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ABSTRACT
◥

Cancer immunotherapy restores or enhances the effector
function of T cells in the tumor microenvironment, but the
efficacy of immunotherapy has been hindered by therapeutic
resistance. Here, we identify the proto-oncogene serine/threo-
nine protein kinase PIM2 as a novel negative feedback regulator
of IFNg-elicited tumor inflammation, thus endowing cancer cells
with aggressive features. Mechanistically, IL1b derived from
IFNg-polarized tumor macrophages triggered PIM2 expression
in cancer cells via the p38 MAPK/Erk and NF-kB signaling
pathways. PIM2þ cancer cells generated by proinflammatory
macrophages acquired the capability to survive, metastasize, and
resist T-cell cytotoxicity and immunotherapy. A therapeutic
strategy combining immune checkpoint blockade (ICB) with
IL1b blockade or PIM2 kinase inhibition in vivo effectively and
successfully elicited tumor regression. These results provide
insight into the regulatory and functional features of PIM2þ

tumors and suggest that strategies to influence the functional
activities of inflammatory cells or PIM2 kinase may improve the
efficacy of immunotherapy.

Significance: Cross-talk between T cells and macrophages reg-
ulates cancer cell PIM2 expression to promote cancer aggres-
siveness, revealing translational approaches to improve response
to ICB in hepatocellular carcinoma.

Proinflammatory macrophages induce expression of the proto-oncogene PIM2, which enhances tumor progression and
resistance to T-cell cytotoxicity and immunotherapy.
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Introduction
Tumor progression is now recognized as the product of the long-

term coevolution between cancer cells and their environmental com-
ponents (1, 2). Hepatocellular carcinoma (HCC) is usually present in
inflamed fibrotic and/or cirrhotic livers with extensive leukocyte
infiltration (3). Thus, the immune status at a tumor site can largely
influence the biologic behavior of HCC (4). Recent studies have shown
that activated monocytes/macrophages and neutrophils in HCC can
promote disease progression by stimulating tumor-associated inflam-

mation and cancer angiogenesis (5, 6). These observations suggest that
the local inflammatory environment is an important determinant of
disease progression and cancer metastasis in humans.

Although less characterized than macrophages and neutrophils,
IFNg-producing T cells are also emerging as important players in the
pathophysiology of cancer by mediating tumor-promoting inflamma-
tion (7, 8). IFNg derived from T cells can activate macrophages and
natural killer (NK) cells to resist invading microorganisms (9, 10). In
addition to directing bactericidal activities, IFNg-producing T cells can
actively regulate immune privilege and cancer progression by inducing
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andmaintaining protumorigenic programmed cell death ligand 1 (PD-
L1) and indoleamine2,3-dioxygenase (IDO)expression in tumors (11).
In a study of patients with HCC, it was demonstrated that activated
T cells can operate in IFNg-dependent pathways to induce plasma cell
differentiation and thereby create conditions for protumorigenic M2b
macrophage polarization and cancer progression (12). Notably,
immunotherapy-activated CD8þ T cells can produce IFNg to enhance
ferroptosis-specific lipid peroxidation in tumor cells, and increased
ferroptosis contributes to the antitumor efficacy of immunothera-
py (13). Thus, the IFNg-elicited response networks in tumors deter-
mine cancer progression and immunotherapeutic efficacies, and
understanding their roles and potential mechanisms will help to
develop a rational design of novel immune-based anticancer therapies.

It is well established that activation of oncogenes dictates the
pathophysiology of cancer (1, 14). These lesions, such as CTNNB1
and TERT, can promote proliferative signaling and induce angiogenic
factors (15). However, these initial mutations are not entirely con-
trolled by intrinsic cancer cell factors but also depend on signals
that originate from inflammatory cells in the tumor microenviron-
ment (16, 17). Blockade of inflammatory signals derived frommyeloid
cells significantly attenuates mutagenesis and suppresses tumor
progression in mice (18). Despite its actions in tumorigenesis, it
remains unclear if and how the inflammatory microenvironments
in the HCC tumor milieu regulate the expression of proto-
oncogenes on cancer cells during tumor progression and determine
therapeutic efficacies in patients.

The serine/threonine protein kinases PIM are recognized as proto-
oncogenes involved in the proliferation, growth, invasion, and metas-
tasis of tumor cells and are considered a promising therapeutic strategy
in human cancers (19–21). However, little is known about the distri-
bution, immune landscape, and regulatorymechanismof this family or
their roles in determining the therapeutic efficacies of humanHCC. In
this study, we found that PIM2 was highly expressed in cancer cells
instead of PIM1 or PIM3, and PIM2þ cancer cells were predominantly
enriched in the immune cell–accumulated regions of human HCC.
This PIM2 heterogeneity reflects the proinflammatory responses
mediated by T cells and macrophages in tumors. Strikingly, we reveal
that IL1b derived from IFNg-polarized tumor-associated macro-
phages (TAM) triggers PIM2 expression on cancer cells via the
p38/Erk MAPK and NF-kB signaling pathways and endows these
cells with the capabilities of aggressive survival, metastasis, and
resistance to killing by T-cell cytotoxicity. Importantly, we demon-
strate that a therapeutic strategy combining immune checkpoint
blockade (ICB) with IL1b blockade or PIM2 kinase inhibition effec-
tively defeats tumors and even elicits complete regression in vivo.

Materials and Methods
Patients and specimens

Liver paraffin-embedded tissue microarrays were collected from
141 patients who underwent curative resection for HCC between
January 1, 2000, and December 31, 2009, at the Department of Liver
Surgery, Sun Yat-sen University Cancer Center (Guangzhou, China).
No preoperative therapies were administered before resection, and
those with concurrent autoimmune disease, human immunodeficien-
cy virus, or syphilis were excluded. The clinical characteristics of the
patients are summarized in cohort 1 of Supplementary Table S1. In
addition, fresh HCC tumor samples (n ¼ 23) were used for the
isolation of tumor-infiltrating leukocytes (TIL) or immunofluores-
cence assays. From March 2018 to October 2020, 39 patients with
locally advanced, potentially resectable HCC who underwent curative

resection after ICB therapy or control therapy were enrolled (cohort 2
of Supplementary Table S1). Pathologic tissues were retrieved for IHC
evaluation, and the patient’s response to immunotherapy was deter-
mined according to the RECIST 1.1 criteria (22). Blood samples were
obtained from healthy donors from the Guangzhou Blood Center.

Written informed consent was obtained from all patients for the
use of their samples for research purposes. This study was approved
by the Institutional Review Board and Human Ethics Committee of
Sun Yat-sen University Cancer Center (ethics approval number:
GZR2020–260).

Isolation of leukocytes from peripheral blood and tumor tissues
Peripheral leukocytes were isolated by Ficoll density gradient

centrifugation. TILs were obtained from fresh tissue samples, as
described previously (12). In brief, the tumor masses were minced,
and digested with collagenase (type I and type IV, 0.05mg/mL, Sigma)
and DNase I (0.05 mg/mL, Roche) solution at 37°C for 1 hour. The
cell suspension was filtered through a cell mesh and resuspended in
RPMI1640 medium for further analysis. Peripheral leukocytes were
isolated by Ficoll density gradient centrifugation. Thereafter, the
mononuclear cells were washed and resuspended in RPMI1640 medi-
um supplemented with 10% FBS. CD14þ monocytes/macrophages
and CD3þ T lymphocytes were isolated using magnetic beads (130–
050–201/130–095–130, Miltenyi Biotec) for use in subsequent ex vivo
or in vitro experiments.

Preparation of different kinds of conditioned medium
For the preparation of conditioned medium (CM) from human

TILs, 106/mL sorted cells (CD45þ cells, CD3þ cells, or CD14þ cells)
were cultured alone or together (CD3þ cells with CD14þ cells) for
24 hours, and then the supernatants were harvested, centrifuged,
and stored at �80�C. The digested tumor or liver cells were washed
in medium containing polymyxin B (20 mg/mL; Sigma–Aldrich) to
exclude endotoxin contamination.

Tumor culture supernatant (TSN) was prepared by plating 5 �
106 tumor cells in 10 mL of complete medium in 10-cm dishes for
24 hours and thereafter changing the medium to fresh complete
medium. After 2 days, the supernatant was centrifuged and stored
in aliquots at –80�C.

Tumor cell lines
Human hepatoma Huh7 and Hep3B cell lines were obtained

from the Cell Bank of the Type Culture Collection of the Chinese
Academy of Sciences and were authenticated through a comprehen-
sive database of short tandem repeat DNA profiles (Guangzhou
Cellcook Biotec Co., Ltd.). The mouse hepatoma cell line Hepa1–6
was obtained from the Cell Bank of the Type Culture Collection of the
Chinese Academy of Sciences in January 2018. All cells were tested
for Mycoplasma contamination using the single-step PCR method.
All cells were cultured at 37°C and 5% CO2 in DMEM supplemented
with 10% FBS (Gibco) and 1% penicillin–streptomycin.

Regulation of PIM2 expression in cancer cells
Huh7 or Hep3B cells were untreated or stimulated with CM from

TIL, T cells, macrophages, or T cells cocultured with macrophages or
with recombinant TNFa (20 ng/mL), IFNg (20 ng/mL), or IL1b
(10 ng/mL) for the indicated times. In some experiments, before ex-
posure to CM from macrophages and T cells together (Co-CM), cells
were pretreated with neutralizing mAbs against IFNg (10 mg/mL),
TNFa (10 mg/mL), IL1b (10 mg/mL), IL6 (40 mg/mL), or IL12
(10 mg/mL). Other cells were pretreated with the Erk1/2 inhibitor
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U0126 (25 mmol/L), the p38 inhibitor SB202190 (50 mmol/L), the JNK
inhibitor SP600125 (100 mmol/L), the IkB inhibitor Bay11–7082
(10 mmol/L), or the AKT inhibitor triciribin hydrate (100 mmol/L)
and subsequently exposed to Co-CM. Thereafter, the levels of PIM2
in tumor cells were determined by RT-PCR and immunoblotting.

Animal experiments
Wild-type male C57BL/6 mice (6–8 weeks old) were purchased

from Guangdong Medical Laboratory Animal Center. NOD/SCID
mice were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. All mice were maintained under specific path-
ogen-free conditions in the animal facilities of Sun Yat-sen University
Cancer Center. All animal experiments were performed in accordance
with the guidelines of the Laboratory Animal Ethics Committee of Sun
Yat-sen University (approval number: GZR2018–153).

An orthotopic tumor model was established by intrahepatic
tumor cell injection (1 � 106 cells or 5 � 105 cells/mouse). Briefly,
the mice were anesthetized, and a midline incision was made to
expose the liver. Hepa1–6 cells resuspended in Matrigel 1 (1:1)
were then slowly injected under the hepatic capsule into the liver.
Finally, mice bearing Hepa1–6 hepatomas were euthanatized at the
indicated times. For immune cell depletion assays, mice bearing
Hepa1–6 hepatomas were injected with isotype control, anti-CD3
(10 mg/kg), or anti-CSF1R (10 mg/kg) Abs every 3 days for a total
of 3 times. For therapeutic anti-programmed cell death protein
1 (PD-1) treatment, anti–PD-1 (5 mg/kg for mice bearing shNC
or shPIM2 Hepa1–6 hepatoma, 10 mg/kg for Hepa1–6 hepatoma)
in 200 mL of PBS was administered intraperitoneally into mice
4 times at 3-day intervals at the indicated time after tumor cell
transplantation.

For the NOD/SCID mouse model, shNC and shPIM2 huh7 cells
were inoculated into dorsal tissue (5� 106 cells/mouse) or injected into
the tail vein (1� 106 cells/mouse), tumor sizes over the indicated times
were analyzed, andmetastatic nodules in the lung were quantified after
2 months.

Statistical analysis
The statistical tests used are indicated in the figure legends. The

results are expressed as the means � SEMs. Correlations between
parameters were measured by Pearson correlation. Statistical anal-
ysis was performed with GraphPad Prism 6 (GraphPad Software),
and P < 0.05 was considered statistically significant. The red asterisk
represents the significant difference analysis between the experi-
mental group and the red column group when multiple groups are
compared.

Data availability
All data associated with this study are presented in the paper or the

Supplementary Materials. The materials that support the findings of
this study are available from the corresponding author on reasonable
request.

Results
The local immune landscape determines tumor oncogene PIM2
heterogeneity in patients with HCC

PIM kinases were originally identified as proto-oncogenes involved
in the proliferation, growth, invasion, andmetastasis of tumor cells and
include three homologous members, namely, PIM1, PIM2, and PIM3
(19). Herein, we analyzed the expression of PIM family genes in The
Cancer Genome Atlas (TCGA) RNA sequencing data from 373

patients with human HCC (23) and found that PIM2 expression was
significantly increased in tumor tissues (T) compared with nontumor
tissues (N), whereas the expression levels of PIM1 and PIM3 were
decreased (Fig. 1A). We came to the same conclusion in our HCC
cohort: in 12 patients with primary human HCC analyzed, PIM2
expression was significantly upregulated in the tumor tissues com-
pared with matched adjacent nontumorous livers (Fig. 1B), while the
levels of PIM1 and PIM3 showed no significant difference between
these two groups (Supplementary Fig. S1A). It is generally believed that
oncogenes aremainly expressed bymutation or epigenetic reprogram-
ming and become constitutively expressed and permit renewed tumor
growth and clinical relapse (24). However, we analyzed the expression
of PIM2 in situ by immunofluorescent staining and observed that the
PIM2 protein was indeed markedly expressed in tumor tissues of
patients with HCC (Fig. 1C; Supplementary Fig. S1B–S1E), but these
PIM2þ cells were enriched in CD45þ immune cell accumulation
rather than in all tumor regions (Fig. 1C), suggesting the possibility
that the regional heterogeneity of PIM2 expression in human HCC
tumors was determined by the local microenvironment.

These data prompted us to further investigate the microenviron-
ment of PIM2high tumors. We identified 1,057 genes that were upre-
gulated or downregulated at least twofold in PIM2high tumors in
patients with HCC (n¼ 373; fold change ≥ 2; P < 0.05) and annotated
these genes using Gene Ontology (GO) analysis (Fig. 1D). Interest-
ingly, among the top 10 enriched GO terms, four pathways related to
T-cell and lymphocyte activation were intensively enriched. We also
noted pathways involving leukocyte interactions, including leukocyte
migration, cell adhesion, and lymphocyte differentiation (Fig. 1E).
Further analysis of the composition of immune landscapes in PIM2high

tumors revealed that PIM2 signatures did potentially reflect the
infiltration of T cells and macrophages, but this was minimally
correlated with the expression of lineage markers of NK cells, plasma
cells, or neutrophils (Fig. 1F). Using IHC staining, we confirmed that
the expression of PIM2 was indeed upregulated in tumor regions
where T cells showed pronounced accumulation, and there were
numerous macrophages in close proximity to those T cells
(Fig. 1G). Furthermore, gene set enrichment analysis (GSEA) showed
that genes indicating IFNg and inflammatory signatures were dom-
inantly enriched in PIM2high HCC tumors (Fig. 1H; Supplementary
Table S2). Thus, these data suggest that the expression of the PIM2
proto-oncogene is heterogeneous and reflects the activated immune
response of T cells and macrophages in human HCC.

Factors that are required for tumor-activated
microenvironment-elicited cancer cell PIM2

We next asked whether the immune landscapes of PIM2þ tumors
mirrored the mechanisms regulating PIM2 expression. Similar to
tumor tissues from patients with HCC, Hepa1–6 hepatomas from the
livers of immune-competent mice expressed high levels of PIM2
(Fig. 2A). Interestingly, using anti-CD3 Ab to deplete T cells or
anti-CSF1R Ab to deplete macrophages in the liver could lead to a
marked loss of cancer cell PIM2 expression (Fig. 2A; Supplementary
Fig. S2A–S2D), which is consistent with the finding that PIM2
expression is potent in replicating T-cell and macrophage signatures
in HCCs (Fig. 1). In support of this hypothesis, exposing the
hepatoma cell lines Huh7 and Hep3B to CM from a culture of
human TILs (TIL-CM) or Co-CMs resulted in a rapid upregulation
of PIM2, reaching a maximum within 6 hours, and then gradually
decreasing after removing the CM (Fig. 2B; Supplementary Fig. S2E–
S2G). Using immunofluorescent staining, we confirmed that macro-
phages andT cells accumulated separately or together in PIM2þ cancer
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Figure 1.

PIM2 heterogeneity reflects the activated immune response of T cells andmacrophages in humanHCC.A,Gene expression ofPIM kinases in nontumor (N;n¼ 50) and
tumor (T; n¼ 373) tissues from patients with HCC in the TCGA dataset. B,Analysis of PIM2mRNA expression in 12 pairs of fresh HCC tissues. C, Confocal microscopy
analysis of PIM2þ (green) and CD45þ cells (red) in HCC tissue. The proportion of PIM2þ cancer cells was analyzed in the representative region of low and high CD45
expression in each sample (n¼ 10). Scale bar, 50 mm. D, Volcano plots of the fold change in gene expression in the PIM2high group compared with the PIM2low group
based on the TCGA dataset. Patientswere divided into two groups according to themedian value. E, Top 10 biological processes (GO terms) strongly correlatedwith
high PIM2 expression in HCC samples. F, Correlations between PIM2 and CD8A, CD4, CD68, CD15, CD57, and CD138 in the TCGA database. P and R values were
calculated on thebasis of the analysis of Pearson correlation.G, IHC analysis of CD3þ andCD68þ cells in serial sections ofHCC tissue samples frompatientswith low (n
¼ 94) and high (n ¼ 47) PIM2 expression. Scale bar, 50 mm. H, GSEA of the inflammatory response signatures and IFNg response signatures in PIM2high HCC
samples versus PIM2low counterparts from the TCGA dataset. Data represent mean � SEM. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. Unpaired t test with Mann–
Whitney U (A and F) or Student t test (B and C).
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cell tumors but not in PIM2– tumors (Fig. 2C). It should be empha-
sized that a higher density of PIM2þ cancer cells was in close proximity
to substantial infiltration of macrophages in HCC tumors either alone
or together with T cells, whereas the level of PIM2 was markedly lower
in only T cells accumulated HCCs (Fig. 2C). Correspondingly, CM

from HCC-derived T cells (T cell-CM) or macrophages (TAM-CM)
individually increased the expression of cancer cell PIM2 to a certain
extent, but its induction should be synergistic (Co-CM) to reach a
maximumas TIL-CM (Fig. 2D andE; Supplementary Fig. S2H). These
data together reveal that macrophages and T cells are present
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IL1b derived from the interaction between T cells and TAM contributes to tumor cell PIM2 expression. A, Mice bearing Hepa1–6 hepatoma were injected with isotype
control, anti-CD3, or anti-CSF1R (all 10 mg/kg) Abs every 3 days as indicated. The effects of anti-CSF1R and anti-CD3 on tumor cell PIM2 expressionwere determined
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predominantly in HCC tissues and that their cross-talk determines
cancer cell PIM2 expression.

We then investigated how the interaction between T cells and
macrophages regulated PIM2 expression on cancer cells. We noted
that macrophages and T cells isolated from human HCCs showed
inflammatory features with significant production of TNFa, IFNg ,
IL1b, IL6, and IL12 (Fig. 2F). Accordingly, neutralizing the activity
of IL1b, but not the activities of TNFa, IFNg , IL6, or IL12,
effectively suppressed the Co-CM–elicited PIM2 upregulation in
cancer cells (Fig. 2G). In support, rhIL1b could individually
induce significant expression of PIM2 on cancer cells, and that
effect could be amplified synergistically with TNFa and IFNg
(Fig. 2H and I; Supplementary Fig. S2I). Consistent with these
observations, large amounts of IL1b were detected in the TIL-CM
and Co-CM together but not in T cell-CM or TAM-CM (Fig. 2J;
Supplementary Fig. S3). Of note, tumor-activated T cells alone
could secrete only a minimal amount of IL1b and slightly influence
the cancer cell PIM2 expression, but it evidently triggered the IL1b
production of TAM and enhanced PIM2 expression in cancer cells
(Fig. 2G), which suggested that the involvement of T cells in
contributing to cancer cell PIM2 expression depends on TAM-
mediated IL1b production.

We then probed the signals involved in inducing IL1b production in
TAM by activated T cells. By analyzing the different compositions of
TAM-CM and Co-CM, we observed that compared with TAM-CM,
Co-CM selectively promoted the accumulation of IFNg (Fig. 2J),
which may be responsible for triggering more IL1b production by
TAM. To address this possibility, we treated blood monocytes with
TSNs to obtain TAM as previously described (25) and then incubated
those cells with IFNg . The results showed that macrophages treated
with TSN showed expression of HLA-DR and CD86 and secreted
certain amounts of IL1b and IL6, and this process could be further
enhanced by IFNg , while that treatment did not affect IL6 induction in
TAM (Fig. 3A and B; Supplementary Fig. S4A). This is further
supported by the finding that adding a neutralizing Ab against IFNg
to our TAM and T cells coculture system markedly attenuated the
production of IL1b to a level comparable with that seen in macro-
phages treated with TSN alone (Fig. 3C). Notably, although IFNg
effectively induced the expression of HLA-DR and CD86 in macro-
phages, we detected almost no IL1b in the CM from IFNg-activated
macrophages (Fig. 3A and B).

We next established autologous mouse models to investigate the
regulation of cancer cell PIM2 by the cross-talk between TAM and
T cells in vivo. Macrophages from tumor tissue in mice bearing
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Activated T-cell–derived IFNg enhances IL1b production by TAM to promote tumor cell PIM2 expression. A and B,Macrophages were treated with 30% TSN or IFNg
(5 ng/mL) for 24 hours. The activation status of macrophages and secretion of cytokines in the CM were determined by flow cytometry (A) and ELISA (B),
respectively (n ¼ 5). C, ELISA analysis of IL1b production in the TAM and CD3þ T cells coculture system in the presence of an IFNg blocking Ab (n ¼ 4). D–H, Mice
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Hepa1–6 hepatomas showed inflammatory features with expression
of IL1b, IL6, MHC-II, and CD86. In such a model, intraperitoneal
injection of an Ab against IFNg largely reduced the expression of
IL1b and suppressed subsequent PIM2 upregulation in cancer cells
(Fig. 3D and E; Supplementary Fig. S4B and S4C). Notably,

although injecting anti-IFNg Abs partially impaired the inflamma-
tory features of TAM, this treatment did not affect their IL6
production (Fig. 3E). In support, injecting anti-IL1b Abs in such
a model evidently impaired the expression of PIM2 on cancer cells
(Fig. 3F–H). Together, these data suggested that IFNg derived from
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Tumor inflammation-elicited PIM2 expression displays an oncogenic function in hepatoma. A–D, Huh7 cells were incubated with T cell-CM, TAM-CM, or Co-CM for
24 hours. The proteins of survival-related genes (A) and apoptosis (B) in serum-starved tumor cells (n ¼ 7), the migration of cells (C; n ¼ 7), and the expression of
EMTmarkers in cells (D; n¼ 4) were determined. Scale bar, 100 mm. E, GSEA of the metastasis and EMT-like signatures in PIM2high HCC samples versus PIM2low

counterparts from the TCGA dataset. (Continued on the following page.)
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T cells is involved in cancer cell PIM2 expression by inducing IL1b
in TAM.

Activation of the MAPK and NF-kB pathways is involved in
tumor inflammation-enhanced PIM2 expression in cancer cells

We further probed the signals involved in inducing cancer cell PIM2
by immune landscapes. Using a phospho-kinase array, we found that
Co-CM induced transient increases in Akt, PRAS40, p53, WNK1, and
JNK activation at 4 hours and then rapid decreases in Akt, PRAS40,
p53, WNK1, and Erk activation at 12 hours, with only sustained
activation of c-Jun, in Huh7 cells (Fig. 4A). Kinetic experiments
further confirmed that Co-CM strongly elicited hepatoma MAPK
and AKT activation, but there was also rapid activation of the NF-kB
pathway in cancer cells exposed to Co-CM (Fig. 4B), suggesting that
the mechanism employed by TILs to trigger cancer cell PIM2 may be
multiple. Correspondingly, blocking the activation of the NF-kB and
MAPK signals impaired Co-CM–induced cancer cell PIM2, whereas
suppressing AKT signaling had no effect (Fig. 4C). Among the three
MAPK pathways, inhibition of the activation of p38 and Erk, but not
JNK, significantly attenuated the upregulation of PIM2 expression in
tumor cells (Fig. 4C). Thus, the p38-, Erk-, and IkBa-mediated early
activation of tumor cells is vital for the upregulation of PIM2 expres-
sion, which is consistent with the GSEA in HCC tissues from the
TCGA dataset (Fig. 4D; Supplementary Table S2).

Next, we established a luciferase reporter assay to illustrate the
transcription factors ofMAPKsorNF-kBpathway in triggering cancer
cell PIM2. As expected, knockdown of either JUN or RELA in Huh7
and Hep3B cells effectively reduced the promoter activity of the
PIM2 gene (Fig. 4E and F; Supplementary Fig. S5A). Analogously,
we obtained the same conclusion when depleting JUN or RELA in
cancer cells exposed to Co-CM or IL1b (Fig. 4G; Supplementary
Fig. S5B): p38/Erk-elicited c-Jun activation and NF-kB signaling
pathways are required for tumor inflammation-elicited cancer cell
PIM2 in human HCC.

Tumor inflammation-elicited PIM2 expression displays an
oncogenic function in hepatoma

We next determined and compared the functional features of
PIM2þ cancer cells triggered by TAM and T cells. T cell-CM–
treated hepatoma cells undergoing serum starvation displayed proa-
poptotic status with reducedMcl-1 andBcl-2 expression and increased
Bax expression. In contrast, Co-CM–triggered PIM2þ cells expressed
higher levels of prosurvival Mcl-1 and Bcl-2 (Fig. 5A), and these cells
resisted serum starvation-elicited apoptosis (Fig. 5B), which is con-
sistent with TAM-CM-generated hepatoma cells. Similarly, there was
no significant change in the proliferation of hepatoma cells treated
with TAM-CM or CO-CM compared with untreated cells, but T cell-
CM–treated cancer cells were decreased (Supplementary Fig. S6A).
Measuring the metastatic potential revealed that Co-CM–triggered
PIM2þ hepatoma cells displayed a fivefold increase in motility

(Fig. 5C). Consistently, Co-CM–triggered PIM2þ hepatoma cells
selectively expressed increased vimentin and SNAI2 and reduced E-
cadherin expression, suggesting a process of epithelial-mesenchymal
transition (EMT) (Fig. 5D). Using GSEA, we confirmed that genes
indicating EMT and metastasis were selectively enriched in PIM2high

HCC tumors, but not in PIM2low tumors (Fig. 5E; Supplementary
Table S2). These data together reveal that the cross-talk between T cells
and TAM not only generates PIM2þ cancer cells but also endows the
cells with capabilities to aggressively survive and migrate.

Considering that PIM kinases can promote the malignant progres-
sion of tumors (19), we determined whether PIM2 also contributes to
the Co-CM–elicited aggressive features of cancer. As expected, either
knocking down PIM2 with the psi-LVRU6GP retroviral vector or
suppressing PIM2 kinase function with an inhibitor significantly
impaired the migration and EMT of hepatoma cells (Fig. 5F
and G; Supplementary Fig. S6B–S6D). Analogously, exposing hepa-
toma cells to IL1b, TNFa, and IFNg not only synergistically generated
PIM2þ cancer cells but also endowed the cells with aggressive cancer
features (Fig. 5H; Supplementary Fig. S6E and S6F). We came to the
same conclusion using NOD/SCID mice bearing Huh7 cells. Treat-
ment with Co-CM effectively promoted hepatoma growth and lung
metastasis in mice, but knockdown of PIM2 suppressed that process
and even elicited complete regression in vivo (Fig. 5I; Supplementary
Fig. S6G).

After establishing the regulation, immune landscapes, and func-
tional relevance of PIM2þ cancer cells, we considered whether PIM2þ

cancer cells would respond to therapeutic strategies differently.
Tumor-specific T-cell cytotoxicity resulted in marked apoptosis of
untreated Huh7 cells (Fig. 5J). However, T cells did not trigger the
apoptosis of Co-CM–induced PIM2þ hepatoma cells, suggesting that
PIM2þ hepatoma cells generated by TAM establish resistance to T-cell
cytotoxicity. Supporting our hypothesis, inhibiting PIM2 signaling by
either knockdown or inhibition in hepatoma cells effectively abolished
the Co-CM–mediated resistance to T-cell cytotoxicity (Fig. 5K). A
similar conclusion was obtained when depleted macrophages in mice
bearing Hep1–6 hepatomas: T cells and macrophages together trig-
gered PIM2þ cancer cells and accelerated tumor growth and increased
lung metastasis, but T cells individually without the PIM2 signal could
effectively delay the growth of tumors and reduce lung metastasis
(Fig. 5L; Supplementary Fig. S7A–S7C). Moreover, by knocking down
the expression of IL1R1 in Hepa1–6 cells, we further confirmed that
IL1b/IL1R1 axis is essential for tumor inflammation-elicited PIM2
expression and tumor progression (Supplementary Fig. S8).

Suppressing IL1b-elicited PIM2 signaling enhances the efficacy
of ICB therapy

ICB therapy has shown unprecedented clinical efficacy in cancer
treatment, but its application is hindered by therapeutic resistance (11).
Considering that cancer immunotherapy restores or enhances the
effector function of T cells in the tumor microenvironment (13), we

(Continued.) F and G, Huh7 cells were pretreated with Co-CM for 12 hours, and then the effects of PIM2 inhibitor or knockdown of PIM2 expression with psi-
LVRU6GP retroviral vector (shPIM2) on tumor cell migration (F; n¼ 6) and EMT marker expression (G; n¼ 4) were determined. Scale bar, 100 mm. H, Huh7 cells
were left untreated or treated with a cocktail of cytokines, and the migration of cells was determined (n ¼ 6). Scale bar, 100 mm. I, shNC and shPIM2 Huh7 cells
were pretreated with or without Co-CM for 12 hours and then inoculated into dorsal tissues of NOD/SCID mice. Tumor sizes over the indicated time were
analyzed (n ¼ 7). J and K, PIM2þ Huh7 cells were generated by incubating with Co-CM for 12 hours. Apoptosis of cells after exposure to activated T cells was
determined at the indicated times (n ¼ 4), and the effect of PIM2 inhibitor or knockdown of PIM2 expression with psi-LVRU6GP retroviral vector (shPIM2) on
tumor cell apoptosis was analyzed at 24 hours (n ¼ 7). L, Mice bearing Hepa1–6 hepatomas in the liver capsule for 8 days were treated with isotype control or
aCSF1R Abs as described (Supplementary Fig. S5A). PIM2 expression in tumor tissues, tumor volume, and lung metastasis were analyzed (n ¼ 5). Data
represent mean � SEM. � , P < 0.05; �� , P < 0.01; ���, P < 0.001; ���� , P < 0.0001. One-way ANOVA with Bonferroni correction (B–D, F, G, and K), Student t test
(H and L), or two-way ANOVA with Bonferroni correction (I and J).
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subsequently investigatedwhether such amechanismwas also induced
by ICB therapy and influenced its efficacy. In a cohort of 39 patients
with locally advanced, potentially resectable HCC who underwent
curative resection after anti–PD-1 therapy, we found that the ex-
pression levels of IL1b and PIM2 were increased in patients treated
with anti–PD-1 therapy (n ¼ 25) compared with those treated with
control therapy (n ¼ 14, Fig. 6A). Furthermore, a positive corre-
lation between the mRNA levels of IL1B and PIM2 was found in
patients treated with anti–PD-1 therapy (Fig. 6B). Using immuno-
fluorescent staining, we confirmed that in tumor regions where
IL1bþ macrophages accumulated, cancer cells exhibited increased
PIM2 expression in patients treated with anti–PD-1 therapy
(Fig. 6C). Of note, 11 of 13 patients with low PIM2 expression
benefitted from anti–PD-1 treatment with complete response (CR)
or partial response (PR), whereas only 3 of 12 patients with high
PIM2 expression responded to ICB therapy, and most had stable
disease (SD) or progressive disease (PD) (P ¼ 0.009; Fig. 6D).
Collectively, tumoral PIM2 expression might mirror an inflamma-
tory immune landscape and serve as a predictive biomarker for poor
immunotherapy efficacy.

Building on our observations that IFNg drives IL1b production in
TAM, we used the Hepa1–6 cancer model to examine whether IFNg-
elicited IL1b signaling affected the antitumor effects of PD-1 blockade
in vivo (Fig. 6E). As expected, PD-1 blockade resulted in higher
activation markers and increased IL1b in tumor macrophages and
further enhanced the expression of PIM2 in HCC tissues (Fig. 6E–G;
Supplementary Fig. S9A and S9B). Furthermore, intraperitoneal injec-
tion of anAb against IFNg in Hepa1–6 hepatoma-bearingmice during
the final 2 days of the experiment in this model largely reduced the
expression of IL1b and suppressed subsequent PIM2 upregulation in
cancer cells (Fig. 6G), suggesting the contribution of IFNg derived
from activated T cells to TAM-mediated IL1b production and induc-
ing cancer cell PIM2. In support, injecting anti-IL1b Abs in such a
model evidently impaired the expression of PIM2 on cancer cells
(Fig. 6H) and then effectively reduced tumor volumes and decreased
lung metastasis (Fig. 6I and J; Supplementary Fig. S9C and S9D). Of
note, combined usage of anti–PD-1 and anti-IL1b Abs in hepatoma-
bearing mice led to complete hepatoma regression in vivo (Fig. 6I).
Notably, macrophages and T cells effectively triggered cancer cell
PIM2 expression, but macrophages simultaneously accelerated the
growth of tumors, whereas T cells delayed the growth of tumors
(Fig. 2A; Supplementary Fig. S2D). Together, these data suggest that T
cells activated by cancer immunotherapy inhibit the growth of cancer
directly, but they might also affect aggressive cancer features by
promoting IL1b production in TAM to increase cancer cell PIM2,
which might lead to tumor evasion.

To determine whether the activated immune landscape-elicited
PIM2 expression suppresses PD-1–related cancer immunotherapeutic
efficacy, we subsequently knocked down PIM2 expression in Hepa1–6
hepatoma and found that this treatment partially impaired the growth
of hepatoma in vivo. In such a model, injecting anti–PD-1 Ab at a low
dosage could lead to complete regression of hepatoma and prolong the
survival of Hepa1–6-bearing mice (Fig. 6K; Supplementary Fig. S9E
and S9F), implying that cancer cell PIM2 expression leads to poor
efficacy of anti–PD-1 therapy in vivo. The data prompted us to further
investigate the clinical therapeutic potential of the combined use of
AZD1208 and PD-1 blockade in vivo. AZD1208, a potent inhibitor of
PIM kinase, has been reported effective in attenuating tumorigenic
ability of many human malignancies, including acute myeloid leuke-
mia (AML; ref. 26), prostate cancer (27), non-Hodgkin lympho-
mas (28), andHCC (29). In the current study, we found that AZD1208
did not affect the cytotoxic function of T cells (Supplementary
Fig. S9G) or the progression of hepatoma (Fig. 6L and M), but the
combination of AZD1208 and anti–PD-1 Abs synergistically reduced
the tumor volumes at each measurement time point from Day 22
(Fig. 6L and M). Of note, the AZD1208/anti–PD-1 Abs combination
led to complete regression of hepatoma and extended survival, with
13.3% of mice remaining tumor free when the experiment was
terminated at Day 85, although mice injected with anti–PD-1 Abs
were dead at Day 71 (Fig. 6N). Taken together, our data show that
changing IL1b production or suppressing PIM2 signaling in tumors
augments the therapeutic efficacy of anti–PD-1 therapy.

Discussion
Immune landscapes shape the progression of human cancers (30).

In this work, we have shown that the interaction between T cells and
TAM regulates cancer cell PIM2 proto-oncogene expression and
cancer hallmarks as well as the therapeutic efficacy of ICB in HCC
tumors.

PIM kinases are potent proto-oncogenes that are overexpressed in
numerous human cancers and play roles in several of the hallmarks of
cancer, including cell survival and proliferation, apoptosis, and inva-
sion and metastasis (19). However, the distribution, immune land-
scape, and regulation of oncogenic PIMkinases in humanHCC are not
fully understood. The current study showed that a drastic upregulation
of PIM2 occurred in HCC, instead of PIM1 and PIM3. Interestingly,
we found that cancer cells with elevated PIM2 expression were
predominantly enriched in the regions of immune cell infiltration
rather than constitutive expression. More precisely, we demonstrate
that activated T cells can operate via an IFNg-polarized tumor
macrophage–dependent pathway to trigger PIM2 expression on

Figure 6.
Suppressing IL1b-elicited PIM2 signaling augments the immunotherapeutic efficacy of a PD-1 Ab. A–D, A total of 39 patients with locally advanced, potentially
resectable HCCwho underwent curative resection after ICB therapy (n¼ 25) or control therapy (n¼ 14) were enrolled. mRNA levels of IL1b and PIM2 in tumor tissues
(A), correlations between the mRNA levels of IL1b and PIM2 in the ICB group (B), multiplexed immunofluorescence staining analysis of PIM2þ cells (white), CD68þ

cells (red), and IL1bþ cells (green) in HCC tissue from the ICB group (C; n¼ 6), and the responder rate of 25 patients with HCC who received neoadjuvant anti–PD-1
therapy (D) were analyzed. Stratification as PIM2low or PIM2high was performed using the median expression. CR, complete response; PD, progressive disease; PR,
partial response; SD, stable disease. Scale bar, 50 mm. E–H,Mice bearing Hepa1–6 hepatomas in the liver capsule for 8 dayswere treated with isotype control, aPD-1,
aIFNg , oraIL1b (all 10mg/kg) Abs as described (n¼ 5). The activation status ofmacrophages (F) and the expression levels of IL1b, IL6, andPIM2 in tumor tissueswere
determined (G and H). Scale bar, 100 mm. I and J, Tumor volume in liver (I) and metastatic nodules in the lung (J) were quantified (n ¼ 5). Scale bar, 1 cm. K, Mice
bearing shNC or shPIM2 Hepa1–6 hepatomas in dorsal tissue for 10 days were treated with isotype control or aPD-1 (all 5 mg/kg) Abs as described. Tumor sizes
over the indicated time were analyzed (n ¼ 6). L–N, C57BL/6 mice bearing Hepa1–6 hepatoma were treated with isotype control or aPD-1 (10 mg/kg) Abs and
AZD1208 (25mg/kg) as described. Tumor sizes of the subcutaneous hepatomas over the indicated time (M; n¼6) and survival ofmice bearing orthotopic hepatomas
(N; n¼ 14) were analyzed. Data represent mean� SEM. �, P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001. Student t test (A), x2 test (D), one-way ANOVA with
Bonferroni correction (F and G), two-way ANOVA with Bonferroni correction (H–K and M), or log-rank test (N).
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cancer cells, and this conclusion is supported by the results of four sets
of experiments. First, PIM2þ cancer cells were in close contact with
infiltrated T cells and macrophages, and these immune components
synergistically increased tumor cell PIM2 expression through soluble
factors. Second, IL1b could individually trigger PIM2 on cancer cells
by activating ofMAPK andNF-kB, and this process was augmented by
TNFa and IFNg . Third, IFNg derived from activated T cells could
effectively induce the production of IL1b in TAM, and their combi-
nationmimics the effects of the tumormicroenvironment on inducing
cancer cell PIM2. Fourth, inmice with hepatoma, either blocking IFNg
Abs or shielding the IL1b signaling by injecting neutralized Abs
successfully abrogated such local immune landscape-elicited PIM2
expression in cancer cells. Consistent with our findings, other inves-
tigators have identified inflammation as a major factor triggering
cancer cell PIM2 expression during tumorigenesis by activating
NF-kB signaling (29).

Both T cells and macrophages are key players in the host immune
response to cancer (3), and macrophages can be regularly induced or
maintained in an antitumor response by T-cell–derived mediators, of
which, IFNg is the most potent. However, our current study reveals
that although activated T-cell–triggered cancer cells display a proa-
poptotic phenotype, they also promote TAM-induced cancer cell
PIM2 expression by secreting IFNg , which endows these cells with
the ability to aggressively survive and metastasize. We demonstrate
that activated T-cell–derived IFNg triggers tumor macrophages to
polarize toward proinflammatory properties and produce more IL1b,
which is essential for cancer cell PIM2 expression and aggressive
cancer hallmarks. It should be noted that PIM2 expression in hepa-
toma cells primarily acts to counteract apoptosis, rather than enhanc-
ing its cell proliferation per se. Interestingly, we detected almost no
IL1b in the CM of IFNg-triggered macrophages, although they dis-
played an inflammatory phenotype. Of note, in mice with hepatoma,
macrophages and T cells could effectively trigger cancer cell PIM2 and
promote disease progression, but T cells individually without PIM2
signaling could effectively delay the growth of tumors. Moreover, the
Th1 cytokine IFNg is also the most potent inflammatory cytokine
triggering cancer cell immunosuppression against T cell surveillance
by inducing and maintaining the expression of PD-L1 and IDO (11).
Therefore, it is plausible that it is not the IFNg response per se but
rather the immune network of the IFNg response that determines the
ability of the IFNg response to facilitate or prevent tumor growth. In
other words, a better understanding of the immune network of IFNg
(or Th1 response) in tumor environments would be helpful for
developing a rational design of novel immune-based anticancer
therapies.

The role of immune cells and oncogene activation in the progression
of HCC is well recognized (1, 31), but the interplay between these two
has not been well studied. The current study provided evidence that
activated T cells and tumor macrophages can together regulate the
expression of the PIM2 proto-oncogene in both human and mouse
cancer models via IL1b-triggered activation of MAPK and NF-kB
signaling. Importantly, PIM2 induced by IL1b signaling makes cancer
cells highly resistant to T-cell cytotoxicity, although it is still considered
to be a weak oncoprotein (32). In fact, although not directly related to
tumorigenesis, abolishment of PIM2 kinase either by inhibitor admin-
istration or knockdown in cancer cells could effectively augment
sensitivity to immunotherapy and even elicit complete regression of
hepatoma in vivo. It is plausible that although PIM2 kinase is an
accompanying oncoprotein, it might be induced by tumor environ-
ments and serves as a novel negative feedback regulator involved in
aggressive cancer features and determines sensitivity to immunother-

apy in HCC. In addition, although our current work focuses on the
functional status and immune landscapes of PIM2þ cancer cells,
PIM2þ host cells, particularly T cells and regulatory T cells, also play
very important roles in promoting cancer progression (33, 34). Recent
studies have found that PIM2 kinase negatively regulates T-cell
responses in tumor immunity (34), and inhibiting PIM kinase activity
by AD1208 could enhance the therapeutic effect of immunotherapeu-
tic approach (35). Thus, inhibition of PIM2 kinase in hepatoma-
bearing mice not only abrogates aggressive cancer cells but also
restores and enhances T-cell response. Studying the source, regulation,
and function of PIM2þ cells may help us better understand their roles
in tumor pathogenesis.

Our results provide important insights into the immune signa-
ture, induction, and functional status of PIM2þ cancer cells in
human cancers. Despite recent success in demonstrating the impor-
tance of T cells and the IFNg response during tumor progression
and therapy, little is known about the regulatory roles of PIM2 in
the clinic in PD-1/PD-L1 blockade. In our study, we demonstrated
that T cells activated or enhanced by cancer immunotherapy are
also responsible for tumor macrophage–elicited cancer cell PIM2
expression by IFNg-triggered IL1b production, which results in
resistance to T-cell cytotoxicity and ICB therapy. Notably, abolish-
ing PIM2þ cancer cells by either blocking IL1b signaling or knock-
ing down PIM2 expression in vivo can rescue the therapeutic
efficacy of PD-1/PD-L1 axis mAbs. Analogously, blocking PIM2
kinase with AZD1208, an inhibitor that is currently being evaluated
in phase I clinical trials in AML and prostate cancer (36, 37), could
effectively and successfully elicit cancer regression in combination
with ICB therapy, although suppressing PIM2 alone had only a
weak effect. Therefore, a better understanding of the signaling
network of PIM2 regulation in human tumor environments would
be helpful for developing rational designs of anticancer therapies
that can amplify the antitumorigenic function of ICB therapy.

In addition to being of biological importance, our work may be
relevant in the clinical management of patients with cancer. Our
data raise an important clinical question: does ICB therapy continue
to be applied to patients with cancer with immune tolerance?
Alternatively, we suggest that patients with cancer be treated with
ICB therapy in combination with strategies targeting the “context”
of tumor tolerance and macrophage signaling. In this study, anti–
PD-1 Abs enabled effective T-cell–mediated tumor immunity but
also induced aggressive PIM2þ cancer cell and immunotherapy
tolerance through IFNg-elicited IL1b production in tumor macro-
phages. Notably, abolishing cancer cell PIM2 by blocking IL1b
abrogated the protumorigenic properties of tumor macrophages in
hepatoma-bearing mice and subsequently rescued the immuno-
therapeutic efficacy. The ability of IL1b inhibition to synergize with
PD-1 blockade is currently undergoing direct testing in clinical
trials (38–40). It should be emphasized that targeting such inflam-
matory pathways can not only abolish their protumorigenic func-
tions but also prevent inflammatory toxicities while preserving
antitumor immunity. In support of this conclusion, others have
observed that recruitment and activation of macrophages by T cells
can result in local and/or systemic release of proinflammatory
cytokines that play central roles in inflammatory toxicities, but IL1
receptor blockade could effectively abolish the cytokine release
syndrome and neurotoxicity induced by immunotherapy (41–44).
Thus, studying the mechanisms that can specifically modulate the
functional activities of inflammatory stromal cells or cancer cells
would be helpful for developing a novel strategy for anticancer
therapy.
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