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Microparticles as Biomarkers of Blood Coagulation 
in Cancer
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ABSTR ACT: Cancer is associated with hypercoagulopathy and increased risk of thrombosis. This negatively influences patient morbidity and mortality. 
Cancer is also frequently complicated by the development of venous thromboembolism (VTE). Tumor-derived tissue factor (TF)-bearing microparticles 
(MPs) are associated with VTE events in malignancy. MPs are small membrane vesicles released from many different cell types by exocytic budding of 
the plasma membrane in response to cellular activation or apoptosis. MPs may also be involved in clinical diseases through expression of procoagulative 
phospholipids. The detection of TF-expressing MPs in cancer patients may be clinically useful. In lung and breast cancer patients, MPs induce metastasis 
and angiogenesis and may be indicators of vascular complications. Additionally, MPs in patients with various types of cancer possess adhesion proteins 
and bind target cells to promoting cancer progression or metastasis. Overexpression of TF by cancer cells is closely associated with tumor progression, and 
shedding of TF-expressing MPs by cancer cells correlates with the genetic status of cancer. Consequently, TF-expressing MPs represent important markers 
to consider in the prevention of and therapy for VTE complications in cancer patients.
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Microparticles and Cancer
Many individuals with cancer are also in a hypercoagulable 
state, and the elevated risk of thrombosis conferred by hyper-
coagulativity increases patient morbidity and mortality.1,2 
Cancer patients frequently develop venous thromboem-
bolism (VTE).3–8 Various potential predictive biomarkers 
have been examined for association with VTE in cancer 
progression. For example, analysis of blood cells can effec-
tively predict the risk of VTE development.9 Additionally, 
measurement of D-dimer, prothrombin fragment 1 + 2, and 
soluble P-selectin levels can accurately predict VTE risk.10 
Recently, microparticle (MP) level has emerged as an accu-
rate marker of VTE risk.11–13

MPs are small membrane vesicles that are released from 
many cell types by exocytic budding of the plasma membrane 
in response to cellular activation or apoptosis.14–16 MPs dis-
seminate various bioactive effectors originating from the par-
ent cells. Therefore, MPs can alter vascular functions and may 
induce biological responses involved in vascular homeostasis.17 
Although most MPs in human blood originate from platelets, 
MPs are also released from leukocytes, erythrocytes, endothe-
lial cells, smooth muscle cells, and cancer cells (Fig. 1).18–23 MPs 
have been documented in almost all thrombotic diseases occur-
ring in venous and arterial beds.24–27 Tissue factor (TF)-MPs 
are related to cancer and exhibit increases in patients with cer-
tain cancers such as pancreatic cancer and breast cancer.23

Definition of MPs 
MPs can range in size from 0.1 to 1.0 μm.14–16 The membrane 
composition of MPs reflects the membranous elements of the cell 
of origin.14–16 MPs contain functional cytoadhesions, bioactive 
phospholipids, cytoplasmic components, and various antigens 
that are characteristic of the state of the originating cell and the 
type of stimulus.28,29 Some studies have analyzed the proteome 
of MPs and identified hundreds of proteins.30,31 Such proteins 
may be useful biomarkers for various disease processes.31

MPs are constitutively released from the surface of cells, 
and their formation can be upregulated by cellular activation 
and apoptosis.32,33 Plasma membranes contain various types of 
phospholipids. Although uncharged phospholipids are mainly 
present in the outer leaflet of the membrane bilayer, the inner 
leaflet contains negatively charged aminophospholipids such 
as phosphatidylserine (PS). During activation or apoptosis 
of cells, the normal lipid bilayer undergoes an alteration by 
“flipping” internal PS to the external surface. As a result, PS-
exposing MPs may be released from cells.34

MP Functions
MPs possess multiple functions relevant in various clinical 
settings (Table 1). MPs were initially identified as associated 
with thrombotic disease because they contain procoagulant 
phospholipids. These MPs promote thrombin generation and 
may be involved in diffuse intravascular coagulation in disease 
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states. However, MPs are detectable not only in disease states 
but also in healthy individuals. Berckmans et al35 identified 
circulating MPs in healthy human beings, with these MPs 
supporting low-grade thrombin generation. Sinauridze et al36 
reported that platelet-derived MPs (PDMPs) have a 50–100-
fold higher specific procoagulant activity (PCA) than activated 
platelets. Exposure of PS facilitates both the formation of coag-
ulation complexes and promotes TF-induced coagulation.37

MPs support coagulation by factor VII/TF-dependent 
and -independent pathways.38 During vascular damage, blood 
contacts extravascular TF, resulting in the activation of extrinsic 
coagulation and the formation of fibrin. Indeed, TF can become 
active upon adhesion and fusion of MPs with activated platelets. 
While TF is exposed by endothelial cell-derived MPs (EDMPs), 
TF activity is markedly inhibited by MP-associated TF pathway 
inhibitor (TFPI). In storage-induced PDMPs, 10% of which 
contain TF, TF-dependent thrombin generation is only observed 
in plasma with neutralization by TFPI.39 A balance between TF 
and TFPI at the MP surface is likely to be crucial for the initia-
tion of blood coagulation, and higher levels of MPs containing 
TF may overcome the TFPI anticoagulant pathway.40

Identification of MPs in a Clinical Setting
An identification method for MPs is important for clinical 
studies. Appropriate sampling conditions, processing, and 
sample storage are essential.14 MPs can be directly quantified 

in platelet-poor plasma obtained by serial centrifugation of 
citrated whole blood. Alternatively, washed MPs can be iso-
lated from platelet-poor plasma by ultracentrifugation before 
resuspension and analysis.

The most widely used method for studying MPs is 
flow cytometry because of its simplicity and the wealth of 

Figure 1. origin of microparticles (mPs). mPs disseminate various bioactive effectors originating from the parent cells. although most mPs in human 
blood originate from platelets, mPs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells.

Table 1. Function of microparticles (mPs). mPs possess multiple 
functions relevant in various clinical settings.

FUNCTION FACTOR

Hemostasis (procoagulant activity) Ps, TF

Inflammation ranTes

Cellular interaction CD24, CD43, integrin

angiogenesis VeGF

Vascular and tissue repair PDGF, eGF

Thrombosis stability CD40L, PsGL-1

Host defence (DC activation) CX3CL1/Cr1

Cancer metastasis (mmP activation) TGF β1

multidrug resistance P-glycoprotein

Virus inflection mrna, mirna

Cell differentiation sDF-1

Abbreviations: ranTes, regulated on activation, normal T-cell expressed 
and secreted; VeGF, vascular endothelial growth factor; PDGF, platelet-
derived growth factor; eGF, epidermal growth factor; PsGL-1, P-selectin 
glycoprotein ligand-1; DC, dendritic cell; sDF-1, stromal cell-derived factor-1.
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information that can be obtained from the population of inter-
est.41 Platelet-poor plasma or MP suspensions are labeled with 
fluorescently conjugated monoclonal antibodies. The major 
advantage of flow cytometry is double staining of MPs to deter-
mine the origin/cellular source of the MPs. Annexin V binding 
is used to confirm the phospholipid properties of MPs, although 
most endothelial MPs do not contain this antigen. Antibodies  
against specific surface antigens expressed on the cells of origin 
are used to identify the MP subtype. Flow cytometry also allows 
the criterion of size to be applied to MP analysis by assessment 
of the forward light scatter of MPs. Identification of events of 
a specific size is most accurately performed using calibration 
beads of a known diameter for comparison.14,16,42 Additionally, 
a variety of cell-specific antibodies have been applied to MP 
analyses, and their specificity is likely to influence the results.

Several studies have applied flow cytometry to detect 
TF-expressing MPs (TF-MPs) in cancer patients.43–45 
A recent report showed that the level of TF-MPs measured 
by functional TF activity in an MP assay correlated with the 
development of VTE in cancer patients, whereas no correla-
tion was found using flow cytometry to measure TF-MPs.46 
Therefore, further investigations should consider TF-MP 
analysis by flow cytometry.

Various MPs and Blood Cell-derived MPs  
in Cancer Patients
Cancer patients possess high levels of circulating procoagu-
lant MPs and an increased risk of thrombosis (Table 1).44,47–52  
These procoagulant MPs may originate from various cell types 
and can be produced by fusion between MPs of different ori-
gins.47,52 MPs frequently detected in cancer patients include 
PDMPs, monocyte-derived MPs (MDMPs), and EDMPs 
(Fig. 1).53–55 PDMPs promote metastasis and angiogenesis in 
lung cancer patients and accelerate breast cancer progression by 
enhancing the invasive potential of cancer cells.53,54 Addition-
ally, PDMPs enhance chemotaxis in response to stromal cell-
derived factor-1, leading to cancer progression or metastasis.55 
Collectively, these results suggest that PDMPs may be a use-
ful biomarker of cancer. Consistently, the concentration of 
circulating PDMPs differs by cancer stage.56 Kanazawa et al57 
reported that the number of PDMPs and MDMPs in patients 
with non-small cell lung cancer is significantly higher than 
those in patients with small cell lung cancer. They concluded 
that elevated MDMPs are a sign of vascular complication in 
lung cancer patients, particularly those with non-small cell 
lung cancer. On the other hand, EDMPs also play an impor-
tant role in patients with various types of cancer. A pilot study 
concerning hepatocellular carcinoma showed that the levels of 
EDMPs in liver transplant patients are altered after surgery 
and correlated with the clinical outcome.58 Recently, some 
reports have suggested that circulating levels of EDMPs are 
significantly associated with one-year mortality in patients 
with end-stage non-small cell lung cancer.59,60 Furthermore, 
Reynés et al61 reported that EDMPs have a prognostic value 

in patients with glioblastoma. The exact production mecha-
nism of these blood cell-derived MPs in cancer patients is 
unknown. However, these MPs may participate in the gen-
eration of TF-MPs.

MPs and Multidrug Resistance in Cancer Patients
Multidrug resistance (MDR) is a major obstacle to chemother-
apeutic treatment in many cancer patients.62 Although several 
mechanisms of MDR acquisition have been identified, the 
most commonly identified MDR mechanism is overexpres-
sion of P-glycoprotein (P-gp).63–64 P-gp is present in cancers 
and its overexpression is negatively associated with response 
to chemotherapy.63–65 MPs can transfer MDR between cancer 
cells by transporting P-gp protein and mRNA in cancer cell-
derived MPs (Table 1).66–68 Additionally, inhibitor of apopto-
sis protein—a negative regulator of cell death—has recently 
been found to be transported by cancer cell-derived MPs.69,70

Tumor-derived MPs
There is an increasing appreciation for the notion that cancer 
cells themselves may be a source of procoagulant MPs.71–73 It 
is highly possible that cancer-derived TF-MPs are a trigger for 
thrombogenesis in cancer.12,43,44,74,75 The levels of TF-MPs in 
cancer patients correlate with the activation of coagulation as 
determined by D-dimer levels.44 In addition, Tesselaar et al47  
reported a link between TF-MPs and VTE in cancer patients. 
Furthermore, previous studies have reported a correlation 
between the levels of TF in pancreatic and brain tumors and 
VTE.76,77 In particular, cancer-derived TF-MPs might rep-
resent a biomarker for poorly differentiated and invasive pan-
creatic cancer phenotypes as well as poor survival.78 Therefore, 
the thrombogenesis in pancreatic cancer, which has one of 
the highest mortality rates, is a major problem. Wang et al79  
reported interesting experimental results concerning the VTE 
of pancreatic cancer. They analyzed the expression of TF in four 
pancreatic cancer-derived cell lines to clarify the mechanism of 
VTE formation with cancer invasion in vivo. As a result, they 
found an increase in the expression of TF in two of the four 
cell lines, and TF-MPs were detected in the culture medium. 
Moreover, most TF in the culture medium was the TF-
combined form. Based on these results, activation of the coagu-
latory system through elevation of the thrombin-antithrombin 
III complex (TAT) suggested a dependence on TF-MPs. It is 
unknown how TF in tumors activates the coagulating system 
or participates in thrombogenesis. Wang et al79 indicated that it 
is unclear whether TF on the tumor surface and/or soluble TF 
are directly involved in thrombogenesis. In contrast, cancer-
derived TF-MPs appear to participate in triggering thrombo-
genesis directly and play an important role in the abnormality 
of the coagulation system in cancer. Consequently, TF-MP is 
a very important marker in the consideration of prevention or 
therapy of VTE complication in cancer.13,47,78,80–82

Chemotherapy is known to be associated with an increase 
in thrombosis.5,83 Cytotoxic chemotherapy agents enhance 
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cellular TF activity and PS exposure, resulting in the release 
of TF-MPs.84 An increase in PS expression or the release of 
PS- or TF-positive MPs has been observed in endothelial and 
leukemic cells during chemotherapy.85,86 In pancreatic cancer 
patients, elevated circulating TF antigen levels were found in 
those receiving gemcitabine chemotherapy,87 while a detect-
able rise in plasma TF measured by TF expression levels or 
MP-associated PCA during chemotherapy was deemed pre-
dictive of subsequent VTE events.51 However, other mecha-
nisms in addition to the increase in the levels of circulating 
TF-MPs may be involved in thrombosis during chemotherapy, 
such as the release of nucleic acids and increase in cellular PS 
exposure.12,52,80

Conclusion
We have summarized the literature to date regarding TF-
MPs, highlighting the growing list of cancer types that are 
associated with elevated MP levels. MPs were initially identi-
fied as small particles originating from multiple cell types and 
possessing PCA. MPs of multiple origins—including cancer 
cells—may contribute to the increased levels of TF-MPs found 
in cancer patients, ultimately resulting in cancer-associated 
coagulopathy (Fig. 2). The PCA of TF-MPs is mediated by 
expression of TF and the exposure of PS on the MP surface. 
Adhesion proteins, including CD24 and CD43, have been 
proposed to be involved in the binding of TF-MPs to target 
cells.88,89 The utilization of circulating MPs as cancer biomark-
ers may provide effective and noninvasive methods of cancer 

diagnosis, prognosis assessment, and disease surveillance to 
tailor and personalize therapies. However, the functional role 
played by TF-MPs in cancer patients needs to be understood 
in greater detail.
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cell-derived MPs; TFPI, TF pathway inhibitor; MDMPs, 
monocyte-derived MPs; MDR, multidrug resistance; P-gp, 
P-glycoprotein; TAT, thrombin-antithrombin III complex.
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