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Abstract: Chitosan or polyvinyl pyrrolidone (PVP) were used in combination with hydroxypropyl
methylcellulose (HPMC) and poloxamer 407 (P407) as gelling agents for oral drug delivery. The
performance interaction with mucin of chitosan-composed gel (F1) and PVP-composed gel (F2) was
compared using attenuated total reflectance–Fourier-transform infrared (ATR-FTIR) spectroscopy
at controlled temperatures of 25 and 37 ◦C for 1 and 5 min. F1 containing niosome-entrapped
melatonin or its derivatives was investigated for mucoadhesive interaction on mucosa by ATR-
FTIR spectroscopy under the same conditions. The results showed that F1-treated mucin gave a
significantly lower amide I/amide II ratio than untreated mucin and F2-treated mucin did within
1 min, suggesting improved rapid affinity between mucin and chitosan. The spectra of mucosa treated
with F1 incorporating niosomes of melatonin or its derivatives showed peak shifts at C=O (amide
I), N-H (amide II), and carbohydrate regions and an associated decrease in the amide I/amide II
ratio and increase in the carbohydrate/amide II ratio. These results indicated electrostatic interaction
and hydrogen bonding between chitosan and mucin on the mucosa. In conclusion, the molecular
interaction between gels and mucin/mucosa detected at amide I and amide II of proteins and the
carbohydrate region could lead to an improved mucoadhesive property of the gel on the mucosa.

Keywords: gel base effect; mucosa; ATR-FTIR spectroscopy; melatonin niosome gel

1. Introduction

Several mucoadhesive polymers including hydroxypropyl methylcellulose (HPMC),
polyvinylpyrrolidone (PVP), carbopol, chitosan, carboxymethylcellulose, and poloxamer
407 (P407) have been utilized in controlled-release drug delivery systems. HPMC, a
hydrophilic and non-ionic cellulose [1,2] with high swelling and bioadhesive properties [3],
has been used in combination with P407 and PVP to form a mucoadhesive gel incorporating
melatonin (MLT)-encapsulated niosomes, providing transmucosal delivery and prolonged
release of MLT in the oral cavity [4]. Chitosan, a cationic polyaminosaccharide deacetylated
from chitin, has been shown to interact with negatively charged mucin and enhance
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penetration through epithelial tight junctions [5–7]. Furthermore, chitosan can stabilize
and synergize the antioxidant activity of melatonin [8].

Exogenous MLT has poor oral bioavailability (9–33%) and a short half-life [9]. Encapsu-
lation of MLT in niosomes has been shown to prolong its time in systemic circulation [4,10,11],
and recently, two MLT derivatives with longer releasing properties, namely succinyl-MLT
(S-MLT) and glutaryl-MLT (G-MLT), were synthesized [12].

Adhesion to mucosal membranes is one of the key factors for successful transmucosal
delivery of drugs [13]. In the oral cavity, there are additional challenges from the movement
of the oral mucosa, saliva secretion, and drainage via swallowing. Mucoadhesive gels can
provide advantages in transmucosal drug delivery by prolonging contact time, enhancing
drug absorption, bypassing first-pass metabolism, and preventing drug loss [14]. Mucin
is the principal glycoprotein component of mucus, which coats the mucosa and is an
important target for interaction with mucoadhesive gels. The polypeptide chains of mucin
have domains rich in threonine and/or serine that compose hydroxyl groups linked with
negatively charged oligosaccharides [15]. Currently, there is no single method available
for in vitro evaluation of the mucoadhesive properties of a drug delivery system, although
one of the most used parameters is the measurement of the mechanical forces required to
detach a testing gel from an excised piece of mucosa by a texture analyzer [16,17]. However,
mechanical parameter testing has shown some inconsistencies and low discrimination
power, which limits its translation to real situations [18].

Attenuated total reflectance–Fourier-transform infrared (ATR-FTIR) spectroscopy, a
powerful tool for determination of small changes in biochemical interactions, is used
to distinguish heterogeneous functional groups in biological tissue samples [19]. Chain
interpenetration of polyacrylic acid at the mucin interface was interpreted by using ATR-
FTIR spectroscopy to explain the mucoadhesive mechanism [20]. Studies investigated
mucin–mucoadhesive polymer interaction by FTIR spectroscopy and found the main
mechanisms to be hydrogen bonding and disulfide bridges [21,22].

Using ATR-FTIR spectroscopy, we compared the in vitro mucoadhesive properties
of our previous transmucosal gel formula containing HPMC, P407, and PVP with a gel
formula containing HPMC, P407, and chitosan. ATR-FTIR spectroscopy is a convenient
technique to evaluate the mucoadhesive property of polymers by analysis of interfacial
interaction or interpenetration between a polymer and mucin. This technique is less time-
consuming and easy to perform without any complicated procedure. Therefore, ATR-FTIR
spectroscopy is a suitable technique for screening the mucoadhesive properties of polymers
for mucoadhesive drug delivery systems.

2. Materials and Methods
2.1. Materials

HPMC (Onimax Co. Ltd., Bangkok, Thailand), PVP (Dai-ichi Kogyo Seiyaku, Kyoto,
Japan), MLT (Shanghai Chemical, Shanghai, China), sodium chloride (Carlo Erba, Milano,
Italy), sorbitan monostearate (Span60), cholesterol, P407, chitosan from shrimp shells,
mucin from porcine stomach, succinic anhydride, glutaric anhydride and sodium hydride
(60% in oil) (Sigma-Aldrich, St. Louis, MO, USA), dimethylformamide, methanol, chloro-
form, n-hexane, hydrochloric acid, ethyl acetate and dichloromethane (Labscan, Bankok,
Thailand), and normal saline solution (NSS, A.N.B. Laboratories, Bankok, Thailand) were
used as received.

2.2. Synthesis of MLT Derivatives

The S-MLT and G-MLT derivatives were synthesized as described previously, with
modifications [12]. Briefly, sodium hydride (3 mmol) was dissolved with 3 mL of n-hexane
in a 50-mL round-bottom flask, vacuumed, and reacted with MLT (2 mmol), which was
dissolved in 5 mL of dimethylformamide. The mixture was stirred at room temperature
(RT) for 30 min and placed in an ice bath (0–5 ◦C). Succinic anhydride or glutaric anhydride
(2.2 mmol) was added into the mixture and stirring was continued at RT for 24 h. The
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mixture was then cooled in an ice bath for 10 min, followed by adjusting the pH to 2
by using a 5% HCl solution. The precipitate was collected and purified using column
chromatography. The gradient system started from 10% ethyl acetate and 90% hexane and
the ratio of ethyl acetate was increased until reaching 100% ethyl acetate. After that, a
gradient of 95% ethyl acetate and 5% methanol was used and the ratio was increased to
80% ethyl acetate and 20% methanol. The thin-layer chromatography (TLC) method was
applied to monitor the purity of the MLT derivatives. The products were spotted in a TLC
chamber with a solvent system (10% methanol: 90% dichloromethane). The TLC plate was
air-dried and observed under UV light at 254 and 365 nm.

2.3. Mucoadhesive Gel Formulation

The gel bases were modified from a previous study [4]. Gel formulation 1 (F1) was
composed of HPMC (8.7% w/w), P407 (0.4% w/w), and chitosan (0.12% w/w). Gel formula-
tion 2 (F2) was composed of HPMC (8.7% w/w), P407 (0.4% w/w), and PVP (0.12% w/w).
HPMC, P407, and PVP were prepared by dissolving in deionized water. Chitosan was
dissolved in sodium acetate-acetic acid buffer at pH 4.2 (0.2 M acetic acid and 0.2 M sodium
acetate). Niosomes (2% w/w) containing MLT or its derivatives were prepared using a
thin film method in which 0.2 g each of Span60, cholesterol, and MLT or its derivatives
was added in a 10-mL round-bottom flask with 5 mL of chloroform-methanol. Then, the
mixture was sonicated in a water bath sonicator (Kudos SK3210HP, Shanghai, China) at
60 ◦C for 10 min. The solvent was removed at 55 ◦C under 200 mbar by a rotary evaporator
(Buchi, Switzerland) for 5 min to produce a thin film. The F1 gel acted as a vehicle in the
gel base preparation phase. Thus, the liquid dispersion of niosomes was then mixed with
the F1 gel until the final weight was 10 g. A blank niosome in F1 gel was prepared using
the same protocol but without MLT or its derivatives.

2.4. Niosome Gel Characterization

The zeta potential and the polydispersity index (p.i.) of niosome gels were assessed
using a nanoparticle size analyzer (SZ-100 HORIBA, Kisshoin Minami-Ku, Kyoto, Japan).
Each sample was diluted to 1:10,000 in deionized sterile water and sonicated for 30 min
before measurement. All measurements were performed in triplicate. The morphology
of niosome gels was evaluated by transmission electron microscopy (TEM, FEI Company,
Hillsboro, ORE, USA) and an analyzer (Perkin Elmer model 1022 LC plus, West Berlin, NJ,
USA). Each sample was sonicated for 30 min before dropping onto a copper grid. Then, the
sample was dried at RT for 24 h before measurement. The vesicle sizes of niosomes were
measured and averaged from ten niosomes in each sample using the Image J program.

2.5. Encapsulation Efficiency of MLT and Its Derivatives in Niosome Gel

The encapsulation efficiency of MLT, S-MLT, or G-MLT in the niosome gel was evalu-
ated after ultracentrifugation at 15,000 rpm at 4 ◦C for 30 min; then, the liquid supernatant
was separated from the sediment. The absorbances of the supernatant and the sediment
were determined at 277 nm for MLT and 255 nm for its derivatives by UV spectrometry.
The encapsulation efficiency was calculated as follows:

% Encapsulation efficiency
Amount of drug in sediment

Amount in supernatant + amount in sediment
× 100 (1)

2.6. Texture Analysis

The texture profile analysis was modified from a previous study [23] to assess the
detachment forces and work of adhesion of gels (blank niosomes in F1, MLT niosomes in
F1, S-MLT niosomes in F1, and G-MLT niosomes in F1) with mucosa. This experiment was
performed using a texture analyzer (TA-XT Plus, Stable Micro Systems, Godalming, UK)
and a mucoadhesive rig (10 mm in diameter, AMUC, Stable Micro Systems, Godalming.
UK). The rig was fixed with a piece of porcine esophagus mucosa (2 × 2 cm), which was
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collected from a local slaughterhouse after sacrifice. The porcine esophagus was immersed
in NSS at 60 ◦C for 1 min to separate its connective tissue. The excised mucosa was stored
at −20 ◦C for use within 1 week. Then, 0.1 g of each gel was placed onto the probe, 10 mm
in diameter. The mucosa, with a contact area of 0.785 cm2, was compressed/decompressed
at a rate of 6 mm s−1 of the test speed, followed by compression for a 15-s delay. The work
of adhesion was obtained from the area under the curve between the force and distance
during decompression. Each sample was tested with six experiments at room temperature.

2.7. Permeation Test

The porcine esophagus mucosa was placed between donor and receptor compartments
of a 5-mL Franz diffusion cell (Crown Glass Company, Jersey City, NJ, USA.). The mucosa
was immersed in deionized (DI) water, pH 7.4, for 15 min before use. A 0.5-g sample was
spread by using a syringe and a glass stirring rod onto the mucosa at the donor side. The
receptor compartment was filled with DI water, pH 7.4, which was stirred at 60 rpm, and
the cell was incubated at 37 ± 1 ◦C. A 0.5-mL sample was removed from the receptor
compartment and replaced with the same volume of fresh solution at 0, 1, 3, 6, 9, 12, 15, 18,
and 24 h. The amount of MLT and its derivatives in the receptor fluid was determined by
HPLC analysis. For HPLC conditions, a Luna 5U PEP (2) 100A, 250 × 4.6-cm (Phenomenex,
Torrance, CA, USA) column was used in this experiment. The mobile phase was composed
of phosphate buffer, pH 7.2 (0.4% w/v NaH2PO4.2H2O and 0.1% w/v Na2HPO4), and
acetonitrile (75:25 v/v), with a flow rate 1.0 mL/min. MLT, S-MLT, and G-MLT were
detected using a UV detector at 220 nm.

2.8. Mucin Treatment

F1- or F2-treated mucin was analyzed by ATR-FTIR spectroscopy with parameters
modified from the previous method [21]. A 5% w/w mucin solution in deionized water
was incubated at 25 ± 2 (RT) or 37 ± 2 ◦C (body temperature, BT). The mucin solution
was transferred to the crystal sample holder of the ATR-FTIR spectroscope. An equal
volume of F1 or F2 was dropped into the mucin solution. After incubation for 1 and 5 min,
the ATR-FTIR spectra were recorded. The interaction between mucin and F1 or F2 was
evaluated from the ATR-FTIR spectra. Untreated mucin was the negative control.

2.9. Mucosa Treatment

The mucosal sheet was immersed in NSS at 37 ◦C for 15 min before use [24]. The
mucosal sheet was cut into 0.5 × 0.5-cm2 pieces and mounted with 0.01 mL of NSS to
ensure full hydration before the gel application. The mucosal surface of each sample was
pretreated with 20 mg each of the gels (F1, blank niosomes in F1, MLT niosomes in F1,
S-MLT niosomes in F1, and G-MLT niosomes in F1) at RT and BT for 1 and 5 min and then
scraped 3 times with a plastic scraper.

The surface of the treated mucosa was pressed onto ATR diamond crystal for FTIR
spectral acquisition. Samples were examined in triplicate for FTIR spectra. The untreated
mucosa was used as a negative control. The spectra of blank niosomes in F1, MLT nio-
somes in F1, S-MLT niosomes in F1, G-MLT niosomes in F1, MLT, S-MLT, and G-MLT
were recorded.

2.10. ATR-FTIR Spectroscopic Analysis

ATR-FTIR spectra were recorded by an ATR-FTIR spectrometer (Agilent technologies
4500 series FTIR, Kuala Lumpur, Malaysia). The spectra were obtained in the range of
4000–650 cm−1 and at 4 cm−1 resolution with 256 co-added scans per spectrum. Each
spectrum was normalized and integrated by OPUS 7.2 (Bruker, Hanau, Germany). The
absorption intensities under the spectra were integrated at wavenumbers of 1695–1596,
1596–1493, and 1189–973 cm−1, which represent the regions of amide I, amide II, and
carbohydrate, respectively.
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Absorption unit ratios of the integrated results were evaluated for amide I/amide II
and carbohydrate/amide II ratios from F1- or F2-treated mucosa with or without niosomes
in comparison to the relevant blanks.

From interaction and non-interacted mucosa, samples were analyzed by principal
component analysis (PCA). Spectral pre-processing was conducted by taking the second
derivative, smoothing with a Savitzky–Golay function (3 polynomials and 15 smoothing
points), and correcting the spectral scattering at fingerprint (1780–980 cm−1) by using
Extended Multiplicative Scatter Correction of a computer software (Unscrambler X 10.5,
(CAMO Software AS, Oslo, Norway).

2.11. Statistical Analysis

The data are reported as mean ± standard deviation (SD) and were evaluated for
normal distribution using the Shapiro–Wilk test. The parametric data were analyzed by
one-way analysis of variance (one-way ANOVA) and pairwise comparisons were carried
out by using Tukey’s penalizations. The non-parametric data analyses were performed with
a Kruskal–Wallis one-way analysis of variance and pairwise comparisons were performed
using the Mann–Whitney U test. All statistical analyses were performed using SPSS version
19 (IBM Corp, Chicago, IL, USA). The level of significance was p < 0.05.

3. Results and Discussion
3.1. ATR-FTIR Spectra of the Mucin, Mucosa, and Gels

Figure 1a shows the ATR-FTIR spectra of mucin. We observed peaks at 1634 (C=O
stretching of amide I), 1553 (C–N stretching of amide II), 1452 (C–H bending), 1375 (CH3
bending), 1317 and 1236 (amide III), 1146 and 1117 (C–O stretching), 1077 cm−1 (C–N
stretching), 1053 cm−1 (C–O stretching or C–O bending of carbohydrates), and 970 cm–1

(phosphorylated proteins) [25–27]. The ATR-FTIR spectrum of mucin showed the peptide
bond (amide I and amide II) and oligosaccharide (C–O stretching) parts of the glycoprotein.
The ATR-FTIR spectra of porcine esophagus mucosa established molecular vibration at
1644 (C=O stretching of amide I), 1545 (N–H bending and C–N stretching of amide II),
1452 and 1397 (C–H bending), 1236 (amide III), 1146 and 1117 (C–O stretching), 1077 (C–N
stretching), and 1053 cm−1 (C–O stretching or C–O bending of carbohydrates) [26,27].

The amide I, amide II, and C–H bending of ATR-FTIR spectra of porcine esoph-
agus showed similar molecular vibrational characteristics as those of normal human
esophagus [28]. In this study, the ATR-FTIR spectrum of mucosa showed lower intensity
of oligosaccharide peaks than mucin (Figure 1a), because oral and esophageal mucosa
contain only 0.1–0.5% mucin [29]. Figure 1b displays the ATR-FTIR spectral characteristics
of the gels. F1 and F2 exhibited similar ATR-FTIR spectra at 1452, 1375, 1146 and 1117,
1077, 1053, and 946 cm−1, representing C–H bending, CH3 bending, C–O stretching, C–N
stretching, C–O stretching, and O–H bending, respectively [25–27]. According to the F1
and F2 spectra, the molecular vibration of gels is similar to these constituent polymers.

The ATR-FTIR spectra of mucosa treated with MLT, S-MLT, or G-MLT in F1 all pre-
sented a similar peak at 1018 cm−1 (C–O, C–C, and O–CH of polysaccharides). The
ATR-FTIR spectra of mucosa treated with blank niosomes, MLT niosomes, S-MLT nio-
somes, or G-MLT niosomes in F1 exhibited peaks similar to the ATR-FTIR spectrum of
F1. However, G-MLT niosomes in F1 showed a peak at 1018 cm−1, indicating that side
chains of G-MLT might appear outside of the niosome lipid bilayer. There were no peaks
at 1018 cm−1 in the ATR-FTIR spectra of MLT niosomes in F1 or S-MLT niosomes in F1,
which suggests that all parts of MLT and S-MLT were encapsulated into the bilayer of the
niosome (% entrapment efficiency > 90%).
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Figure 1. The average attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectra
of (a) mucin and mucosa and (b) gel formulation 1 (F1), F2, blank niosomes in F1, melatonin (MLT)
niosomes in F1, succinyl-MLT (S-MLT) niosomes in F1, glutaryl-MLT (G-MLT) niosomes in F1, MLT,
S-MLT, and G-MLT (n = 3).

3.2. F1- and F2-Treated Mucin

From the ATR-FTIR spectra of samples incubated at RT for 1 or 5 min, the average
absorption ratio of amide I to amide II in untreated mucin was around 1.0. F1-treated mucin
provided an average amide I/amide II ratio lower than that of untreated mucin and F2 gel-
treated mucin at both 1 and 5 min (p < 0.05, Figure 2). These changes in the amide I/amide
II ratio indicate that F1 interacted with mucin and F2 did not. This difference could be an
effect of the chitosan in F1. The cationic chitosan could provide an electrostatic interaction
with the negative charge of sialic acid in mucin, promoting strong mucoadhesion [30,31].
In addition, the strong interaction between mucin and chitosan in F1 causes the protection
of the peptide bond in mucin from the interface [31]. Therefore, a reduction in the amide
I/amide II ratio was observed from the ATR-FTIR spectrum of F1-treated mucin. The
observed reduction in the amide I/amide II ratio in F1-treated mucin could also be caused
by hydrogen bonding between the NH2 of chitosan and the COOH of sialic acid in mucin.
In contrast, F2 is a non-ionic polymer that would have no electrostatic interaction with
mucin. This strong mucoadhesive property of F1 makes it a promising gel formulation for
incorporation of MLT, S-MLT, and G-MLT niosomes.
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Figure 2. The amide I/amide II absorption ratios at room temperature (RT) for 1 and 5 min of
F1-treated mucin (white), F2-treated mucin (black), and untreated mucin (gray). Experiments were
performed in triplicate and repeated three times. Bars display mean ± S.D., * p < 0.05 compared with
untreated mucin.

Figure 3 shows the absorption unit ratios of F1-treated mucin to untreated mucin for
amide I/amide II and carbohydrate/amide II. An absorption unit ratio of 1 represents no
difference between treated mucin and untreated mucin.

Figure 3. The amide I/amide II absorption unit ratio (white) and carbohydrate/amide II ratio (black)
of F1-treated mucin/untreated mucin at body temperature (BT) and RT for 1 and 5 min. Experiments
were performed in triplicate and repeated three times. Bars display mean ± S.D., * p < 0.05 compared
to 1 min at RT, # p < 0.05 compared to 5 min at RT.

At RT, the F1-treated mucin/untreated mucin absorption ratio for amide I/amide II
was less than one, with no significant difference between 1 and 5 min (p > 0.05), whereas the
absorption unit ratio for carbohydrate/amide II was higher than one, with no significant
difference between 1 and 5 min (p > 0.05).

At BT, the amide I/amide II absorption ratio of F1-treated mucin/untreated mucin
was less than one. This indicates that the amide I/amide II ratio of mucin was reduced
after treatment with F1. At BT, there were no significant differences (p > 0.05) between
interactions at 1 and 5 min for both amide I/amide II and carbohydrate/amide II. However,
for carbohydrate/amide II, the F1-treated mucin/untreated mucin absorption ratio at BT
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was higher than that at RT, with a significant difference between 1 and 5 min (Figure 3,
p < 0.05).

The results show that F1 interaction with mucin could be detected at amide I, amide
II, and the carbohydrate region within 1 min and that the interaction was more extensive at
BT than it was at RT. This is presumably because the interaction temperature affects the
thermosensitive polymer P407, which is in a solution state at RT and a gel state at BT [32].

In this study, we found a reduction in amide I/amide II and an increase in carbohy-
drate/amide II after mucin interaction with F1. This result was similar to that of Saiano
et al. (2003), which showed that the intensities of amide I and amide II were reduced after
both α,β-poly(N-hydroxyethyl)-DL-aspartamide polymer and α,β-poly(aspartylhydrazide)
polymer interacted with mucin [33].

Moreover, Hsein et al. (2015) reported that amide I and amide II were the important
regions for interactions between mucin and reticulated whey protein, forming microparti-
cles. They concluded that hydrogen bonding was established between these two functional
groups and mucin at a pH lower than the pKa (2.6) become non-ionized form. At higher
pH, mucin became ionized, which caused electrostatic interaction [21].

The absorption unit ratio of carbohydrate/amide II from F1-treated mucin/untreated
mucin at both 1 and 5 min was greater than five. This result indicated that F1 interpene-
tration into mucin could be confirmed by ATR-FTIR spectroscopy in the same way that
poly (acrylic acid) interpenetrated into the mucin interface (Jabbari et al. (1993)). They sug-
gested that chain interpenetration across the biointerface was a limitation of adhesion [20].
Similar to Padhye et al. (2017), they reported that the self-adhesion of polymers, HPMC
and Polyethylene glycol (PEG), occurred by polymer interpenetration across the interface,
leading to bonding [34].

3.3. Physical Parameters of Niosome Gels

The physical parameters of blank niosomes, blank niosomes in F1, MLT niosomes in F1,
S-MLT niosomes in F1, and G-MLT niosomes in F1 are shown in Table 1. The polydispersity
index (p.i.) indicates the homogeneity of the particle suspension. Values should be lower
than 0.30, which corresponds to a single size of particle [35]. In this experiment, all niosome
gels had p.i. values of more than 0.30, indicating a broad distribution of particle sizes. This
is likely to be the effect of the niosome preparation; the thin layer technique we employed
has previously been shown to generate a broad range of niosome sizes [36]. The lower
negative zeta potential value of blank niosomes in F1 compared to blank niosomes alone
(p < 0.05) indicates that the chitosan in F1 may have imparted positive charges to the
particles. The higher negative zeta potential values of MLT and S-MLT niosomes in F1
compared to blank and G-MLT niosomes in F1 (p < 0.05) might be due to a partial insertion
of the MLT or S-MLT into the niosome bilayer, with a consequent increase in the negative
value of the zeta potential [37]. However, high negative or positive zeta potential values
represent the prevention of particle aggregation and indicate increased stability. Thus, MLT
and S-MLT niosomes in F1 were more stable than blank and G-MLT niosomes in F1.

Table 1. The characterizations of blank niosomes, gels, and niosome gels. Data are the mean ± SD.

Blank Niosomes Blank Niosomes in F1 MLT Niosomes in F1 S-MLT Niosomes in F1 G-MLT Niosomes in F1

Physical parameters
Vesicle sizes (nm, n = 10) 331 ± 173 281 ± 55 414 ± 138 # 535 ±130 314 ± 45

Polydispersity index (p.i.) (n = 6) 1.5 ± 1.2 2.1 ± 0.5 1.2 ± 0.6 # 1.6 ± 0.7 1.3 ± 0.5 #

Zeta potential (mV, n = 3) −71.4 ± 1.0 −5.6 ± 0.4 * −32.4 ± 2.9 *# −38.2 ± 0.2 *# −1.1 ± 0.4 *#†§

Encapsulation (%, n = 3) ND ND 92.63 ± 3.11 93.05 ± 2.87 88.99 ± 4.02
Permeation (n = 3)
Fluxes (ug/cm2/h) ND ND 16.60 ± 5.51 0.08 ± 0.01† 0.29 ± 0.05 †§

Lag time (h) ND ND 2.38 ± 0.05 5.15 ± 0.61† 2.44 ± 1.26 §

* p < 0.05 vs. blank niosome, # p < 0.05 vs. Blank niosomes in F1, † p < 0.05 vs. MLT niosomes in F1, § p < 0.05 vs. S-MLT niosomes in F1; ND
is not determined.
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The percentage of encapsulation of MLT and its derivatives into niosomes was around
88–93%, which supports the disappearance of the peak at 1018 cm−1 in the FTIR spectra of
MLT and S-MLT niosomes in F1.

The permeation test was conducted to investigate the permeability of MLT, S-MLT,
and G-MLT niosomes in F1 through mucosa after gel adhesion (Table 1). The results show
that MLT and its derivatives could penetrate mucosa, but MLT niosomes in F1 had a higher
flux rate than S-MLT and G-MLT niosomes in F1 (p < 0.05). The S-MLT niosomes in F1
spent more time passing through the mucosa than the other gels (lag time 5 h, p < 0.05).
Thus, the flux rates and lag times of these gels were different because of the individual
properties of MLT and its derivatives.

The relation of detachment force and work of adhesion of blank niosomes in F1,
MLT niosomes in F1, S-MLT niosomes in F1, and G-MLT niosomes in F1 represents the
mucoadhesive property of the gels, which is shown in Figure S1. The blank and G-MLT
niosomes in F1 showed a high relation of detachment force and work of adhesion (p < 0.05),
with detachment force increasing with the work of adhesion. In contrast, the MLT and
S-MLT niosomes in F1 did not have a relation of detachment force and work of adhesion.

The morphology of blank niosomes, blank niosomes in F1 MLT niosomes in F1, S-MLT
niosomes in F1, and G-MLT niosomes in F1 is shown in Figure 4. All niosome gels were
spherical in shape. The blank and G-MLT niosomes in F1 had a gel nest formation between
the particles. The MLT and S-MLT niosomes in F1 had gel formation surrounding the
niosome particles. These morphologies correlate with the zeta potential results; the high
negative values of MLT 1 and S-MLT niosomes in F1 showed no aggregation. Nevertheless,
all samples except blank niosomes showed gel surrounding the niosomes, indicating that
the niosomes were covered by the F1 gel.

Figure 4. The morphology of (a) blank niosomes, (b) blank niosomes in F1, (c) MLT niosomes in F1,
(d) S-MLT niosomes in F1, (e) and G-MLT niosomes in F1 under TEM. Scale bars = 500 nm.

3.4. F1, Blank Niosomes in F1, and MLT or Its Derivative Niosomes in F1-Treated Mucosa

The principal component (PC) plot (Figure 5a) shows the separation of F1-treated
mucosa, blank niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT
niosomes in F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated
mucosa at the fingerprint (1780–980 cm−1) along PC-1 with 68% explained variance. The
negative loading plot (Figure 5b) shows the spectral absorption of untreated mucosa. The
positive loading plot (Figure 5b) shows absorption peak shifts of F1-treated mucosa, blank
niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT niosomes in
F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated mucosa.
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Figure 5. (a) Principal component (PC) plots and (b) loading plots of (•) F1, (H) blank niosomes in F1, (•) MLT niosomes in
F1, (

Polymers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. The morphology of (a) blank niosomes, (b) blank niosomes in F1, (c) MLT niosomes in 
F1, (d) S-MLT niosomes in F1, (e) and G-MLT niosomes in F1 under TEM. Scale bars = 500 nm. 

3.4. F1, Blank Niosomes in F1, and MLT or its Derivative Niosomes in F1-Treated Mucosa 
The principal component (PC) plot (Figure 5a) shows the separation of F1-treated mu-

cosa, blank niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT 
niosomes in F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated 
mucosa at the fingerprint (1780–980 cm−1) along PC-1 with 68% explained variance. The neg-
ative loading plot (Figure 5b) shows the spectral absorption of untreated mucosa. The posi-
tive loading plot (Figure 5b) shows absorption peak shifts of F1-treated mucosa, blank nio-
somes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT niosomes in F1-
treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated mucosa. 

 
Figure 5. (a) Principal component (PC) plots and (b) loading plots of (●) F1, (▼) blank niosomes in F1, (●) MLT niosomes 
in F1, () S-MLT niosomes in F1, and () G-MLT niosomes in F1-treated mucosa compare to untreated mucosa (▪) at ) S-MLT niosomes in F1, and (

Polymers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. The morphology of (a) blank niosomes, (b) blank niosomes in F1, (c) MLT niosomes in 
F1, (d) S-MLT niosomes in F1, (e) and G-MLT niosomes in F1 under TEM. Scale bars = 500 nm. 

3.4. F1, Blank Niosomes in F1, and MLT or its Derivative Niosomes in F1-Treated Mucosa 
The principal component (PC) plot (Figure 5a) shows the separation of F1-treated mu-

cosa, blank niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT 
niosomes in F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated 
mucosa at the fingerprint (1780–980 cm−1) along PC-1 with 68% explained variance. The neg-
ative loading plot (Figure 5b) shows the spectral absorption of untreated mucosa. The posi-
tive loading plot (Figure 5b) shows absorption peak shifts of F1-treated mucosa, blank nio-
somes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT niosomes in F1-
treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated mucosa. 

 
Figure 5. (a) Principal component (PC) plots and (b) loading plots of (●) F1, (▼) blank niosomes in F1, (●) MLT niosomes 
in F1, () S-MLT niosomes in F1, and () G-MLT niosomes in F1-treated mucosa compare to untreated mucosa (▪) at ) G-MLT niosomes in F1-treated mucosa compare to untreated mucosa (�) at fingerprint

region. (c) PC plots and (d) loading plots of (

Polymers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. The morphology of (a) blank niosomes, (b) blank niosomes in F1, (c) MLT niosomes in 
F1, (d) S-MLT niosomes in F1, (e) and G-MLT niosomes in F1 under TEM. Scale bars = 500 nm. 

3.4. F1, Blank Niosomes in F1, and MLT or its Derivative Niosomes in F1-Treated Mucosa 
The principal component (PC) plot (Figure 5a) shows the separation of F1-treated mu-

cosa, blank niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT 
niosomes in F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated 
mucosa at the fingerprint (1780–980 cm−1) along PC-1 with 68% explained variance. The neg-
ative loading plot (Figure 5b) shows the spectral absorption of untreated mucosa. The posi-
tive loading plot (Figure 5b) shows absorption peak shifts of F1-treated mucosa, blank nio-
somes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT niosomes in F1-
treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated mucosa. 

 
Figure 5. (a) Principal component (PC) plots and (b) loading plots of (●) F1, (▼) blank niosomes in F1, (●) MLT niosomes 
in F1, () S-MLT niosomes in F1, and () G-MLT niosomes in F1-treated mucosa compare to untreated mucosa (▪) at ) S-MLT niosomes in F1-treated mucosa compared to (

Polymers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. The morphology of (a) blank niosomes, (b) blank niosomes in F1, (c) MLT niosomes in 
F1, (d) S-MLT niosomes in F1, (e) and G-MLT niosomes in F1 under TEM. Scale bars = 500 nm. 

3.4. F1, Blank Niosomes in F1, and MLT or its Derivative Niosomes in F1-Treated Mucosa 
The principal component (PC) plot (Figure 5a) shows the separation of F1-treated mu-

cosa, blank niosomes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT 
niosomes in F1-treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated 
mucosa at the fingerprint (1780–980 cm−1) along PC-1 with 68% explained variance. The neg-
ative loading plot (Figure 5b) shows the spectral absorption of untreated mucosa. The posi-
tive loading plot (Figure 5b) shows absorption peak shifts of F1-treated mucosa, blank nio-
somes in F1-treated mucosa, MLT niosomes in F1-treated mucosa, S-MLT niosomes in F1-
treated mucosa, and G-MLT niosomes in F1-treated mucosa from untreated mucosa. 

 
Figure 5. (a) Principal component (PC) plots and (b) loading plots of (●) F1, (▼) blank niosomes in F1, (●) MLT niosomes 
in F1, () S-MLT niosomes in F1, and () G-MLT niosomes in F1-treated mucosa compare to untreated mucosa (▪) at ) G-MLT niosomes in

F1-treated mucosa at fingerprint region.

The peak shifts were 1660 (C=O stretching of amide I), 1527 (N–H bending of amide II),
1373 (C–H bending), 1150 (C–O stretching), 1117 (C–OH stretching), 1075 (PO2

− symmetric
stretching), and 1051 cm–1 (C–O stretching), involving protein, lipids, phosphate, and
oligosaccharides or carbohydrates. This result shows that blank and MLT or its derivative
niosomes in F1 could interact with mucosa similarly to F1-treated mucosa.

The major interactions between these gels and mucosa occurred at amide I, amide
II, and the carbohydrate region. A previous study reported that reticulated whey protein
microparticles (whey protein is a mucoadhesive polymer) interacted with mucin and
showed peak shifts at carbonyl C=O and amine N–H. They suggested that the interaction
of that region with mucin was established by hydrogen bonding [21]. An illustration of
electrostatic interaction between chitosan and mucin is shown in Figure 6a. In our study,
the most important shifts were also at amide I and amide II, indicating that the polymers
(especially chitosan) surrounding the niosomes could interact with mucin on the mucosa by
hydrogen bonding, as shown in Figure 6b. At neutral gel pH, hydrogen bonding between
the hydrogen atoms from NH2 in chitosan and the oxygen atoms from COOH or OH in
the core protein of mucin was expected to be the main interaction. Therefore, the amide
I of protein might be protected from the interface, which causes the reduction of amide I
or amide I/amide II in the ATR-FTIR spectrum. This is similar to a previous study that
concluded that chitosan-coated niosomes interacted with mucin via chitosan polymer
interaction with mucin in the mucus layer [38]. The electrostatic interaction might occur
less than hydrogen bonding does because the amino groups in chitosan exist in the ionic
form (NH3

+) in acidic environments [30]. In contrast, our study used a neutral environment
that showed less NH3

+ formation, indicating that electrostatic interactions might occur
less than hydrogen bonding does in the chitosan and mucin interaction. Moreover, the
other peak shift in the carbohydrate area shows the spectra absorption of the gel base.
The carbohydrate peak shifts might represent the chain interpenetration of the major
component of the gel base, HPMC, onto mucosa. This was previously suggested by Bravo-
Osuna et al. (2012), who postulated that the bioadherence of HPMC occurred from chain
interdiffusion into mucin [3]. Esophageal mucosa was shown to contain levels of mucin
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measured from saliva secretion (0.88 ± 0.11 mg/mL) [29]; strong mucin–polymer affinity
provides mechanical protection that is beneficial for mucosal damage.

Figure 6. The illustration of chitosan and mucin interactions by (a) electrostatic interaction and
(b) hydrogen bonding.

S-MLT niosomes in F1-treated mucosa showed differences from the other gel-treated
mucosa. This may be because S-MLT has a slightly different structure to G-MLT with
less CH2 (Figure 7a). After separated analysis, S-MLT niosomes in F1-treated mucosa
showed discrimination from G-MLT niosomes in F1-treated mucosa along PC-1 with 60%
explained variance (Figure 5c). S-MLT niosomes in F1-treated mucosa had a major peak
shift from G-MLT-treated mucosa at 1045 cm−1 (C–O stretching) in a negative loading plot
(Figure 5d), whereas G-MLT niosomes in F1-treated mucosa showed a difference from
S-MLT niosomes in F1-treated mucosa at 1018 cm−1 (C–O stretching) in a positive loading
plot (Figure 5d). We hypothesize that S-MLT niosomes in F1-treated mucosa might have
a different interaction at C–O compared to the other compounds. The peak at 1018 cm−1

of G-MLT niosomes in F1-treated mucosa might occur from the COOH group of G-MLT,
which is extended out of the lipid bilayer (Figure 7c).

3.5. Effects of Temperature and Time on Blank Niosomes in F1 and MLT or Its Derivative Niosomes
in F1-Treated Mucosa

The amide I/amide II ratios of niosome gel (blank niosomes in F1, MLT niosomes in
F1, S-MLT niosomes in F1, and G-MLT niosomes in F1) treated mucosa/untreated mucosa
at BT and RT for 1 and 5 min were all lower than one and had no significant differences
(p > 0.05) between groups (Figure 8). This reduction in the amide I/amide II ratio indicated
that all niosome gels could interact at amide I and amide II of mucosa. The interaction
occurred rapidly, within 1 min for both temperatures. The niosome gel (blank niosomes
in F1, MLT niosomes in F1, S-MLT niosomes in F1, and G-MLT niosomes in F1) treated
mucosa/untreated mucosa showed increased carbohydrate/amide II ratios of more than
one at both temperatures and at all time points (Figure 9). At RT, all niosome gel-treated
mucosae provided no significant differences (p > 0.05) between groups at both 1 and 5 min.
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Figure 7. (a) The chemical structures of MLT, S-MLT, and G-MLT; (b) the ATR-FTIR spectra of MLT (green), S-MLT-(black),
and G-MLT-(red) niosomes in F1-treated mucosa at wavenumber 1066–995 cm−1; (c) the schematic of MLT or its derivatives
embedded in lipid bilayer of niosome.

Figure 8. The amide I/amide II ratio of niosome gel (blank niosomes in F1 (blue), MLT niosomes in F1
(green), S-MLT niosomes in F1 (black), and G-MLT niosomes in F1 (red)) treated mucosa/untreated
mucosa at BT and RT for 1 and 5 min. Experiments were performed in triplicate and repeated three
times. Bars display mean ± S.D.

At BT, the carbohydrate/amide II ratio presented a ratio higher than one at both 1 and
5 min, with no significant differences (p > 0.05) between groups. This result indicated that
F1 containing niosomes’ interaction with mucosa could be detected with an increase in the
carbohydrate/amide II ratio.
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Figure 9. The carbohydrate/amide II ratio of niosome gel (blank niosomes in F1 (blue), MLT niosomes
in F1 (green), S-MLT niosomes in F1 (black), and G-MLT niosomes in F1 (red)) treated mucosa to
untreated mucosa at BT and RT for 1 and 5 min. Experiments were performed in triplicate and
repeated three times. Bars display mean ± S.D.

4. Conclusions

Chitosan was found to interact with mucin more than PVP did, so chitosan might
enhance the mucoadhesive property of gel. The F1 gel (composed of HPMC, chitosan,
and P407) showed rapid interaction with mucin, within 1 min. The temperature affected
the mucoadhesive interaction of mucin and the F1 gel due to the presence of P407, a
thermosensitive gel. The ATR-FTIR results revealed peak shifts of molecular interactions
of F1 gel as well as MLT or its derivative niosomes in F1 with the mucosa at C=O (amide
I), N–H (amide II), and the carbohydrate region. Moreover, the absorption unit ratios of
amide I/amide II for MLT or its derivative niosomes in F1-treated mucosa were reduced
and carbohydrate/amide II ratios were increased. Therefore, mucoadhesive interactions
between the gels and mucin/mucosa can be investigated from the peak shifts and the
changes in absorption unit ratios of ATR-FTIR spectra.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13071142/s1, Figure S1: ATR-FTIR spectra of F1- and F2-treated mucin at RT for
1 min and 5 min, 1634 cm−1 (C=O stretching of amide I), 1553 cm−1 (C–N stretching of amide II),
1452 cm−1 (C–H bending), 1375 cm−1 (CH3 bending), 1317 cm−1 and 1236 cm−1 (amide III), 1146
and 1117 cm−1 (C–O stretching), 1077 cm−1 (C–N stretching), 1053 cm−1 (C–O stretching or C+–O
bending of carbohydrates), and 946 cm−1 (C–H out-of-plane bending). Each spectrum was averaged
from 3 spectra., Table S1: The absorption intensities under the spectra of amide I, amide II and
carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II from F1- and F2-treated
mucin at RT for 1 min and 5 min., Figure S2: ATR-FTIR spectra of F1- and F2-treated mucin at BT
for 1 min and 5 min, 1634 cm−1 (C=O stretching of amide I), 1553 cm−1 (C–N stretching of amide
II), 1452 cm−1 (C–H bending), 1375 cm−1 (CH3 bending), 1317 cm−1 and 1236 cm−1 (amide III),
1146 and 1117 cm−1 (C–O stretching), 1077 cm-1 (C–N stretching), 1053 cm-1 (C–O stretching or
C-O bending of carbohydrates), and 946 cm−1 (C–H out-of-plane bending). Each spectrum was
averaged from 3 spectra., Table S2: The absorption intensities under the spectra of amide I, amide
II and carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II from F1- and
F2-treated mucin at BT for 1 min and 5 min., Figure S3: ATR-FTIR spectra of F1 treated mucin at RT
and BT for 1 min and 5 min, 1634 cm−1 (C=O stretching of amide I), 1553 cm−1 (C–N stretching of
amide II), 1452 cm−1 (C–H bending), 1375 cm−1 (CH3 bending), 1317 cm−1 and 1236 cm−1 (amide
III), 1146 and 1117 cm−1 (C–O stretching), 1077 cm−1 (C–N stretching), 1053 cm−1 (C–O stretching
or C–O bending of carbohydrates), and 946 cm−1 (C–H out-of-plane bending). Each spectrum was
averaged from 3 spectra., Table S3: The absorption intensities under the spectra of amide I, amide
II and carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II from F1 treated

https://www.mdpi.com/article/10.3390/polym13071142/s1
https://www.mdpi.com/article/10.3390/polym13071142/s1
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mucin at RT and BT for 1 min and 5 min., Figure S4: ATR-FTIR spectra of blank, melatonin and its
derivative niosomes in F1 treated mucosa at RT for 1 min, 1644 cm−1 (C=O stretching of amide I),
1545 cm−1 (N–H bending and C–N stretching of amide II), 1452 cm−1 and 1397 cm−1 (C–H bending),
1236 cm−1 (amide III), 1146 cm−1 and 1117 cm−1 (C–O stretching), 1077 cm−1 (C-N stretching),
and 1053 cm−1 (C–O stretching or C–O bending of carbohydrates), and 946 cm−1 (C–H out-of-
plane bending). Each spectrum was averaged from 3 spectra., Table S4: The absorption intensities
under the spectra of amide I, amide II and carbohydrate, ratio of amide I/amide II and ratio of
carbohydrate/amide II from blank, melatonin and its derivative niosomes in F1 treated mucosa at RT
for 1 min., Figure S5: ATR-FTIR spectra of blank, melatonin and its derivative niosomes in F1 treated
mucosa at RT for 5 min, 1644 cm−1 (C=O stretching of amide I), 1545 cm−1 (N–H bending and C–N
stretching of amide II), 1452 cm−1 and 1397 cm−1 (C–H bending), 1236 cm−1 (amide III), 1146 cm−1

and 1117 cm−1 (C–O stretching), 1077 cm−1 (C–N stretching), and 1053 cm−1 (C–O stretching or C–O
bending of carbohydrates), and 946 cm−1 (C–H out-of-plane bending). Each spectrum was averaged
from 3 spectra., Table S5: The absorption intensities under the spectra of amide I, amide II and
carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II from blank, melatonin
and its derivative niosomes in F1 treated mucosa at RT for 5 min., Figure S6: ATR-FTIR spectra
of blank, melatonin and its derivative niosomes in F1 treated mucosa at BT for 1 min, 1644 cm−1

(C=O stretching of amide I), 1545 cm−1 (N–H bending and C–N stretching of amide II), 1452 cm−1

and 1397 cm−1 (C–H bending), 1236 cm−1 (amide III), 1146 cm−1 and 1117 cm−1 (C–O stretching),
1077 cm−1 (C–N stretching), and 1053 cm−1 (C–O stretching or C–O bending of carbohydrates),
and 946 cm−1 (C–H out-of-plane bending). Each spectrum was averaged from 3 spectra., Table S6:
The absorption intensities under the spectra of amide I, amide II and carbohydrate, ratio of amide
I/amide II and ratio of carbohydrate/amide II from blank, melatonin and its derivative niosomes in
F1 treated mucosa at BT for 1 min., Figure S7: ATR-FTIR spectra of blank, melatonin and its derivative
niosomes in F1 treated mucosa at BT for 5 min, 1644 cm−1 (C=O stretching of amide I), 1545 cm−1

(N-H bending and C–N stretching of amide II), 1452 cm−1 and 1397 cm−1 (C–H bending), 1236 cm−1

(amide III), 1146 cm−1 and 1117 cm−1 (C–O stretching), 1077 cm−1 (C–N stretching), and 1053 cm−1

(C–O stretching or C–O bending of carbohydrates), and 946 cm−1 (C–H out-of-plane bending). Each
spectrum was averaged from 3 spectra., Table S7: The absorption intensities under the spectra of
amide I, amide II and carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II
from blank, melatonin and its derivative niosomes in F1 treated mucosa at BT for 5 min., Figure S8:
The correlation (r) of force of detachment and work of adhesion between gels (Blank niosomes in
F1 (A), MLT niosomes in F1 (B), S-MLT niosomes in F1 (C), and G-MLT niosomes in F1 (D) and
mucosa, * p is p-value., Table S8: The absorption intensities under the spectra of amide I, amide II
and carbohydrate, ratio of amide I/amide II and ratio of carbohydrate/amide II from F1 treated
mucin/untreated mucin ratio at BT and RT for 1 min and 5 min.
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