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Abstract: Small heat shock proteins (sHSPs) are ATP-independent chaperones that help correct the
folding of denatured proteins and protect cells from stress. Mutations in HSPB1, HSPB8, and HSPB3
are implicated in inherited peripheral neuropathies (IPNs), such as Charcot-Marie-Tooth disease
type 2 (CMT2) and distal hereditary motor neuropathies (dHMN). This study, using whole exome
sequencing or targeted gene sequencing, identified 9 pathogenic or likely pathogenic variants in
these three sHSP genes from 11 Korean IPN families. Most variants were located in the evolutionally
well conserved α-crystallin domain, except for p.P182S and p.S187L in HSPB1. As an atypical case,
a patient with dHMN2 showed two compound heterozygous variants of p.R127Q and p.Y142H in
HSPB1, suggesting a putative case of recessive inheritance, which requires additional research to
confirm. Three HSPB8 variants were located in the p.K141 residue, which seemed to be a mutational
hot spot. There were no significant differences between patient groups, which divided by sHSP genes
for clinical symptoms such as onset age, severity, and nerve conduction. Early-onset patients showed
a tendency of slightly decreased sensory nerve conduction values compared with late-onset patients.
As a first Korean IPN cohort study examining sHSP genes, these results will, we believe, be helpful
for molecular diagnosis and care of patients with CMT2 and dHMN.

Keywords: Charcot-Marie-Tooth disease type 2; distal hereditary motor neuropathies; HSPB1; HSPB8;
HSPB3; Korean

1. Introduction

Inherited peripheral neuropathies (IPNs) are a group of genetically and clinically
heterogeneous neuromuscular disorders characterized by distal muscle weakness and
loss of sensation in the upper and lower extremities. They include hereditary motor
and sensory neuropathy (HMSN), conventionally called Charcot-Marie-Tooth disease
(CMT), distal hereditary motor neuropathies (dHMN), hereditary sensory autonomic
neuropathies (HSAN), and hereditary neuropathy with pressure palsies (HNPP). As the
most common IPN, CMT is usually divided into three categories according to the peripheral
nerve conduction velocities (NCVs): the demyelinating type (also called CMT1), the axonal
defective type (also called CMT2), and the intermediate type.

Mutations in more than 130 genes with variable functions have been reported to be
implicated in the pathogenesis of IPNs. Among these genes, three small heat shock protein
(sHSP) genes belonging to the ATP-independent molecular chaperones family have been
reported to cause several types of IPNs, such as dominant CMT2 and dHMN. Mutations in
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HSPB1 (MIM 602195), which encodes HSP27, are implicated in dominant CMT2F (MIM
606595) and dHMN2B (MIM 608634) [1,2], but rarely associated with the recessive type [2,3].
HSPB8 (MIM 608014), which encodes HSP22, is implicated in CMT2L (MIM 608673) and
dHMN2A (MIM 158590) [4,5]. HSPB3 (MIM 604624) encoding HSP27-like protein (HSPL27),
which is the smallest protein in the sHSP family, is implicated in CMT2 and dHMN2C
(MIM 613376) [6,7]. Mutations in HSPB1 and HSPB8 were first reported in 2004 as the
causes of CMT2 or dHMN [1,4]; more than 40 mutations of three sHSP genes have been
reported to cause IPNs [8–10]. Mutations in other sHSP members, HSPB4 and HSPB5,
are associated with several nervous disorders, although no association with IPN has been
reported [11,12].

The sHSPs proteins are involved in a variable cellular process and play an important
role in maintaining cellular homeostasis and protecting cells from stress [13,14]. They also
interact with matrix proteins to stabilize and prevent misfolding or aggregation of pro-
teins [15]. Dysfunctions of sHSPs have been reported to be involved in various neurode-
generative diseases, such as Alzheimer disease, Parkinson disease, and Huntington disease,
caused by protein misfolding, abnormal aggregation, and accumulation [16,17].

We performed this study to identify pathogenic mutations in sHSP genes from Korean
patients with IPN. We have previously reported three sHSP mutations in five Korean IPN
families [7,18–20]. Including the previous results, this study separated nine pathogenic or
likely-pathogenic sHSP variants in 11 IPN families. For the patients with sHSP variants,
we characterized clinical phenotypes and analyzed genotype–phenotype correlations.

2. Materials and Methods
2.1. Subjects

This study was conducted using 782 Korean IPN families. Of them, 104 families were
diagnosed to be CMT type 1A with PMP22 duplication, and the remaining 678 families,
which consisted of 1016 affected and 944 unaffected individuals, were further examined to
determine genetic causes. Paternity was determined for families with de novo mutations
by using the PowerPlex Fusion System (Promega, Madison, WI, USA). All participants
involved in this study provided written informed consent. For the minors under the ages
of 18 years old, consent was provided by their parents. This study was approved by
the Institutional Review Boards of Kongju National University (KNU_IRB_2018-27) and
Samsung Medical Center (2018-05-102-002).

2.2. Clinical Examinations

Clinical symptoms of motor and sensory impairments, muscle atrophies, and deep
tendon reflexes (DTRs) were measured as per standard methods. Strengths of the flexor
and extensor muscles were manually evaluated by the standard Medical Research Council
(MRC) scale. Physical disability was determined by dual methods of the CMT neuropathy
score ver. 2 (CMTNSv2) and functional disability scale (FDS). Sensory impairments were
measured by severity and level of pain, vibration, temperature, and position. Onset ages
were estimated by asking patient’s ages when a physical symptom first appeared [21].

2.3. Nerve Conduction Studies

Motor and sensory conduction velocities were measured by surface stimulation. Motor
nerve conduction velocities (MNCVs), and compound muscle action potentials (CMAPs) of
the median, ulnar, and radial nerves were measured by stimulation of the elbow and wrist.
The peroneal and tibial MNCVs and CMAPs were measured by stimulation of the knee
and ankle. Amplitude of CMAP was determined from baseline to negative peak value.
Sensory nerve conduction velocities (SNCVs) of the median, ulnar, radial, and sural nerves
were determined using the finger–wrist segments by the orthodromic method. Amplitude
of sensory nerve action potential (SNAP) was determined from positive to negative peaks.
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2.4. DNA Extraction and Genetic Screening

Total DNA was extracted from blood using the HiGene Genomic DNA Prep Kit
(Biofact, Daejeon, Korea). All samples were first examined for PMP22 duplication, and then,
proband samples with no PMP22 duplication were screened by whole exome sequencing
(WES; 512 samples) or targeted gene panel sequencing (TS; 166 samples) based on the
next generation sequencing (NGS). Exome capture and NGS were carried out using the
SureSelect Human All Exon 50M kit (Agilent Technologies, Santa Clara, CA, USA) and
the HiSeq 2000 or 2500 Genome Analyzers (Illumina, San Diego, CA, USA), respectively.
TS was performed by the method of Nam et al. [22]. As the reference sequence, the UCSC
assembly GRCh37/hg19 was used for mapping (http://genome.ucsc.edu/ accessed on
1 November 2021). Rare or unreported variants with the minor allele frequencies (MAFs) of
<0.01 were isolated from IPN-related genes; their MAFs were obtained from human genome
databases of the 1000 Genomes Project (1000G; http://www.1000genomes.org/ accessed
on 1 November 2021) and Genome Aggregation Database (gnomAD; https://gnomad.
broadinstitute.org/ accessed on 1 November 2021). For Korean frequency data, Korean
Reference Genome Database (KRGDB; http://coda.nih.go.kr/coda/KRGDB/index.jsp/
accessed on 1 November 2021) was used. Pathogenicity of variants was evaluated basically
by the American College of Medical Genetics and Genomics (ACMG) guideline (https://
wintervar.wglab.org/ accessed on 1 November 2021) and previous studies. For pathogenic
candidate variants, Sanger sequencing was performed to confirm their presence using
the SeqStudio or 3130XL Genetic Analyzers (Life Technologies-Thermo Fisher Scientific,
Carlsbad, CA, USA).

2.5. Conservation Analysis and in Silico Prediction

Amino acid sequence conservation of the mutation sites was determined using
MEGA-X program (ver. 5.05; http://www.megasoftware.net/ accessed on 1 November
2021). Mutation effects were predicted using three in silico analysis programs: PolyPhen-
2 (http://genetics.bwh.harvard.edu/pph2/ accessed on 1 December 2021), PROVEAN
(http://provean.jcvi.org/ accessed on 1 December 2021), and MUpro (http://mupro.
proteomics.ics.uci.edu/ accessed on 1 December 2021). Protein 3D structures were pre-
dicted using I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/ accessed on
1 December 2021), and were visualized using the Mol* feature of the Protein Data Bank
(http://www.rcsb.org/ accessed on 1 December 2021). The secondary structure of genomic
DNA was predicted using the mFold algorithm (http://www.unafold.org/ accessed on
1 December 2021).

2.6. Statistical Analysis

Non-parametric Mann–Whitney U test and parametric unpaired t-test were used to
compare the clinical data of patients grouped by sHSP genes. Parametric Pearson r or
non-parametric Spearman r values were used to analyze the correlation between clinical
values and onset ages. Significant differences were determined at p < 0.05. Statistical
analyses were performed using GraphPad Prism (ver. 8.00, GraphPad Software, San Diego,
CA, USA).

3. Results
3.1. Causative Variants in sHSP Genes

We identified nine pathogenic or likely pathogenic sHSP gene variants in 11 families
from the Korean IPN cohort study (Table 1); their pathogenicity was basically determined
using the guideline of ACMG (Table S1). Five HSPB1 variants were observed in six families
(Figure 1A) and three HSPB8 variants were observed in four families (Figure 1B). Only one
variant was found in HSPB3 (Figure 1C). These results include the sHSP gene variants in
Koreans previously reported by our research group [7,18–20]. The genotypes are provided
at the bottom of all the examined individuals in the pedigrees in Figure 1. All the causative
variants were confirmed in the extended family members by Sanger sequencing (Figure 2A).

http://genome.ucsc.edu/
http://www.1000genomes.org/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
http://coda.nih.go.kr/coda/KRGDB/index.jsp/
https://wintervar.wglab.org/
https://wintervar.wglab.org/
http://www.megasoftware.net/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.rcsb.org/
http://www.unafold.org/
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Amino acids of most variant sites were highly conserved from worm to mammal (Figure 2B).
Moreover, variants located in the α-crystallin domain were also fairly conserved among
human sHSP paralogues, while the variants located in the variable C-terminal domain
were less conserved (Figure 2C). Most variant sites were located in the evolutionally well
conserved α-crystallin domains, while the p.P182S and p.S187L in HSPB1 were located in
the C-terminal domain (Figure 3A). Pathogenic effects were predicted for all the causative
variants by at least one of three in silico analyses (Table 1).

Table 1. Disease-causing variants identified from HSPB1, HSPB8, and HSPB3 in Korean inherited
peripheral neuropathy patients.

Genes
Families Mutations Mutant Allele Frequencies 2 In Silico Analyses 3

Class Notes and
ReferencesID Type Nucleotide 1 Amino acid 1000G gnomAD KRGDB PRO PP2 MUp

HSPB1 FC1005 dHMN2B
[c.380G>A] + [p.R127Q] + NR 4.0×10−6 NR −3.35 * 1.00 * −0.58 * LP

Biallelic[c.424T>C] [p.Y142H] NR NR NR −4.75 * 1.00* −0.32 * LP
FC189
FC522
FC567

dHMN2B
CMT2F
CMT2F

c.404C>T p.S135F NR NR NR −5.01 * 0.96 * −0.37 * P [1,2,18,19,23,
24]

FC313 CMT2F c.544C>T p.P182S NR NR NR −6.84 * 1.00 * −1.00 * P De novo, [25]
FC1150 CMT2F c.560C>T p.S187L NR 4.1×10−6 NR −2.17 0.62 * 1.00 P [23]

HSPB8 FC585
FC1196 dHMN2A c.421A>G p.K141E NR NR NR −2.39 1.00 * 0.79 P [4,26,27]

FC031 CMT2L c.422A>C p.K141T NR NR NR −3.62 * 1.00 * 0.16 P De novo, [20]
FC107 dHMN2A c.423G>T p.K141N NR NR NR −2.63 * 1.00 * 0.22 P [5,23,26]

HSPB3 FC702 CMT2 c.352T>C p.Y118H NR 4.0×10−6 NR −4.97 * 1.00 * −0.85 * LP [7]

1 Reference DNA sequences: HSPB1: NM_001540.5, HSPB8: NM_014365.3, and HSPB3: NM_006308.3. 2 Minor
allele frequencies from the 1000 Genomes Project (1000G), the Genome Aggregation Database (gnomAD), and
Korean Reference Genome Database (KRGDB). 3 In silico scores of PolyPhen-2 (PP2) ~1, PROVEAN (PRO) < −2.5,
and MUpro (MU) < 0 indicate pathogenic prediction (* denotes a pathogenic prediction). Abbreviations: CMT,
Charcot-Marie-Tooth disease; dHMN, distal hereditary motor neuropathy; LP, likely pathogenic; NR, nonreported;
P, pathogenic.
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Figure 1. Inherited peripheral neuropathy families with small heat shock protein gene mutations.
Genotypes of the interested variants are provided at the bottom of all examined family members.
Arrows indicate the proband (unfilled symbols (�, #): unaffected individuals; black-filled sym-
bols (�, •): affected individuals; gray-filled symbols: unaffected individuals having corresponding
mutation;

∧
: twins). (A) Pedigrees with HSPB1 mutations. (B) Pedigrees with HSPB8 mutations.

(C) Pedigree with HSPB3 mutation.



Genes 2022, 13, 462 5 of 13

Genes 2022, 13, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. Inherited peripheral neuropathy families with small heat shock protein gene mutations. Genotypes of the inter-
ested variants are provided at the bottom of all examined family members. Arrows indicate the proband (unfilled symbols 
(□, ○): unaffected individuals; black-filled symbols (■, ●): affected individuals; gray-filled symbols: unaffected individuals 
having corresponding mutation; ˄: twins). (A) Pedigrees with HSPB1 mutations. (B) Pedigrees with HSPB8 mutations. (C) 
Pedigree with HSPB3 mutation. 

 
Figure 2. Mutations in three small heat shock protein genes. (A) Chromatograms of the mutation 
sites. They were obtained by Sanger sequencing. Vertical arrows indicate the mutation sites (WT: 
wild type allele, Mut: mutant allele). (B) Conservation of amino acids in the mutation sites (red) and 
vicinant sequences. Reference sequences are: NP_001531.1 (Homo sapiens), XP_519162.3 (Pan troglo-
dytes), NP_038588.2 (Mus musculus), NP_990621.1 (Gallus gallus), NP_001072817.1 (Xenopus tropi-
calis), NP_001008615.2 (Danio rerio), NP_001287001.1 (Drosophila melanogaster), NP_498776.1 (Caeno-
rhabditis elegans) for HSPB1, NP_055180.1 (H. sapiens), XP_509417.1 (P. troglodytes), NP_109629.1 (M. 
musculus), XP_004934466.1 (G. gallus), NP_001005658.1 (X. tropicalis), NP_001094427.2 (D. rerio), 

Figure 2. Mutations in three small heat shock protein genes. (A) Chromatograms of the mutation
sites. They were obtained by Sanger sequencing. Vertical arrows indicate the mutation sites (WT:
wild type allele, Mut: mutant allele). (B) Conservation of amino acids in the mutation sites (red)
and vicinant sequences. Reference sequences are: NP_001531.1 (Homo sapiens), XP_519162.3 (Pan
troglodytes), NP_038588.2 (Mus musculus), NP_990621.1 (Gallus gallus), NP_001072817.1 (Xenopus
tropicalis), NP_001008615.2 (Danio rerio), NP_001287001.1 (Drosophila melanogaster), NP_498776.1
(Caenorhabditis elegans) for HSPB1, NP_055180.1 (H. sapiens), XP_509417.1 (P. troglodytes), NP_109629.1
(M. musculus), XP_004934466.1 (G. gallus), NP_001005658.1 (X. tropicalis), NP_001094427.2 (D. rerio),
NP_001027115.1 (D. melanogaster), NP_498776.1 (C. elegans) for HSPB8, NP_006299.1 (H. sapiens),
XP_517764.2 (P. troglodytes), NP_064344.1 (M. musculus), XP_001231558.1 (G. gallus), XP_002941074.1
(X. tropicalis), NP_001092922.1 (D. rerio), NP_523999.1 (D. melanogaster), NP_498776.1 (C. elegans)
for HSPB3. (C) Amino acid sequence conservation at the mutation sites (red) among human sHSP
paralogues. Reference amino acid sequences are: HSPB2: NP_001532.1, HSPB4: NP_000385.1, HSPB5:
NP_001276736.1, and HSPB6: NP_653218.1.
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cessed on 5 December 2021), while two mutations at the p.R127 residue have been re-
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CMT2F or dHMN2B patients with a dominant manner: p.R127W [1,23,26,29,30] and 
p.R127L [31,32]. The p.Y142H was an unreported novel variant. Both variants were eval-
uated as “likely pathogenic” by the guidelines of the ACMG. Since three children had only 
one of the two variants (III-1: p.Y142H; III-2 and -3: p.R127Q), each variant seemed to be 
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Figure 3. Schemes of three small heat shock proteins and predicted secondary structure of single
strand DNA region for p.N138 to p.K141 residues in HSPB8. (A) Schematic diagrams of three
sHSP proteins. Pathogenic or likely pathogenic variants identified in this study are indicated at the
top of the diagrams (red). Some previously reported mutations are indicated at the bottom of the
diagrams (ACD: α-crystallin domain, CTD: C-terminal domain, IxI/V: IxI/V motif within CTD, NTD:
N-terminal domain, and WDPF: WDPF motif within NTD). (B) Predicted secondary structure of
single strand DNA region for p.N138 to p.K141 residues in HSPB8. The nucleotides corresponding to
p.N138 and p.K141 are indicated in yellow. The p.K141 was distinguished from p.N138 by a red box.
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3.1.1. Variants in HSPB1

Five pathogenic or likely pathogenic mutations were identified in HSPB1 from six
CMT2 or dHMN families (Figure 1A). A c.404C>T (p.S135F) was observed three times in
one large dHMN family (FC189) and two CMT2 families (FC522 and FC567); many studies
have reported this mutation as a genetic cause of CMT2F and dHMN2B [1,2,18,19,23,24].
A 6-year-old boy (VI-2) in the FC189 family and two girls (6 and 7 years old, III-1 and III-2)
in the FC522 family had the p.S135F variant, but they were still not affected. As a same
site mutation, c.404C>A (p.S135Y) was once reported as an underlying cause of CMT2 [28].
A variant of c.544C>T (p.P182S) was observed in a CMT2F family (FC313). Neither of the
unaffected parents (I-1 and I-2) of the proband showed that variant, suggesting a de novo
mutation. This variant was once reported by Kijima et al. [25]. A c.560C>T (p.S187L) was
observed in a CMT2F family (FC1150), which was reported by Echaniz-Laguna et al. [23]. Two
heterozygous variants of c.380G>A (p.R127Q) and c.424T>C (p.Y142H) were interestingly
found in a sporadic patient with dHMN (FC1005). The p.R127Q was reported as a variant
of uncertain significance in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/ accessed on
5 December 2021), while two mutations at the p.R127 residue have been reported several
times to be pathogenic in Belgian, French, Norwegian, and Japanese CMT2F or dHMN2B
patients with a dominant manner: p.R127W [1,23,26,29,30] and p.R127L [31,32]. The p.Y142H
was an unreported novel variant. Both variants were evaluated as “likely pathogenic” by
the guidelines of the ACMG. Since three children had only one of the two variants (III-
1: p.Y142H; III-2 and -3: p.R127Q), each variant seemed to be inherited from each of the
proband’s parents. Both parents were normal by history taking and three children showed
no abnormal phenotype at the recent neurological examination, including motor and sensory
function, and DTR. Thus, it was suggested that the dHMN phenotype might be due to the
biallelic effect of the two compound heterozygous variants.

3.1.2. Variants in HSPB8

Three variants, c.421A>G (p.K141E), c.422A>C (p.K141T), and c.423G>T (p.K141N), were
identified in HSPB8 from the CMT2 and dHMN families (Figure 1B). Variants of p.K141E and
p.K141N, which were identified in three dHMN families (FC585 and FC1196 with p.K141E, and
FC107 with p.K141N), have been reported many times as the underlying cause of CMT2L and
dHMN2A [4,5,23,26,27]. The p.K141T shown in the CMT2 family (FC031) has been reported
previously to be likely pathogenic [20]. In the FC031 family, neither of the unaffected parents
showed that variant, suggesting a de novo mutation. So far, four mutations at the p.K141
residue in HSPB8 have been reported as the genetic causes of CMT2 or dHMN: c.421A>G
(p.K141E), c.422A>T (p.K141M), c.423G>C (p.K141N), and c.423G>T (p.K141N) [4,5,23,26,27].
Thus, the p.K141 site seems to be a mutational hot spot, which may be related to its location at
the stem of a predicted single strand DNA hairpin structure (Figure 3B).

3.1.3. Variant in HSPB3

One variant of c.352T>C (p.Y118H) was observed from HSPB3 in a CMT2 family
(FC702) (Figure 1C). The ACMG guideline evaluated the p.Y118H as a variant of uncertain
significance (VUS). However, this study classified it as a likely pathogenic variant, because
it was previously reported as an underlying cause of CMT2 by Nam et al (7). In HSPB3,
only a p.R7S mutation was reported as a pathogenic variant causing dHMN2C, except for
p.Y118H [6].

3.2. Simulation of 3D Protein Structure

Three-dimensional conformational changes of mutant proteins were simulated to
predict the effects of the sHSP gene mutations (Figure 4). In HSPB1, the p.R127 residue
of the p.R127Q mutation in the α-crystallin domain forms salt bridges with negatively
charged p.D107 and p.E125 located in the β4 and β5 strands. However, the salt bridge with
p.D107 was destroyed in the p.R127Q mutant, predicting a conformational modification.
The p.S135 forms hydrogen bonds with p.H124 and p.Y133 within the β-strands arranged

https://www.ncbi.nlm.nih.gov/clinvar/


Genes 2022, 13, 462 7 of 13

in parallel. However, both hydrogen bonds were disappeared in the p.S135F mutant.
The HSPB1 p.Y142, which is located at the β6–β7 strand in an α-crystallin domain, has a
hydrogen bond with a near-located positively charged p.R140 residue. However, it was
predicted to break and the β-strand structure was distorted by the p.Y142H mutation.
The p.P182S mutation located in the C-terminal IxI/V motif newly forms two hydrogen
bonds with an adjacent hydrophilic p.Q175 residue, which might result in a conformational
change of the protein quaternary structure. In the p.S187L mutation of the C-terminal
domain, hydrogen bonds of p.S187 with p.F185 and p.Q190 were destroyed and new bonds
with p.T184 and p.A189 were formed. The p.S187L mutation was previously reported to
cause protein aggregation [23]. In HSPB8, p.K141 residue in the α-crystallin domain forms
hydrogen bonds with p.N101 and p.V121, and forms a cation–π interaction with p.F139.
Amino acid substitution with a negatively charged residue (p.K141E) caused the breakage
of these hydrogen bonds and formed new hydrogen bonds with N-terminal residues. In
the p.K141N mutation, a new hydrogen bond was similarly formed between p.K141N and
N-terminal p.R86. In the p.K141T mutant, a hydrogen bond to p.N101 was broken, which
was predicted to cause a structural alteration of the β-sheets.

In HSPB3, p.Y118 of wild type forms two hydrogen bonds with p.L94, and p.W93
formed a cation–π interaction with p.K119. However, in the p.Y118H mutant, the cation–π
interaction was destroyed, predicting an unstable structural opening.
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3.3. Rare Variants in sHSP Genes with Uncertain Significance

We observed three rare sHSP variants with MAFs less than 0.01 in the 1000G and KRGDB
in the sporadic IPN patients who showed phenotypes of CMT1 or HNPP instead of CMT2
or dHMN: p.R27P and p.Q128X in HSPB1 and p.F79C in HSPB8. The p.R27P in HSPB1
and p.F79C in HSPB8 were found in each patient with the HNPP phenotype (Table S2). The
p.Q128X stop-gain variant in HSPB1 was found in a patient with CMT1. These three variant
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were evaluated by VUS by the ACMG guideline. Several HSPB1 stop-gain or frameshift
mutations, such as p.W16X, p.W45X, p.L58Cfs*52, and p.L191Qfs*36, have been reported to
VUS by ClinVar, but some variants (such as p.L58Afs*105, p.A61Rfs*100, and p.Q175X) have
been reported to be pathogenic [23,32,33].

3.4. Clinical Characterization of Patients with sHSP Gene Mutations

The clinical phenotypes of 29 patients with sHSP gene mutations are shown in Table S3.
The clinical phenotypes of the patients with three gene mutations were largely similar.
Weakness and atrophy of muscles began and predominated in the distal portions of legs,
and were less severe in the distal upper limbs. Disability in the distal lower limbs varied
from mild weakness to complete paralysis. The mean onset age of the patients with the
HSPB1 mutations was 23.6 ± 8.2 years, with a wide range of 11 to 45 years; that of the
patients with the HSPB8 mutations was 18.6 ± 3.9 years, with a relatively narrow range
of 13 to 26 years. In the HSPB1 group, the mean onset ages of the dHMN2B and CMT2F
patients were similarly 23.8 ± 7.1 years and 23.1 ± 10.1 years, respectively. In the HSPB8
group, the mean onset age of the dHMN2A patients was 19.5 ± 3.3 years, and that of the
CMT2L patient was 13 years. The mean FDS and CMTNSv2 were 2.7 ± 1.8 and 13.4 ± 8.2
in the HSPB1 group, and 3.3 ± 1.5 and 15.7 ± 6.0 in the HSPB8 group, respectively.

Sensory loss was present in 7 of 20 patients with the HSPB1 mutations, in 1 of 7 patients
with the HSPB8 mutations, and in all patients with the HSPB3 mutations. Pes cavus was
present in 17 of 20 patients of HSPB1 and in all patients of HSPB8 and HSPB3. As additional
symptoms, one CMT2L patient with p.K141T in HSPB8 (FC031: II-1) showed scoliosis,
and a 62-year-old dHMN2B woman with p.S135F in HSPB1 (FC189: IV-13) showed the
most severe physical disability of being wheelchair bound (FDS: 7, CMTNSv2: 31), while a
dHMN2B man with compound heterozygous HSPB1 mutations of p.R127Q and p.Y142H
(FC1005: II-5) revealed late onset (45 years) and mild clinical symptoms (FDS: 1, CMTNSv2:
4) compared with other affected individuals.

When clinical phenotypes were compared between HSPB1 and HSPB8 patients, pa-
tients with HSPB8 mutations showed slightly earlier onset and more severe physical
disability than those with HSPB1 mutations, but no significant differences were observed
in the onset age (U = 39.5, p = 0.096), FDS (U = 51, p = 0.293), and CMTNSv2 (t = 0.695,
p = 0.493) (Figure 5A–C). In addition, there were no significant differences in onset and
physical severity between male and female patients (onset: U = 97.5, p = 0.859; FDS: U = 93,
p = 0.699; CMTNSv2: t = 0.655, p = 0.518). When the correlations between onset ages
and physical disability levels were examined for all the examined patients, no significant
correlations were observed in the values of FDS and CMTNSv2 (FDS: p = 0.418, CMTNSv2:
p = 0.571) (Figure 6A,B).

3.5. Electrophysiological Findings of Patients with sHSP Gene Mutations

The electrophysiological values of 28 patients with sHSP gene mutations are shown
in Table S4. The nerve conduction findings of the patients with three gene mutations
were largely similar, and there was no significant difference among the three gene groups.
All patients showed predominantly decreased motor CMAP amplitudes in lower limbs
compared to upper limbs. The mean median CMAP in upper limbs was 11.1 ± 7.4 mV
and the mean peroneal CMAP in lower limbs was 0.8 ± 1.7 mV. In the follow-up studies of
some patients, the median MNCV was found to decrease at an average of 1.56 ± 2.20 m/s
per year, but the decrease rate of the median SNCV was much lower, with an average of
0.04 ± 1.63 m/s per year.

When phenotypes were compared between HSPB1 and HSPB8 patients, no significant
differences were observed in the median MNCV (U = 47, p = 0.213) or median SNCV
(U = 55, p = 0.422) (Figure 5D,E). In addition, there were no significant differences in
nerve conduction values between male and female patients (median MNCV: U = 77.5,
p = 0.403; median SNCV: U = 89, p = 0.763). When the correlations between onset age and
electrophysiological features were analyzed, early-onset patients showed a tendency of
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slightly decreased sensory nerve conduction values compared with late-onset patients
(median SNCV: p = 0.024 and median SNAP: p = 0.031); however, other comparisons
of motor nerve conduction values showed no significant correlations (median MNCV:
p = 0.319, and median CMAP: p = 0.308) (Figure 6C,D).
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4. Discussion

Mutations in the HSPB1, HSPB8, and HSPB3 genes have been reported to cause
autosomal dominant IPNs of CMT2 and dHMN. This study identified nine pathogenic or
likely pathogenic sHSP gene mutations from 11 families in the Korean IPN cohort study.
As expected, HSPB1 mutations were most frequently observed in six families with five
mutations. HSPB8 mutations were observed in four families with three mutations, and
HSPB3 mutation was observed only in a family. Three mutations (p.R127Q in HSPB1,
p.K141T in HSPB8, and p.Y118H in HSPB3) were unreported in other ethnic groups,
although they were registered in dbSNP. Two paternal-originated de novo mutations
were observed in each HSPB1 and HSPB8. The de novo mutation was suggested to have
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originated from the father by haplotyping analysis using adjacent SNPs. The frequencies of
IPN families with sHSP gene mutations was determined to be 1.41% in the total unrelated
IPN patients and 1.62% in the patients excluding CMT1A (Table 2). When the frequency in
the patients excluding CMT1A was compared with other study groups, it was similar with
1.59% of Japanese [10]. It was higher than the frequencies of Han Chinese (0.91%), British
(0.83%), American (0.00%), and Brazilian (0.00%), while lower than those of Italian (4.80%)
and Spanish (3.94%) [8,9,34–36].

As an unusual case, a male patient with dHMN2 interestingly showed two heterozy-
gous mutations of p.R127Q and p.Y142H in HSPB1. The p.R127Q has been registered as
a variant of uncertain significance in ClinVar, while p.R127W and p.R127L in the p.R127
residue have been reported to be pathogenic for CMT2F or dHMN2B [1,23,26,29–32]. Both
of this patient’s parents were unaffected, although genetic and neurological testing was not
performed, and three children having alternatively one of each variant were also unaffected.
Thus, the patient seems to be a recessive type of dHMN2B by bialleles of two compound
heterozygotes. However, we could not exclude a possibility that any of two variants may
role as a dominant genetic cause. As the reasons, (a) the ages of the three children (29,
28, and 22 years old, respectively) may not have reached the onset age yet, considering
the proband’s onset of 45 years old, and (b) it may possible that a variant was inherited
by a de novo event. In spite of these two mutations, our patient showed late onset and
mild symptoms. So far, a few cases of autosomal recessive CMT2 or dHMN2 patients with
HSPB1 mutations have been reported. As a first report, a p.L99M homozygous mutation
was reported in a consanguineous Pakistani patient with dHMN [2]. Then, a p.R140G
homozygous mutation was reported in an Indian patient with distal vacuolar myopathy
and motor neuropathy [3], and pS315F and p.R316L homozygous mutations were identified
in the Republic of Cabo Verde and Iranian families with CMT2, respectively [24].

Table 2. Frequencies of inherited peripheral neuropathy patients with small heat shock protein gene
mutations according to populations.

Populations
Sample Numbers sHSP genes Frequencies (%)

References
Total CMT1A

Exclusion HSPB1 HSPB8 HSPB3 Total CMT1A
Exclusion

Korean 782 678 6 4 1 1.41 1.62 This study
Han Chinese
(Taiwan) 427 219 2 0 0 0.47 0.91 [9]

Italian 566 333 14 2 0 2.83 4.80 [34]
Japanese - 1005 14 1 1 - 1.59 [10]
British (London) - 120 0 1 0 - 0.83 [8]
American (Iowa) - 100 0 0 0 - 0.00 [8]
Brazilian 503 387 0 0 0 0.00 0.00 [36]
Spanish 438 254 7 3 0 2.28 3.94 [35]

Abbreviations: sHSP, small heat shock protein; CMT1A, Charcot-Marie-Tooth disease type 1A.

All three HSPB8 mutations (c.421A>G;p.K141E, c.422A>C;p.K141T, and c.423G>T;
p.K141N) observed in this study were, interestingly, located in the p.K141 residue. Including
this result, four mutations at the p.K141 residue have been reported as the genetic causes
of CMT2 or dHMN: p.K141E, p.K141T, p.K141M, and p.K141N [4,5,20,23,27]. Thus, the
“AAG” sequence coding p.K141 seems to be a mutational hot spot, which is predicted
to locate a stem of single-stranded DNA hairpin structures. Most patients with HSPB8
defects showed mutations in the p.K141 site, with the exception of two families with p.P90L
and p.N138T. The p.K141 was well conserved with basic amino acids of lysine or arginine
among homologues of paralogues as well as orthologues.

The clinical features of the patients with three gene mutations were largely similar, and
there were no significant differences for onset age, severity, nerve conduction, or muscle
atrophy between patient groups between HSPB1 and HSPB8 mutations. Actually, the
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clinical features of HSPB1 and HSPB8 patients were difficult to distinguish in both clinical
examination and nerve conduction studies. Therefore, when sHSP patients are suspected,
genetic testing can be said to be the most useful. Physical severities measured by FDS
and CMTNSv2, electrophysiological values measured by CMAP, and MNCV showed no
significant difference by onset age except for SNCV and SNAP. The mean onset age was
earlier in CMT2 patients than in dHMN patients, but with no significant difference.

5. Conclusions

This IPN cohort study identified nine sHSP gene mutations in 11 families as the
underlying causes of CMT2 or dHMN phenotypes. In particular, this study is the first report
of a putative patient with autosomal recessive HSPB1 mutations in Korea. We carefully
analyzed genotype–phenotype correlations and also compared the clinical phenotypes
according to genes and onset ages. As a first Korean IPN cohort study analyzing sHSP
genes, we believe that this study will be helpful for the molecular diagnosis and care of
patients with CMT2 and dHMN.
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