ′
i
(x;β)

( fFi − gF ′
i
)′(x; γ ) = f ′

Fi (x; γ ) − g′
F ′
i
(x; γ ).

Therefore, f −g is differentiable function and ( f −g)′(x) =
f ′(x) − g′(x), where i = 1, 2 and i ′ = {1, 2}\i .
By similar process, we can show the same result when f

is type-2 and g is type-1 differentiable. �
Theorem 4.4 Let f : I → N and g : I → N be two
neutrosophic-valued function. Let f and g are second-order
generalized neutrosophic differentiable function on I , such
that f is (1,1)-type and g is (2,1)-type differentiable function
or f is (1,2)-type and g is (2,2)-type differentiable function
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or f is (2,1)-type and g is (1,1)-type differentiable function or
f is (2,2)-type and g is (1,2)-type differentiable function on
I . Then, ( f − g) is also second-order differentiable function
on I and:

( f − g)′′(x) = f ′′(x) − g′′(x).

Proof For the first case, f is (1,1)-type differentiable and
g is (2,1)-type differentiable. Then, by the above Theorem
4.3, ( f − g)(x) is type-1 differentiable and ( f − g)′(x) =
f ′(x) − g′(x). Furthermore:

[( f − g)′(x)](α,β,γ )

= 〈[ f ′
T1(x;α) − g′

T2(x;α), f ′
T2(x;α) − g′

T1(x;α)],
[ f ′

I1(x;β) − g′
I2(x;β), f ′

I2(x;β) − g′
I1(x;β)],

[ f ′
F1(x; γ ) − g′

F2(x; γ ),

f ′
F2(x; γ ) − g′

F1(x; γ )]〉.

Then, by Proposition 3.2, ( f − g)(x) is (1,1)-type differ-
entiable. Then, we have ( f − g)′′(x) = f ′′(x) − g′′(x).
Furthermore:

[( f − g)′′(x)](α,β,γ )

= 〈[ f ′′
T1(x;α) − g′′

T2(x;α),

f ′′
T2(x;α) − g′′

T1(x;α)],
[ f ′′

I1(x;β) − g′′
I2(x;β),

f ′′
I2(x;β) − g′′

I1(x;β)],
[ f ′′

F1(x; γ ) − g′′
F2(x; γ ),

f ′′
F2(x; γ ) − g′′

F1(x; γ )]〉.

This completes the proof of the first case of the Theorem.
Other cases are similar to the first case. �
Theorem 4.5 Let f : I → R be a real-valued function and
g : I → N be a neutrosophic-valued function. Then:

1. If f (x). f ′(x) > 0 and g is type-1 differentiable, then
f .g is type-1 differentiable and ( f .g)′(x) = f ′(x)g(x)+
f (x)g′(x). Furthermore:

[( f .g)′(x)](α,β,γ )

= 〈[ f (x)g′
T1(x;α) + f ′(x)gT1(x;α),

f (x)g′
T2(x;α) + f ′(x)gT2(x;α)],

[ f (x)g′
I1(x;β) + f ′(x)gI1(x;β),

f (x)g′
I2(x;β) + f ′(x)gI2(x;β)],

[ f (x)g′
F1(x; γ ) + f ′(x)gF1(x; γ ),

f (x)g′
F2(x; γ ) + f ′(x)gF2(x; γ )]〉.

2. If f (x). f ′(x) < 0 and g is type-2 differentiable, then
f .g is type-2 differentiable and ( f .g)′(x) = f ′(x)g(x)+
f (x)g′(x). Furthermore:

[( f .g)′(x)](α,β,γ )

= 〈[ f (x)g′
T2(x;α) + f ′(x)gT2(x;α),

f (x)g′
T1(x;α) + f ′(x)gT1(x;α)],

[ f (x)g′
I2(x;β) + f ′(x)gI2(x;β),

f (x)g′
I1(x;β) + f ′(x)gI1(x;β)],

[ f (x)g′
F2(x; γ ) + f ′(x)gF2(x; γ ),

f (x)g′
F1(x; γ ) + f ′(x)gF1(x; γ )]〉.

Proof 1. There are two subcases.
Subcase 1: Let f (x) > 0 and f ′(x) > 0.
Since g is type-1 differentiable, then:

〈[

lim
h→0

gT1(x + h;α) − gT1(x;α)

h
,

lim
h→0

gT2(x + h;α) − gT2(x;α)

h

]

,

[

lim
h→0

gI1(x + h;β) − gI1(x;β)

h
,

lim
h→0

gI2(x + h;β) − gI2(x;β)

h

]

,

[

lim
h→0

gF1(x + h; γ ) − gF1(x; γ )

h
,

lim
h→0

gF2(x + h; γ ) − gF2(x; γ )

h

]〉

;

this limits are exists. Let i = 1, 2; then, there exists
UTi (x, h;α), UIi (x, h;β), and UFi (x, h; γ ), such that:

gTi (x + h;α) = gTi (x;α) +UTi (x, h;α) (4.9)

gIi (x + h;β) = gIi (x;β) +UTi (x, h;β) (4.10)

gFi (x + h; γ ) = gFi (x; γ ) +UFi (x, h; γ ). (4.11)

Since f (x) > 0 and f ′(x) > 0, then we have f (x+h) =
f (x)+V (x, h), where V (x, h) = f (x + h)− f (x) > 0.
Now, from Eq. 4.9, we have:

f (x + h).gTi (x + h;α) = f (x).gTi (x;α)

+ f (x)UTi (x, h;α) + V (x, h)gTi (x;α)

+V (x, h)UTi (x, h;α).

This implies that: f (x+h).gTi (x+h;α)− f (x).gTi (x;α)

= f (x)UTi (x, h;α)+V (x, h)gTi (x;α)+V (x, h)UTi (x, h;α).
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Multiplying both side by
1

h
and taking limit as h → 0.

Then, we have:

( f .gTi )
′(x;α) = f (x)g′

Ti (x;α) + f ′(x)gTi (x;α).

By similar process, we can find that:

( f .gIi )
′(x;β) = f (x)g′

Ii (x;β) + f ′(x)gIi (x;β)

( f .gFi )
′(x; γ ) = f (x)g′

Fi (x; γ ) + f ′(x)gFi (x; γ ).

Therefore, ( f .g)′(x) = f ′(x)g(x) + f (x)g′(x).
Subcase 2: Let f (x) < 0 and f ′(x) < 0.
Proof of this subcase is similar to the subcase 1.

2. There are two subcases.
Subcase 1: Let f (x) < 0 and f ′(x) > 0.
Since g is type-2 differentiable, then:

〈[

lim
h→0

gT2(x;α) − gT1(x + h;α)

h
,

lim
h→0

gT1(x;α) − gT1(x + h;α)

h

]

,

[

lim
h→0

gI2(x;β) − gI2(x + h;β)

h
,

lim
h→0

gI1(x;β) − gI1(x + h;β)

h

]

,

[

lim
h→0

gF2(x; γ ) − gF2(x + h; γ )

h
,

lim
h→0

gF1(x; γ ) − gF1(x + h; γ )

h

]〉

;

this limits are exists. Let i = 1, 2, and then, there exists
VTi (x, h;α), VIi (x, h;β), and VFi (x, h; γ ), such that:

gTi (x;α) = gTi (x + h;α) + VTi (x, h;α) (4.12)

gIi (x;β) = gIi (x + h;β) + VTi (x, h;β) (4.13)

gFi (x; γ ) = gFi (x + h; γ ) + VFi (x, h; γ ). (4.14)

Since f (x) < 0 and f ′(x) > 0, then we have f (x) =
f (x+h)+V (x, h), where V (x, h) = f (x)− f (x+h) <

0.
Now, from Eq. 4.12, we have:
f (x).gTi (x;α) = f (x + h).gTi (x + h;α) + f (x +
h)VTi (x, h;α) + V (x, h)gTi (x + h;α) + V (x, h)

VTi (x, h;α).
This implies that: f (x).gTi (x;α) − f (x + h).gTi (x +
h;α) = f (x + h)VTi (x, h;α) + V (x, h)gTi (x + h;α) +
V (x, h)VTi (x, h;α) Multiplying both side by −1

h
and

taking limit as h → 0. Then, we have:

( f .gTi )
′(x;α) = f (x)g′

Ti (x;α) + f ′(x)gTi (x;α).

By similar process, we can find that:

( f .gIi )
′(x;β) = f (x)g′

Ii (x;β) + f ′(x)gIi (x;β)

( f .gFi )
′(x; γ ) = f (x)g′

Fi (x; γ ) + f ′(x)gFi (x; γ ),

where i = 1, 2.
Therefore, ( f .g)′(x) = f ′(x)g(x) + f (x)g′(x).
Subcase 2: Let f (x) > 0 and f ′(x) < 0. Proof of this
subcase is similar to the subcase 1.
This completes the proof. �

Neutrosophic boundary-value problem

Let us consider the second-order neutrosophic boundary-
value problem as follows:

y′′(x) = f (x, y(x), y′(x))
y = a at x = 0 i .e y(0) = a

y = b at x = 1 i .e y(1) = b

⎫
⎪⎬

⎪⎭
, (5.1)

where a and b are neutrosophic number, and f : [0, 1] ×
N × N → N be a neutrosophic function.

Definition 5.1 Let y : [0, 1] → N be a neutrosophic func-
tion and n,m ∈ {1, 2}. Then, y is said to be (n,m)-solution
of Eq. 5.1 on [0, 1] if D1

n y, D2
n,m y exists on [0, 1] and

D2
n,m y(x) = f (x, y(x), D1

n y(x)), y(0) = a, y(1) = b.

To find the solution of the neutrosophic boundary-value
problem 5.1, we can translate Eq. 5.1 to the system of
boundary-value problems.

Therefore, there are four types of possible system of
boundary-value problem.

(1,1) System :

y′′
Ti (x;α) = fTi (x, yT1(x;α), yT2(x;α),

y′
T1(x;α), y′

T2(x;α))

y′′
Ii (x;β) = f Ii (x, yI1(x;β), yI2(x;β),

y′
I1(x;β), y′

I2(x;β))

y′′
Fi (x; γ ) = fFi (x, yF1(x;α),

yF2(x;α), y′
F1(x;α), y′

F2(x; γ ))

with the boundary conditions
yTi (0;α) = aα

Ti
yIi (0;β) = aβ

Ii
yFi (0; γ ) = aγ

Fi

yTi (1;α) = bα
Ti

yIi (1;β) = aβ
Ii

yFi (1; γ ) = aγ

Fi
,

where i = 1, 2 and i ′ = {1, 2}\i .
Here, D1

1 y, D
2
1,1y exists and (α, β, γ )-cut of D1

1 y(x) =
〈[y′

T1
(x;α), y′

T2
(x;α)], [y′

I1
(x;β), y′

I2
(x;β)], [y′

F1
(x; γ ),

y′
F2

(x; γ )]〉 and (α, β, γ )-cut of D2
1,1y(x) = 〈[y′′

T1
(x;α),

y′′
T2

(x;α)], [y′′
I1
(x;β), y′′

I2
(x;β)], [y′′

F1
(x; γ ), y′′

F2
(x; γ )]〉.
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Since there is no derivative involve in the boundary con-
ditions. Therefore, for all remaining system, the boundary
conditions will be same as above. Only the equation will be
change.

(1,2) System :

y′′
Ti ′ (x;α) = fTi (x, yT1(x;α),

yT2(x;α), y′
T1(x;α), y′

T2(x;α))

y′′
Ii ′ (x;β) = f Ii (x, yI1(x;β),

yI2(x;β), y′
I1(x;β), y′

I2(x;β))

y′′
Fi ′ (x; γ ) = fFi (x, yF1(x; γ ),

yF2(x; γ ), y′
F1(x; γ ), y′

F2(x; γ )),

where i = 1, 2 and i ′ = {1, 2}\i .
Here, D1

1 y, D
2
1,2y exists, and (α, β, γ )-cut of D1

1 y(x) =
〈[y′

T1
(x;α), y′

T2
(x;α)], [y′

I1
(x;β), y′

I2
(x;β)], [y′

F1
(x; γ ),

y′
F2

(x; γ )]〉 and (α, β, γ )-cut of D2
1,2y(x) = 〈[y′′

T2
(x;α),

y′′
T1

(x;α)], [y′′
I2
(x;β), y′′

I1
(x;β)], [y′′

F2
(x; γ ), y′′

F1
(x; γ )]〉.

(2,1) System :

y′′
Ti ′ (x;α) = fTi (x, yT1(x;α),

yT2(x;α), y′
T1(x;α), y′

T2(x;α))

y′′
Ii ′ (x;β) = f Ii (x, yI1(x;β),

yI2(x;β), y′
I1(x;β), y′

I2(x;β))

y′′
Fi ′ (x; γ ) = fFi (x, yF1(x; γ ),

yF2(x; γ ), y′
F1(x; γ ), y′

F2(x; γ )),

where i = 1, 2 and i ′ = {1, 2}\i .
Here, D1

2 y, D
2
2,1y exists and (α, β, γ )-cut of D1

2 y(x) =
〈[y′

T2
(x;α), y′

T1
(x;α)], [y′

I2
(x;β), y′

I1
(x;β)],

[y′
F2

(x; γ ), y′
F1

(x; γ )]〉 and (α, β, γ )-cut of D2
2,1y(x) =

〈[y′′
T2

(x;α),

y′′
T1

(x;α)], [y′′
I2
(x;β), y′′

I1
(x;β)], [y′′

F2
(x; γ ), y′′

F1
(x; γ )]〉.

(2,2) System :

y′′
Ti (x;α) = fTi (x, yT1(x;α),

yT2(x;α), y′
T1(x;α), y′

T2(x;α))

y′′
Ii (x;β) = f Ii (x, yI1(x;β),

yI2(x;β), y′
I1(x;β), y′

I2(x;β))

y′′
Fi (x; γ ) = fFi (x, yF1(x;α),

yF2(x;α), y′
F1(x;α), y′

F2(x; γ )),

where i = 1, 2 and i ′ = {1, 2}\i .
Here, D1

2 y, D2
2,2y exists and (α, β, γ )-cut of D1

2 y(x) =
〈[y′

T2
(x;α), y′

T1
(x;α)], [y′

I2
(x;β), y′

I1
(x;β)], [y′

F2
(x; γ ),

y′
F1

(x; γ )]〉 and (α, β, γ )-cut of D2
2,2y(x) = 〈[y′′

T1
(x;α),

y′′
T2

(x;α)], [y′′
I1
(x;β), y′′

I2
(x;β)], [y′′

F1
(x; γ ), y′′

F2
(x; γ )]〉.

Let y be the (n,m)-solution of the boundary-value problem
5.1 at x0 ∈ [0, 1]. Therefore, [y(x0)](α,β,γ ) = 〈[yT1(x0;α),

yT2(x0;α)].
[yI1(x0;β), yI2(x0;β)], [yF1(x0; γ ), yF2(x0; γ )]〉. Then,
D1
n y and D2

n,m y exists at x0 and it satisfies Eq. 5.1. Using this
facts, we are giving a table to show that when the solutions
are exists at x0.

System y y′ y′′

(1,1) yK1 ≤ yK2 y′
K1

≤ y′
K2

y′′
K1

≤ y′′
K2

(1,2) yK1 ≤ yK2 y′
K1

≤ y′
K2

y′′
K2

≤ y′′
K1

(2,1) yK1 ≤ yK2 y′
K2

≤ y′
K1

y′′
K2

≤ y′′
K1

(2,2) yK1 ≤ yK2 y′
K2

≤ y′
K1

y′′
K1

≤ y′′
K2

where K = T , I and F .

Examples

In this section, we shall discuss some test problems and their
numerical results. The Tables are calculated using Wolfram
Mathematica 9.0 and thefigures have beendrawnusingMAT-
LABR2018a. TheMatlab code for the figures has been given
below.
Matlab code :

1. x=k; %Choose k, where x ∈ (0, 1).
2. a1 =linespace(a,b,c); %Choose the linespace of mem-

bershipvalue,where (a,b) be the intervalwhere mem-
bership value lies and c be the line spacing.

3. y = f1(x; a1); %Put the function.
4. plot(y, a1,’color’) %For plotting the function y.
5. hold on.
6. z = f2(x; a1); %Put the another function.
7. plot(z, a1,’color’) %For plotting the function z.
8. hold off.
9. xlabel(’x’); %For x-axis.
10. ylabel(’y’); %For y-axis.

Example 1 Let us consider second-order neutrosophic boundary-
value problem as follows:

y′′(x) = 2ã, y(0) = 1

8
ã,

y(1) = 3

8
ã,

where ã = 〈(−1, 0, 1); 0.6, 0.4, 0.2〉 is a single-valued tri-
angular neutrosophic number. Then, (α, β, γ )-level set of ã is

ã(α,β,γ ) = 〈[5α − 3

3
,
3 − 5α

3
], [2 − 5β

3
,
5β − 2

3
], [1 − 5γ

4
,
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5γ − 1

4
]〉, where α ∈ [0, 0.6], β ∈ [0.4, 1] and γ ∈ [0.2, 1].

Now, we try to find out the solution of the boundary-value
problem for (1, 1) system, (1, 2) system, (2, 1) system, and
(2, 2) system.

(1,1) System
If y is a (1, 1) solution for the boundary-value problem, then:

[y′(x)](α,β,γ )

= 〈[y′
T1(x;α), y′

T2(x;α)],
[y′

I1(x;β), y′
I2(x;β)],

[y′
F1(x; γ ), y′

F2(x; γ )]〉
[y′′(x)](α,β,γ )

= 〈[y′′
T1(x;α), y′′

T2(x;α)],
[y′′

I1(x;β), y′′
I2(x;β)],

[y′′
F1(x; γ ), y′′

F2(x; γ )]〉

Then, the boundary-value problem can be written in the form
as follows:

[y′′(x)](α,β,γ )

=
〈[

10α − 6

3
,
6 − 10α

3

]

,

[
4 − 10β

3
,
10β − 4

3

]

,

[
1 − 5γ

2
,
5γ − 1

2

]〉

[y(0)](α,β,γ ) =
〈[

5α − 3

24
,

3 − 5α

24

]

,

[
2 − 5β

24
,

5β − 2

24

]

,

[
1 − 5γ

32
,

5γ − 1

32

]〉

[y(1)](α,β,γ ) =
〈[

5α − 3

8
,

3 − 5α

8

]

,

[
2 − 5β

8
,
5β − 2

8

]

,

[
3 − 15γ

32
,
15γ − 3

32

]〉

.

Therefore, the solution of the (1, 1) system is:

yT1(x;α) = 5α − 3

24
(8x2 − 6x + 1), yT2(x;α) = 3 − 5α

24
(8x2 − 6x + 1)

yI1(x;β) = 2 − 5β

24
(8x2 − 6x + 1), yI2(x;β) = 5β − 2

24
(8x2 − 6x + 1)

yF1(x; γ ) = 1 − 5γ

32
(8x2 − 6x + 1), yF2(x; γ ) = 5γ − 1

32
(8x2 − 6x + 1).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.1)

Therefore, the (1,1)-solution of the boundary-value prob-
lem can written as follows:

[y(x)](α,β,γ )

=
〈[

5α − 3

24
(8x2 − 6x + 1),

3 − 5α

24
(8x2 − 6x + 1)

]

,

[
2 − 5β

24
(8x2 − 6x + 1),

5β − 2

24
(8x2 − 6x + 1)

]

,

[
1 − 5γ

32
(8x2 − 6x + 1),

5γ − 1

32
(8x2 − 6x + 1)

]〉

.

The solution of the problem is shown in Fig. 2. Then, the
solution gives a neutrosophic number if 8x2 − 6x + 1 ≥ 0.

Hence, its represents a neutrosophic number for x ≥ 1

2
and

x ≤ 1

4
.

Then, the type-1 derivative of the solution is:

[D1
1 y(x)](α,β,γ )

=
〈[

5α − 3

24
(16x − 6),

3 − 5α

24
(16x − 6)

]

,

[
2 − 5β

24
(16x − 6),

5β − 2

24
(16x − 6)

]

,

[
1 − 5γ

32
(16x − 6),

123



Complex & Intelligent Systems (2021) 7:1079–1098 1091
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0.3
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yT
1
 & yT

2

yI
1
 & yI

2

yF
1
 & yF

2

x = 0.5x = 0.25

Fig. 1 (1,1)-solution and (2,2)-solution of Example 1 for α = 0, β =
0.8, and γ = 0.6

5γ − 1

32
(16x − 6)

]〉

.

It gives a neutrosophic number for x ≥ 1

2
. Then, it is again

type-1 differentiable and:

[D2
1,1y(x)](α,β,γ )

=
〈[

10α − 6

3
,

6 − 10α

3

]

,

[
4 − 10β

3
,

10β − 4

3

]

,

[
1 − 5γ

2
,

5γ − 1

2

]〉

.

However, for x ≤ 1

4
, it is not a type-1 differentiable. There-

fore, the y is (1, 1) differentiable for x ≥ 1

2
. Then, D1

1 y and

D2
1,1y exist for x ∈ (

1

2
, 1). Therefore, y gives a (1, 1) solu-

tion of the neutrosophic boundary-value problem on (
1

2
, 1).

(2,2) System
The solution of the boundary-value problem for (2,2) system
is:

[y(x)](α,β,γ )

=
〈[

5α − 3

24
(8x2 − 6x + 1),

3 − 5α

24
(8x2 − 6x + 1)

]

,

[
2 − 5β

24
(8x2 − 6x + 1),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

yT
1
 & yT

2

yI
1
 & yI

2

yF
1
 & yF

2

Fig. 2 (1,2)-solution and (2,1)-solution of Example 1 for α = 0, β =
0.8, and γ = 0.6

5β − 2

24
(8x2 − 6x + 1)

]

,

[
1 − 5γ

32
(8x2 − 6x + 1),

5γ − 1

32
(8x2 − 6x + 1)

]〉

.

The solution of the problem is shown in Fig. 2. Then, the
solution gives a neutrosophic number if 8x2 − 6x + 1 ≥ 0.

Hence, its represents a neutrosophic number for x ≥ 1

2
and

x ≤ 1

4

For x ≤ 1

4
, y is type-2 differentiable. Then, type-2 derivative

of y is:

[D1
2 y(x)](α,β,γ )

=
〈[

3 − 5α

24
(16x − 6),

5α − 3

24
(16x − 6)

]

,

[
5β − 2

24
(16x − 6),

2 − 5β

24
(16x − 6)

]

,

[
5γ − 1

32
(16x − 6),

1 − 5γ

32
(16x − 6)

]〉

.

Since it gives a neutrosophic number for x ≤ 1

4
. Therefore,

y is type-2 differentiable. Then, we have:

[D2
2,2y(x)](α,β,γ )

=
〈[

10α − 6

3
,
6 − 10α

3

]

,
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[
4 − 10β

3
,
10β − 4

3

]

,

[
1 − 5γ

2
,
5γ − 1

2

]〉

.

Therefore, y gives a (2, 2) solution on (0,
1

4
).

(1,2) System
The solution of the boundary-value problem for (1,2) system
is:

[y(x)](α,β,γ )

=
〈[

−5α − 3

24
(8x2 − 10x − 1),

−3 − 5α

24
(8x2 − 10x − 1)

]

,

[

−2 − 5β

24
(8x2 − 10x − 1),

−5β − 2

24
(8x2 − 10x − 1)

]

,

[

−1 − 5γ

32
(8x2 − 10x − 1),

−5γ − 1

32
(8x2 − 10x − 1)

]〉

.

The solution for this system is shown in Fig. 2, since its gives
a neutrosophic number for x ∈ (0, 1). Then, type-1 derivative
of y is:

[D1
1 y(x)](α,β,γ )

=
〈[

−5α − 3

24
(16x − 10),

−3 − 5α

24
(16x − 10)

]

,

[

−2 − 5β

24
(16x − 10),−5β − 2

24
(16x − 10)

]

,

[

−1 − 5γ

32
(16x − 10),

−5γ − 1

32
(16x − 10)

]〉

.

Since it gives a neutrosophic number if x ≤ 5

8
. Then, it is

also type-2 differentiable. Therefore, we have:

[D2
1,2y(x)](α,β,γ )

=
〈[

10α − 6

3
,
6 − 10α

3

]

,

[
4 − 10β

3
,
10β − 4

3

]

,

[
1 − 5γ

2
,
5γ − 1

2

]〉

.

Therefore, y gives a (1, 2) solution on (0,
5

8
).

(2,1) System :
The solution of the boundary-value problem for (2,1) system
is:

[y(x)](α,β,γ )

=
〈[

−5α − 3

24
(8x2 − 10x − 1),

−3 − 5α

24
(8x2 − 10x − 1)

]

,

[

−2 − 5β

24
(8x2 − 10x − 1),

−5β − 2

24
(8x2 − 10x − 1)

]

,

[

−1 − 5γ

32
(8x2 − 10x − 1),

−5γ − 1

32
(8x2 − 10x − 1)

]〉

.

The solution for this system is shown in Fig. 2. Since its
gives a neutrosophic number for x ∈ (0, 1). Then, type-2
derivative of y is:

[D1
2 y(x)](α,β,γ )

=
〈[

−3 − 5α

24
(16x − 10),

−5α − 3

24
(16x − 10)

]

,

[

−5β − 2

24
(16x − 10),

−2 − 5β

24
(16x − 10)

]

,

[

−5γ − 1

32
(16x − 10),

−1 − 5γ

32
(16x − 10)

]〉

.

Since it gives a neutrosophic number if x ≥ 5

8
. Then, it is

also type-1 differentiable. Therefore, we have:

[D2
2,1y(x)](α,β,γ )

=
〈[

10α − 6

3
,
6 − 10α

3

]

,

[
4 − 10β

3
,
10β − 4

3

]

,
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[
1 − 5γ

2
,
5γ − 1

2

]〉

.

Therefore, y gives a (1, 2) solution on (0,
5

8
)

Therefore, the boundary-value problem gives (1, 1)-solution

on (
1

2
, 1), (2, 2)-solution on (0,

1

4
), (1, 2)-solution on (0,

5

8
),

and (2, 1)-solution on (
5

8
, 1).

In Fig. 1, it has been seen that (1,1)-solution and (2,2)-
solution of Example 1 exist only for x ∈ (1/2, 1) and
x ∈ (0, 1/4), respectively, where α = 0, β = 0.8 and
γ = 0.6. Also, from Fig. 2, it has been seen that (1,2)-
solution and (2,1)-solution of Example 1 exist for x ∈ (0, 1),
where α = 0, β = 0.8 and γ = 0.6. Therefore, even though
the crisp solution exist, but some times, there are some values
of x for which the neutrosophic solution does not exist. In
Tables 1 and 2, when the value of α increases, then the solu-
tion of left branch for truth membership function increases
and the solution of right branch for truth membership func-
tion decreases.Again,whenβ andγ increases, the solution of
left branch for indeterminacy and falsity-membership func-
tion decreases and the solution of right branch increases. At
α = 0.6, right and left branch of truth membership func-
tion gives the same solution. Similarly, at β = 0.4 and
γ = 0.2, right and left branch of indeterminacy and falsity-
membership function gives the same solution, respectively.
This shows that the solution in Tables 1 and 2 for (1,1) and
(1,2) system, respectively, gives a neutrosophic number, and
from Figs. 3 and 4, it also has been seen that the solution
gives a triangular neutrosophic number.

Example 2 Let us consider second-order neutrosophic boundary-
value problem as follows:

y′′(x) = ã, y(0) = 0̃, y(1) = b̃,

where ã = 〈(0, 1, 2); 0.6, 0.4, 0.2〉 and b̃ = 〈(−1, 0, 1); 0.6,
0.4, 0.2〉 are single-valued triangular neutrosophic number.

Then: ã(α,β,γ ) = 〈[5α
3

,
6 − 5α

3
], [5(1 − β)

3
,

5β + 1

3
], [5(1 − γ )

4
,
5γ + 3

4
]〉 and

b̃(α,β,γ ) = 〈[5α − 3

3
,
3 − 5α

3
], [2 − 5β

3
,
5β − 2

3
], [1 − 5γ

4
,

5γ − 1

4
]〉 where α ∈ [0, 0.6], β ∈ [0.4, 1], and γ ∈ [0.2, 1].

Now, we try to find out the solution of the boundary-value
problem for (1, 1) system, (1, 2) system, (2, 1) system, and
(2, 2) system.
(1,1) System

The solution of the boundary-value problem for (1,1)-
system is:

[y(x)](α,β,γ )

=
〈[

5α

6
x2 + 5α − 6

6
x,

6 − 5α

6
x2 − 5α

6
x

]

,

[
5(1 − β)

6
x2 − 5β + 1

6
x,

5β + 1

6
x2 + 5(β − 1)

6
x

]

,

[
5(1 − γ )

8
x2 − 3 + 5γ

8
x,

5γ + 3

8
x2 + 5(γ − 1)

8
x

]〉

.

The solution of the problem is shown in Fig. 5. Then, type-1
derivative of the solution is:

[D1
1 y(x)](α,β,γ )

=
〈[

5α

3
x + 5α − 6

6
,

6 − 5α

3
x − 5α

6

]

,

[
5(1 − β)

3
x − 5β + 1

6
,

5β + 1

3
x + 5(β − 1)

6

]

,

[
5(1 − γ )

4
x − 3 + 5γ

8
,

5γ + 3

4
x + 5(γ − 1)

8

]〉

.

It is again type-1 differentiable and:

[D2
1,1y(x)](α,β,γ )

=
〈[

5α

3
,
6 − 5α

3

]

,

[
5(1 − β)

3
,
5β + 1

3

]

,

[
5(1 − γ )

4
,
5γ + 3

4

]〉

.

(1,2) System
(1,2)-solution of the boundary-value problem is:

[y(x)](α,β,γ )

=
〈[

6 − 5α

6
x2 + 5α − 4

2
x,

5α

6
x2 + 2 − 5α

2
x

]

,

[
5β + 1

6
x2 + 1 − 5β

2
x,
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Table 1 (1,1)-solutions for the
different values of α, β, and γ at
x = 3/4 for Example 1

α yT1 (x; α) yT2 (x; α) β yI1 (x; β) yI2 (x; β) γ yF1 (x; γ ) yF2 (x; γ )

0 −0.125 0.125 0.4 0 0 0.2 0 0

0.2 −0.0833333 0.0833333 0.6 −0.0416667 0.0416667 0.4 −0.03125 0.03125

0.4 −0.0416667 0.041667 0.8 −0.0833333 0.0833333 0.6 −0.0625 0.0625

0.6 0 0 1 −0.125 0.125 1 −0.125 0.125

Table 2 (1,2)-solutions for the
different values of α, β, and γ at
x = 5/16 for Example 1

α yT1 (x; α) yT2 (x; α) β yI1 (x; β) yI2 (x; β) γ yF1 (x; γ ) yF2 (x; γ )

0 −0.417969 0.417969 0.4 0 0 0.2 0 0

0.2 −0.278646 0.278646 0.6 −0.139323 0.139323 0.4 −0.104492 0.104492

0.4 −0.139323 0.139323 0.8 −0.278646 0.278646 0.6 −0.208984 0.208984

0.6 0 0 1 −4.17969 4.17969 1 −0.417969 0.417969
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Fig. 3 Truth, indeterminacy, and falsity-membership function for (1,1)-
solution at x = 3/4
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Fig. 4 Truth, indeterminacy, and falsity-membership function for (1,2)-
solution at x = 5/16

5(1 − β)

6
x2 + 5β − 3

2
x

]

,

[
5γ − 3

8
x2 − 1 + 15γ

8
x,

5(1 − γ )

8
x2 + 15γ − 7

8
x

]〉

.

The solutions for (1,2) system are shown in Fig. 6.
(2,1) System
(2,1)-solution for this boundary-value problemdoes not exist.
Because, if (2,1)-solution exists, then the solution can be
written in the form as follows:

[y(x)](α,β,γ )

=
〈[

6 − 5α

6
x2 + 5α − 4

2
x,

5α

6
x2 + 2 − 5α

2
x

]

,

[
5β + 1

6
x2 + 1 − 5β

2
x,

5(1 − β)

6
x2 + 5β − 3

2
x

]

,

[
5γ − 3

8
x2 − 1 + 15γ

8
x,

5(1 − γ )

8
x2 + 15γ − 7

8
x

]〉

.

Since it is type-2 differentiable. Then:

[y′(x)](α,β,γ )

=
〈[

5α

3
x + 2 − 5α

2
,

6 − 5α

3
x + 5α − 4

2

]

,

[
5(1 − β)

3
x + 5β − 3

2
,

5β + 1

3
x + 1 − 5β

2

]

,

[
5(1 − γ )

4
x + 15γ − 7

8
,
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Fig. 5 (1,1)-solution of Example 2 for α = 0, β = 0.6, and γ = 0.4
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Fig. 6 (1,2)-solution of Example 2 for α = 0, β = 0.6, and γ = 0.4

5γ − 3

4
x − 1 + 15γ

8

]〉

.

Then, for the Truthmembership function, this forms an inter-

val if
5α

3
x + 2 − 5α

2
<

6 − 5α

3
x + 5α − 4

2
. This implies

that x >
3

2
. Therefore, x /∈ [0, 1]. Therefore, (2,1)-solution

does not exists.
(2,2) System
By similar argument, we can show that (2,2)-solution does
not exist.
In Figs. 5 and 6, it has been seen that (1,1)-solution and
(1,2)-solution of Example 2 exist for x ∈ (0, 1), where α =
0, β = 0.6 and γ = 0.4. FromTable 3,we have found similar
type of result for Example 2 which was found for Example 1
from Tables 1 and 2. Therefore, from Table 3, it follows
that the (1,1)-solution for Example 2 gives a neutrosophic
number, and from Fig. 7, it has been seen that the solution
gives a triangular neutrosophic number. By similar argument,
we can show that the (1,2)-solution for Example 2 gives a
neutrosophic number.

Example 3 Let us consider second-order neutrosophic
boundary-value problem as follows:

y′′(x) + 2y′(x) + y(x) = ãex , y(0) = 0̃, y(1) = b̃,

where ã = 〈(0, 1, 2); 0.6, 0.4, 0.2〉 and b̃ = 〈(−1, 0, 1); 0.6,
0.4, 0.2〉 are single-valued triangular neutrosophic num-

ber. Then, ã(α,β,γ ) = 〈[5α
3

,
6 − 5α

3
], [5(1 − β)

3
,
5β + 1

3
],

[5(1 − γ )

4
,
5γ + 3

4
]〉 and

b̃(α,β,γ ) = 〈[5α − 3

3
,
3 − 5α

3
], [2 − 5β

3
,
5β − 2

3
], [1 − 5γ

4
,

5γ − 1

4
]〉 where α ∈ [0, 0.6], β ∈ [0.4, 1] and γ ∈ [0.2, 1].

Now, we try to find out the solution of the boundary-value
problem for (1, 1) system, (1, 2) system, (2, 1) system, and
(2, 2) system.
(1,1) System
The solution of the boundary-value problem for (1,1)-system
is:

[y(x)](α,β,γ ) = 〈[
yT1(x;α),

yT2(x;α)
]
,
[
yI1(x;β), yI2(x;β)

]
,

[
yF1(x; γ ), yF2(x; γ )

]〉
,

where:

yT1(x;α) =
(

−5α

12

+ (5α − 3)e

3
x + 5α(1 − e2)

12
x

)

e−x

+ 5αex

12

yT2(x;α) =
(

−6 − 5α

12
+ (3 − 5α)e

3
x

+ (6 − 5α)(1 − e2)

12
x

)

e−x

+ (6 − 5α)ex

12

yI1(x;β) = 5(1 − β)

12
(ex − e−x )

+
(

(2 − 5β)e

3
+ 5(1 − β)

12
(1 − e2)

)

xe−x

yI2(x;β) = 5β + 1

12
(ex − e−x )

+
(

(5β − 2)e

3

+5β + 1

12
(1 − e2)

)

xe−x

yF1(x; γ ) = 5(1 − γ )

16
(ex − e−x )
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Table 3 (1,1)-solutions for the
different values of α, β, and γ at
x = 1/2 for Example 2

α yT1 (x; α) yT2 (x; α) β yI1 (x; β) yI2 (x; β) γ yF1 (x; γ ) yF2 (x; γ )

0 −0.5 0.25 0.4 −0.125 −0.125 0.2 −0.125 −0.125

0.2 −0.375 0.125 0.6 −0.25 0 0.4 −0.21875 −0.03125

0.4 −0.25 0 0.8 −0.375 0.125 0.6 −0.3125 0.0625

0.6 −0.125 −0.125 1 −0.5 0.25 1 −0.5 0.25
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Fig. 7 Truth, indeterminacy, and falsity-membership function for (1,1)-
solution at x = 1/2
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Fig. 8 Truth, indeterminacy, and falsity-membership function for (1,1)-
solution at x = 1/2

+
(

(1 − 5γ )e

4

+5(1 − γ )

16
(1 − e2)

)

xe−x

yF2(x; γ ) = 5γ + 3

16
(ex − e−x )

+
(

(5γ − 1)e

4
+ 5γ + 3

16
(1 − e2)

)

xe−x .

We see that y, D1
1 y, and D2

1,1y give a valid neutrosophic
number for x ∈ (0, 1). Therefore, y is (1,1)-differentiable
and it gives a (1,1) solution, which are shown in Fig. 8 and
Table 4.
(1,2) system

The solution for (1,2) system is:

yT1(x;α) = 1

12
((10α − 3)e2−

√
2 + 3e2 − 12e

+ 20eα − 10e2α)xe−x

+ 3 − 10α

12
e(1−√

2)x + 10α − 3

12
ex

yT2(x;α) = 1

12
((9 − 10α)e2−

√
2

− 9e2 + 12e − 20eα + 10e2α)xe−x

+ 10α − 9

12
e(1−√

2)x + 9 − 10α

12
ex

yI1(x;β) = 1

12
(−(10β + 7)e2−

√
2

+ 8e − 20eβ + 7e2 + 10e2β)xe−x

+ 1

12
(7 + 10β)e(1−√

2)x − 20β + 14

24
ex

yI2(x;β) = 1

12
((10β − 1)e2−

√
2

− 8e + 20eβ + e2 − 10e2β)xe−x

+ 1

12
(1 − 10β)e(1−√

2)x − 2 − 20β

24
ex

yF1(x; γ ) = 1

8
((3 − 5γ )e2−

√
2

+ 2e − 10eγ − 3e2 + 5e2γ )xe−x

+ 1

8
(5γ − 3)e(1−√

2)x − 5γ − 3

8
ex

yF2(x; γ ) = 1

8
((1 + 5γ )e2−

√
2

− 2e + 10eγ − e2 − 5e2γ )xe−x

+ 1

8
(5γ + 1)e(1−√

2)x + 5γ + 1

8
ex .

Here, D1
1 y exist, but D2

1,2y does not exist. Therefore, (1,2)-
solution does not exist.
By this similar process, we can show that for (2,1) system
and (2,2) system, D1

2 y, D
2
2,1y, D

1
2 y and D2

2,2y do not exist
for x ∈ (0, 1). Therefore (2,1)-solution and (2,2)-solution
does not exist.
From Fig. 8 and Table 4, it have been seen that (1,1)-solution
of Example 3 exists for x ∈ (0, 1), where α = 0, β = 0.6
and γ = 0.4. Also, from Table 4, it has been seen that the
(1,1)-solution gives a neutrosophic number, and from Fig. 8,
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Table 4 (1,1)-solutions for the
different values of α, β, and γ at
x = 1/2 for Example 2

α yT1 (x; α) yT2 (x; α) β yI1 (x; β) yI2 (x; β) γ yF1 (x; γ ) yF2 (x; γ )

0 −0.824 0.377 0.4 −0.224 − 0.224 0.2 −0.224 − 0.224

0.2 −0.624 0.176 0.6 −0.424 − 0.024 0.4 −0.374 − 0.074

0.4 −0.424 − 0.024 0.8 −0.624 0.176 0.6 −0.524 − 0.076

0.6 −0.224 − 0.224 1 −0.824 0.377 1 −0.824 0.377

it has been shown that the solution gives a triangular neutro-
sophic number when the parameters are taken as triangular
neutrosophic number.

Conclusion

In this article,mainly, we have focused on the development of
neutrosophic differential equation. Some properties of neu-
trosophic number have been presented here. InDefinition 4.1,
we have defined different types of neutrosophic derivative.
From Theorem 4.1, it has been seen that the neutrosophic
derivative [26] and generalized neutrosophic derivative [44]
are equivalent. In Definition 4.2, we have defined differ-
ent types of (n,m) differentiability of neutrosophic-valued
function, where n,m ∈ {1, 2}. From Theorems 4.3 and 4.4,
it has been seen that the subtraction of two first-order or
second-order neutrosophic differentiable functions is also
differentiable. In Theorem 4.5, it has been seen that the mul-
tiplication of two neutrosophic differentiable function is also
differentiable.

Here, we have considered different types of derivatives in
the form of different (n,m) system, where n,m ∈ {1, 2}.
In the first example, the solution of neutrosophic boundary-
value problem exists for all (1, 1), (1, 2), (2, 1), and (2, 2)
systems, but, from Fig. 1, it has been seen that the (1, 1)
and (2, 2) solutions for first example exist only for x ≥ 1/2
and x ≤ 1/4, respectively. In the second example, it has
been seen that the solution of neutrosophic boundary-value
problem exists for (1, 1) and (1, 2) systems, but the solution
does not exist at all for (2, 1) and (2, 2) systems. Also, in
the third example, it has been seen that the (1,1) solution
exists, but the solution does not exist for (1,2), (2,1), and
(2,2) systems. Therefore, it can be concluded that sometimes
(n,m)-solutions for neutrosophic boundary-value problem
may exist for all x ∈ (0, 1), where n,m ∈ {1, 2}; some-
times, it may exist only for some points, and sometimes, it
may not exist at all. In Example 1, 2, and 3, from Figs. 3,
4, 7, and 8, it can be concluded that, if we consider all the
parameters of a neutrosophic boundary-value problem in the
form of triangular neutrosophic number and if the solution
exists for any (n,m) systems, then the solutions also give a
triangular neutrosophic number for each value of x .
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