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ABSTRACT

Motivation: Rapid methods for protein structure search enable
biological discoveries based on flexibly defined structural similarity,
unleashing the power of the ever greater number of solved protein
structures. Projection methods show promise for the development of
fast structural database search solutions. Projection methods map a
structure to a point in a high-dimensional space and compare two
structures by measuring distance between their projected points.
These methods offer a tremendous increase in speed over residue-
level structural alignment methods. However, current projection
methods are not practical, partly because they are unable to identify
local similarities.
Results: We propose a new projection-based approach that
can rapidly detect global as well as local structural similarities.
Local structural search is enabled by a topology-inspired writhe
decomposition protocol that produces a small number of fragments
while ensuring that similar structures are cut in a similar manner.
In benchmark tests, we show that our method, writher, improves
accuracy over existing projection methods in terms of recognizing
scop domains out of multi-domain proteins, while maintaining
accuracy comparable with existing projection methods in a standard
single-domain benchmark test.
Availability: The source code is available at the following website:
http://compbio.berkeley.edu/proj/writher/
Contact: dzhi@compbio.berkeley.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In the era of structural genomics, comparing a large number of
structures can be a dauntingly time-consuming task. Therefore, a
number of databases store precomputed structural similarities to
accelerate structural comparison queries (Dietmann et al., 2001;
Madej et al., 1995; Shindyalov and Bourne, 1998). However, such
approaches have several limitations. First, these databases are not
always updated in a timely fashion due to the sheer burden of
computational requirements. Even if one applies a program that can
compare two structures in 1 s, it would take more than 1 year to
perform all-versus-all comparisons of 7897 proteins from the 40%
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non-redundant protein set of Astral 1.71 (Chandonia et al., 2004),
which is only a subset of over 50 000 solved protein structures in
the PDB (Berman et al., 2000). The second drawback of existing
structural similarity databases is that they offer a rigid classification
of structural relationships according to some predefined set of
parameters. This precludes production of alternate classifications,
such as building phylogenies for a particular subset of proteins
while applying different scoring functions. In addition, analysis
of a large number of artificial structures, such as clustering of
models generated by structure prediction efforts, demands ultra-
fast structure comparison. Therefore, there is an increasingly
compelling need for tools that can rapidly compare a large set of
structures.

Similarity of protein structures is typically measured via structural
alignment, whose goal is to find a three-dimensional (3D)
transformation that brings into correspondence the largest number
of atoms between two structures. The quality of a 3D superposition
is often measured by the number of matched Cα atoms and the
distances between the matched atoms. The exact solution for the
pairwise structural alignment is computationally expensive (Ambuhl
et al., 2000). Therefore, heuristic approaches have been developed
to find good solutions with remarkable efficiency (for a review
see, Eidhammer et al., 2000). Even so, typical superposition-
based heuristic programs are still too slow for many purposes:
they take hours to perform a one-versus-all structural query. For
example, running combinatorical extension (CE; Shindyalov and
Bourne, 1998) for one protein structure against 2930 non-redundant
structures would take about 1 h on a modern desktop computer
(Kolodny et al., 2005) and thus several CPU-months to complete
an all-versus-all comparison.

A major speed increase for structural comparison was achieved by
considering schemes of reduced representation of protein structures,
instead of their full 3D coordinates of atoms. The most popular
scheme for reduced structure representation is the secondary
structure element (SSE), and a number of structure matching
methods based on SSEs have been developed since the 1990s
(Alexandrov and Fischer, 1996; Dror et al., 2003; Harrison et al.,
2003; Holm and Sander, 1995; Koch et al., 1996; Madej et al., 1995;
Mizuguchi and Go, 1995; Rufino and Blundell, 1994).

Since the 1980s, ideas from differential geometry and topology
have been explored to encode 3D structures into 1D representations
(Levitt, 1983; Rackovsky and Scheraga, 1984). Like a comparison
of protein amino acid sequences, a 1D representation allows much
faster structure comparison than a full 3D alignment. More recently,
several groups developed alternative 1D methods using innovative
shape descriptors, such as discrete torsion angles (Gong et al.,
2005), turning angles between smoothed backbone segments with
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a certain distance (Zhi et al., 2006), shape symbols (Ison et al.,
2005) or residue connectivity profiles (Teichert et al., 2007) [see
(Shu et al., 2008) for a recent review of 1D methods]. Indeed, these
methods can handle one-versus-all queries in a matter of minutes
with a somewhat lower accuracy. However, they are still not fast
enough for all-versus-all structure comparisons of datasets of current
scale.

The ultimate reduction of running times are achieved by a new
approach called projection methods, or ‘0D’ methods (Hasegawa
and Holm, 2009). The philosophy behind this approach is that
the evaluation of overall structural similarity does not require an
explicit specification of a 3D transformation and a residue-to-
residue correspondence. Instead this approach maps a complete
structure into a fixed length vector, corresponding to a point
in a high-dimensional space, where each dimension encodes
some transformation-invariant structural feature. Similarity between
structures thus can be evaluated by the geometric distance of
their projection points. Since the mapping step only needs to be
done once and the comparison step demands little computation,
projection methods can drastically speed up structural comparison.
A typical one-versus-all query with projection methods takes only a
fraction of second. A non-exhaustive list of examples of projection
methods are: the PRIDE/PRIDE2 method (Gaspari et al., 2005),
which uses histogram of Cα distances; the LCM method (Lisewski
and Lichtarge, 2006), which uses histogram of backbone distances
between contacting Cα atoms; the SGM method (Røgen and Fain,
2003), which uses Gauss integrals (GIs); the LFF method (Choi
et al., 2004), which uses descriptors of SSE pairs; and the SSE
footprints method (Zotenko et al., 2006), which uses descriptors of
SSE triples.

Projection methods can serve as fast filters for comprehensive
structure search systems. Current practical structural search
programs typically use SSE matching programs as filters before
engaging full alignment. For example, DaliLite (Holm and Park,
2000) employs 3D-lookup (Holm and Sander, 1995) and Vorolign
(Birzele et al., 2007) employs SSE alignment algorithm (SSEA,
McGuffin et al., 2001) as fast filters. Projection methods are typically
even faster than these SSE-based methods and thus have potential
to be fast structural search filters.

However, there are several challenges preventing current
projection methods from being practical. First, since current
projection methods use a single vector encoding global properties
of the structure—we call them global projection methods—they
are unable to detect local structural similarities. For example, they
cannot detect the similarity between a single-domain protein to one
of the domains in a multi-domain protein. Second, certain relatively
small structural changes in a protein structure, e.g. loop movement
or loop indels, may cause significant changes in some type of
global descriptors, e.g. GIs (Røgen and Fain, 2003). Conversely,
some structures coincidentally share similar global features and thus
introduce false positives.

Here, we propose a new projection-based scheme, writher, for
structural comparison that will allow for the detection of local
similarities. In this scheme, we view a structure as an ensemble
of representative fragments. We employ the writhe decomposition, a
novel procedure that decomposes a structure into fragments based on
its intrinsic topological characteristics. Instead of using one global
descriptor for the entire structure, we consider a set of descriptors
for all representative segments. The conceptual novelty of our

approach lies in that this representation allows for a comprehensive
yet rapid approach to structural comparison: the similarity between
pairs of segments is measured in rapid constant time, in the same
fashion as in SGM (Røgen and Fain, 2003), and the global or
local similarities are evaluated by scoring functions integrating
similarities of individual fragments. To control the number of
fragments to be matched, we apply a database-indexing scheme to
efficiently retrieve only the fragments that are potentially similar to
the query.

We test our method in two ways: a standard single-domain
benchmark test and also a multi-domain test, where a set of multi-
domain proteins are queried against a database of single-domain
structures. We compare the performance of writher against existing
projection methods. In addition, we also compare writher with
leading non-projection-based structure comparison filters. Our test
result shows that writher outperforms all these competing methods
in the multi-domain test, while it has a comparable accuracy in the
standard single-domain test. We believe that writher offers a key
advance toward building a practical structure comparison tool for
the richness of structures available.

2 METHODS

2.1 Preliminaries
Røgen and Fain (2003) pioneered the application of GIs (also known as
Vassiliev knot invariants) as topological descriptors of protein structure.
To be self-contained, we include a brief description of the GIs for protein
structures below adapted from Røgen and Fain (2003). Readers are referred
to Røgen and Fain (2003) and references therein for further details.

We represent a protein structure by C =<C(i)>, i=1,...,n−1, the
polygonal curve over protein’s Cα atoms, where C(i) represents the line
segment connecting Cα atoms of residues i and i+1. The discrete version
(first order) GI of the structure, also known as the writhe number (Levitt,
1983), may be described as:

G(1,2)(C)=
∑

1≤i1<i2 ≤n−1

w(i1,i2), (1)

where w(i1,i2) is the probability of observing the signed crossing of line
fragments C(i1) and C(i2) from an arbitrary angle in the space. Therefore, the
GI is the average number of signed self-crossings seen in the curve C from
an arbitrary angle in the space. Here, we define the matrix of contribution of
residue pairs i1 and i2 to the overall writhe number, W =w(i1,i2),1≤ i1 < i2 ≤
n−1, as the writhe-matrix. Similarly, the average number of unsigned self-
crossings of curve C is: G|1,2|(C)=∑

1≤i1<i2≤n−1 |w(i1,i2)|. G(1,2)(C) and
G|1,2|(C) are called first-order GIs. Higher order GIs can be defined, such as
second-order GI G(1,3)|2,4|(C)=∑

1≤i1<i2<i3<i4≤n−1 w(i1,i3)|w(i2,i4)|. The
higher order GIs describe the configurations of the crossings.

Røgen and Fain (2003) used 30D vector consisting of all first-, second-
and some third-order GIs to represent a protein backbone, thus providing a
mapping from an arbitrary protein structure to the 30D Euclidean space. The
GI values were scaled to have uniform variances. They showed that a simple
nearest neighbor-based algorithm can reproduce the structural similarity
among cath (Orengo et al., 1997) family members with a considerable
accuracy. We follow Røgen and Fain (2003) and use the 30D SGM vectors
in our experiments.

The GIs can also be defined over a smoothed backbone, rather than the
original backbone. GIs over the original backbone are heavily influenced
by the local geometry within SSEs. In particular, α-helices contribute large
negative values to the total writhe value. Defining GIs over smoothed
backbone can effectively reduce the signal due to the local geometrical
properties of SSEs and thus emphasize the global folding topology. For
smoothing, we assign the center of gravity of every k consecutive Cα atoms as
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a new pseudo-Cα atom. We will discuss selection of k in the next subsection.
Lindorff-Larsen et al. (2005) and Røgen (2005) discussed the effect of
defining SGM vector over smoothed backbone versus that over original
backbone. Generally, different dimensions of the SGM vector over smoothed
backbone are more independent than that over original backbone (Røgen,
2005). However, an SGM vector over original backbone leads to slightly
better classification performance (Lindorff-Larsen et al., 2005), probably
because that it contains more SSE information, which is the basis for most
existing structural classification schemes. In this work, the GI over both
original and smoothed backbones is used.

In this work, we note the critical role of the writhe matrix in defining GI.
The writhe matrix is the ‘gradient’ of the first-order GI, as the latter is
summation (integral) of the former [Equation (1)]. Moreover, from the
definitions of higher order GIs it is clear that the writhe matrix determines
GIs of all orders. While Røgen and Fain (2003) only implicitly use the writhe
matrix for the computation of GI vectors, we make an explicit representation
of the writhe matrix and explore its characteristics, which will lead to our
decomposition method.

2.2 Writhe decomposition
Our approach to the local structure comparison problem represents a protein
structure by a set of substructures that reflect its local properties. The premise
is that if two structures are similar, globally or locally, they should have a
high chance of sharing some similar substructures. Therefore, local structural
similarity between proteins can be inferred by matching their substructures
using global structural comparison methods. The challenge is to obtain a
sensible way of decomposing a structure into substructures.

A naive approach is to use all curve fragments, {C(i,j) :∀i,j}, where C(i,j)
denotes the structural fragment between i and j. However, this would produce
too many fragments, and most fragments will be redundant. We wish to find
a compact representative set of possibly overlapping fragments of the input
backbone curve, such that similar structures are cut in a similar way, thus
likely to share some fragments. Therefore, the fragments should be defined
based on some intrinsic topological characteristics of the structures. Next,
we introduce a compact decomposition that exploits the sparseness of the
writhe matrix.

We observe that the writhe matrix over the smoothed backbone is often
sparse, i.e. only a small number of entries in the writhe matrix deviate
significantly from zero. This is because most residue segments are too far
apart to generally appear to be crossing, and most nearby segments are
parallel. We are interested in matrix values that are above some specified
threshold that we termed ‘significant entries’ (Fig. 1c). Since computing GIs
(of all orders) amounts to taking sums of entries in the writhe matrix, only
significant entries will have significant contribution to GI.

Significant entries in the writhe matrix correspond to backbone crossings,
where backbone segments with non-parallel directions pass one another at
a close distance. Significant entries describe the configuration of backbone
crossings, which reflects the pattern of backbone packing in the structural
core of the protein. Since backbone crossings often involve several residues
in a row, significant w-values due to one crossing event organize into a patch.
We find local extreme values within a patch as concise representation of the
crossing event.

Our writhe decomposition method is based on these local extreme values.
For a writhe matrix, we first set to zero all entries with an absolute value
smaller than a threshold of 0.03. This threshold is sufficient to retain ∼10%
of the entries in the writhe matrix. In case there are no entries above the
threshold, we keep reducing the threshold by half until some entries are
found. As a result, small patches of non-zero entries with significant values in
the writhe matrix are identified. Within small patches, we find local extreme
values (i,j), where abs(w(i,j))≥abs(w(i±{0,1},j±{0,1})), and then include
C(i,j) in the set of fragments for writhe decomposition. Finally, we add the
entire protein chain, i.e. C(1,n−1). Notice that in our protocol multiple local
extreme values per patch are permitted so long as they are not adjacent.

Fig. 1. Writhe decomposition. As an example, we use PDB (Berman
et al., 2000) entry 1UCS:A (Ko et al., 2003), structure of a Type III
antifreeze protein RD1. (a) Cartoon representation of the original chain.
(b) Smoothed backbone. (c) Writhe matrix (only upper triangle entries are
shown). (d) Local extreme values in writhe matrix are mapped back to the
smoothed backbone. One extreme value is used as an illustration. As is
typical, it represents a close perpendicular crossing of secondary structure,
in this case two adjacent strands of a highly twisted sheet. (e) A segment in
the original chain corresponding to the red linker in (d).

Table 1. Smoothing dependency of writhe decomposition

k 1 3 5 7 9 11 13

n, # frags 544.8 90.6 62.1 36.0 28.7 19.1 16.2

The average numbers of fragments from writhe decomposition over 10 representative
structures (See caption of Supplementary Fig. S2 for PDB codes) with different
smoothing parameter k are shown. k =1 means no smoothing. Smoothing with even
k =3 significantly reduces the number of fragments compared with non-smoothing. We
observe a generally exponentially decay in number of fragments with the smoothing
parameter k, which we fit to log(n)=−0.18k+7.3 by linear regression (Supplementary
Fig. S2). The value of k =7 yields the largest negative deviation (residue of regression)
from the regression line, and thus representing a balance of structural details (small k)
and concise writhe decomposition (small n).

This modest redundancy allows flexibility in later fragment matching of
similar fragments with slight variations in their ending points.

The number of extreme values strongly depends on the smoothing
parameter k, the number of consecutive Cα atoms to be averaged. As shown
in Table 1, higher values of k result in smoother backbone and consequently
reduce the number of fragments in writhe decomposition. We chose the value
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Fig. 2. Scatter plot of length of protein versus number of fragments from
writhe decomposition.

Table 2. Accuracy of Astral 1.65 40% non-redundant superfamily
benchmark

Method Coverage (%) Precision (%) Time (s/query)

3D-lookup 89.0 90.0 163.8
SSEA 90.3 70.1 0.14
SSEF 90.3 70.2 3.8
SGM 85.6 64.8 0.28
Writher 83.6 65.6 4.3
Writher 83.6 55.6 3.6
with RandDecomp

Coverage is the portion of queries for which the program gives an answer among 5345
proteins queried ( TP+FP

5345 ). Precision is the portion of answers that are correct, i.e. the

top-scoring hit excluding self is from the same scop superfamily ( TP
TP+FP ). Time is

average time for handling a one-versus-all query. RandDecomp is writher with random
(not writhe) decomposition (see text in Section 2.2).

k =7 for writhe decomposition as it is large enough to smooth out most of
curvatures in α-helices and yet small enough to retain most of structural
details.

We observe a linear correlation between the number of fragments and
the length of proteins (Fig. 2) in the scop 1.65 40% non-redundant
set (Chandonia et al., 2004). This verifies that our writhe decomposition
procedure produces a compact set of fragments. According to linear
regression, there are on average 41 fragments per 100 amino acids.

To verify that writhe decomposition produces informative fragments, we
compared writhe decomposition with a random decomposition that generates
the same number of fragments with the same length distribution, but with
randomized starting positions. The comparative benchmark results are shown
in Table 2.

Writhe decomposition, inspired by the definition of first- and higher order
of GIs, offers a concise ‘sampling’of the major folding content of a structure.
Due to the sparse structure of the writhe matrix, the folding content, reflected
by GIs, only changes drastically at the significant entries of the writhe matrix.
Geometrically, these significant entries correspond to backbone crossings,
where non-parallel backbone segments pass each other at a close distance.
In other words, fragments resulting from writhe decomposition correspond
to ‘loop’ segments with a pair of twisted termini. These loops are distinctive
from obvious and frequently recurring motifs such as, for example, hairpin
motifs. Moreover, the size of these loops is not restricted and thus this

definition captures structural shapes beyond the motif-level and may include
the subdomain and domain levels.

2.3 Database search
In a structural database search task, one structure (query) is compared against
a database of structures. The major advantage of projection methods for
structural comparison is speed. Our method considers the matching between
all fragments of one structure to all fragments of the other. If we assume
matching a pair of fragments takes constant time O(1), the same as matching
two structures by traditional projection methods, then a naive implementation
of fragment comparison between a query protein against the database would
take time O(Nn2), where N is the number of proteins in the database and
O(n) is the number of fragments of a query protein and each database protein.
To accelerate structural comparison for the database scale, we use the range
query on B-tree indexing technique similar to the one used in Camoglu et al.
(2003) to achieve an average speed of O(nlog(N)) per query.

Our method uses a relational database in two steps: indexing and query-
handling. In the indexing step, all the database proteins are first decomposed
into the fragments. Subsequently, the descriptors of individual fragments
are computed as by Røgen and Fain (2003). Finally, these descriptors are
organized into a database table and indexed using B-tree. In the query-
handling step, the goal is to find proteins in the database similar to a
query q. We first decompose q into the fragments, and then query each
fragment against the database table to identify all similar fragments in the
database. Finally, the proteins in database are ranked by a scoring function
that evaluates the overall similarity based on the fragment matches.

A key issue is to quickly identify fragments similar to a query fragment
f using database queries. The Euclidean norm (l2-norm), as used in Røgen
and Fain (2003), is difficult to implement using existing database-indexing
techniques: commercial spatial index techniques are only practical for low-
dimensional data, e.g. 2D or 3D, whereas our fragments are indexed by
m-dimensional vectors. Therefore, we instead use the l∞-norm, in which two
fragments f and g are considered a ‘match’ if |f i −gi|<ε for all dimensions
1≤ i≤m (here we use f to represent both the fragment and the SGM vector of
the fragment). This is equivalent to the intersection of results of range queries
gi −ε< f i <gi +ε at all dimensions. MySQL can handle a such range query
using B-tree indexing in logarithmic time of the number of fragments in the
database, whereas a brute-force scan would take a linear time. Since values
at all dimensions are normalized so that the mean is 0 and the SD 1, only a
single universal ε is used for all dimensions.

The ε value determines the sensitivity and specificity of the fragments
returned by the range query. Since the similarity of these fragments is going
to be more accurately re-evaluated in later stages, the choice of ε is done
based on achieving a higher sensitivity. We found that the most similar,
based on l∞-norm, 1000 fragments provide a sufficient sensitivity in practice.
Therefore, we use a simple dynamic approach where we determine a proper
ε value by the following protocol: initially ε is set to 0.5; if the number
of proteins returned is sufficient (default >1000), exit loop; otherwise set
ε=ε∗2 and loop.

We note that this change from l2-norm to l∞-norm is not without cost.
In fact, the overall accuracy of the SGM method over the Astral 1.65 40%
non-redundant set drops 7% from nearest neighbor using l2-norm to nearest
neighbor using l∞-norm. Therefore, we first use l∞-norm queries as a filter
only to quickly collect potential similar fragments, before applying a scoring
function.

Unlike the existing projection methods where similarity between proteins
is simply established by the distance between their projected vectors, writher
measures structural similarity through matching fragment sets. We employ a
scoring algorithm considering both the matching quality of the best matching
fragment pair and the number of fragment pairs consistent with the best
matching pair. Specifically, the score of query q against a protein p in the
database is the product of the following two terms.

(1) maxnorm=αm−minf ∈Frags(p) ||f −q(f )|| is defined as the maximum
fragment matching score, where Frags(p) is the set of fragments in p, q(f )
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is the best matching fragment of f in q and ||f −q(f )|| is the l1-distance
(l2-distance gives essentially the same result) between the SGM vectors
f and q(f ) of the non-smoothed chain segments (Røgen, 2005). m is the
dimensionality of the GI-vector. α is the maximum average dimension-wise
deviation allowed for a fragment pair to be considered similar. Thus, it is
expected that ||f −q(f )||>αm for similar fragment pairs and otherwise for
dissimilar pairs. Fragment pairs with negative maxnorm values are ignored.
Based on experiments, we set m=30 [as by Røgen and Fain (2003)] for
global matching, and m=15 (only including first- and second-order GIs) for
local matching; α is determined to be 0.3.

(2) numfrag is defined as the number of non-redundant matching fragment
pairs between p and q that are consistent with the best matching fragment
pair. A representative fragment pair {(x1

p, y1
p), (x1

q, y1
q)} is consistent with

fragment pair {(x2
p, y2

p),(x2
q, y2

q)} if |(x1
p −x1

q)−(x2
p −x2

q)|<c, where c is some
cutoff (default 10). This definition ensures that the difference between the
gap lengths is limited by 10 residues.

Redundancy still exists after the writhe decomposition, despite of
extreme-value selection procedure. This creates over-counting of number
of consistent matching pairs. Redundancy among matching fragment pairs
is removed by first clustering and then selecting one representatives for
each cluster. The matching distance between two fragment pairs is defined
as the maximum of the offsets among their corresponding coordinates:
d({(x1

p, y1
p),(x1

q, y1
q)},{(x2

p, y2
p),(x2

q, y2
q)})=max(|x1

p −x2
p |, |x1

q −x2
q |, |y1

p −y2
p|,

|y1
q −y2

q|). Based on this distance measure, fragment pairs are clustered using
the following protocol. Initially, there is no cluster; and then the fragment
pairs are considered one at a time in a random order. If the matching distance
between the fragment pair in consideration and the center of any existing
cluster is small (default d ≤10), the fragment pair is inserted into the existing
cluster and the center of the cluster is updated to the center of gravity of its
fragment pairs. If no centers of existing clusters are within a small matching
distance with the fragment pair, a new cluster containing just the fragment
pair is created.

For global matching tasks, e.g. in the single-domain benchmark test shown
below, we wish to measure the consistency of the relative positions of the
best matching fragment pair. For this purpose, the score is also multiplied
by a global matching adjustment factor, defined as follows. Let Lp and
Lq be the lengths of p and q, respectively, and {(xp, yp), (xq, yq)} be the
highest scoring matching fragment pair between p and q based on the score
maxnorm∗numfrag, then the relative positions of the matching fragments are
(xp/Lp, yp/Lp) and (xq/Lq, yq/Lq). The global matching adjustment factor
is 1−|xp/Lp −xq/Lq|−|yp/Lp −yq/Lq|.

Writher uses the writhe matrix twice: the first time to derive a
decomposition protocol, and the second time to calculate the GI vectors for
individual fragments for structural search. In both uses, we face a choice
of using either the writhe matrix over the smoothed or the unsmoothed
backbone. We made our choices based on different characteristics of these
two kinds of matrices. On one hand, we chose the writhe matrix over the
smoothed backbone for fragment decomposition because that smoothing
removed unnecessary details that obscure the overall topology of the protein
fold, and as a result the writhe matrix over the smoothed backbone is sparse.
This is not the case for the unsmoothed version (Supplementary Fig. S1). On
the other hand, we chose the writhe matrix over the unsmoothed backbone
for structural search after writhe decomposition. This is because as shown by
Røgen (2005) that an SGM vector over original backbone leads to slightly
better classification performance than the smoothed version.

3 RESULTS
Before describing our assessment protocol, we discuss a common
bias in existing benchmark tests. Existing benchmark tests typically
use representative scop (Murzin et al., 1995) or cath (Orengo
et al., 1997) domains. However, scop or cath domains are not
generally typical protein structures a user may encounter: scop or

cath domains are normally cut from whole PDB structures by
experts of structure classification and automated tools. For a new
protein to be compared against existing ones, delineating its domain
boundaries is a non-trivial task for its own right (Holland et al.,
2006).

Therefore, we use two benchmark tests for evaluating our method.
In the first experiment, we follow the common benchmark scenario
and use single domains from a representative set of scop proteins. We
use this test to verify that our method’s performance is comparable
with existing projection methods and also to provide an assessment
consistent with those used previously. The second experiment adopts
a more realistic setting, where multi-domain proteins are queried
against a scop representative set of single-domain protein structures.

Projection and SSE-based methods are aimed to be used as
quick filters for more elaborated, but slower, similarity search
methods. A good example is 3D-lookup method used as a filter in
DaliLite program. A filter method should quickly compute a short
list, e.g. about 100, of potentially similar structures. Some protein
superfamilies (or families) may contain a large number of structures.
Therefore, returning all similar structures from one superfamily may
result in too many matches if the number of total matches is capped:
some high-scoring and truly similar superfamilies might be excluded
from the filter if they are simply less similar than the highest scoring
superfamily. This problem becomes especially acute when a query is
a multi-domain protein and we search for all domain representatives.
Therefore, we suggest to use a scheme where instead of returning
all similar structures, only superfamily representatives that received
the highest score are returned. In other words, a result list of a filter
method does not contain two structures from the same superfamily.
In this way we keep results list short and it covers the largest number
of structural superfamilies. This scheme was used to evaluate all
filter methods below.

Writher is compared against the following projection methods and
leading non-projection filter programs.

(1) SGM (Røgen and Fain, 2003): a projection method based
on GI comparison, employing the same procedure used in the
basic stage of writher where two segments are compared. The
GI vectors are generated using the program GI.c (Røgen and
Fain, 2003) and the vector comparison is carried out by an
inhouse Perl implementation.

(2) SSEF (Zotenko et al., 2006): a leading projection method.
The SSE footprint vectors are computed by a downloadable
program (Zotenko et al., 2006) and the vector comparison is
carried out by an inhouse Perl implementation.

(3) SSEA (McGuffin et al., 2001): the filter for Vorolign (Birzele
et al., 2007). SSEA treats a structure as a string of SSEs
and aligns a pair of structures by the standard dynamic
programming algorithm on this SSE string. As the raw
alignment score gave unsatisfactory results, we normalized

it as follows: S(p,q)= Sraw(p,q)
Sraw(p,p)+Sraw(q,q)−Sraw(p,q) , where q

and p are query and target proteins, and Sraw(p,q) is the raw
score from SSEA method. The algorithm is evaluated using
an inhouse C++ implementation. SSEA is not a projection
method.

(4) 3D-lookup algorithm (Holm and Sander, 1995): the filter
for DaliLite (Holm and Park, 2000). The database search is
carried out by the wolf program in the DaliLite package.
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To ensure a fair comparison, we run 3D-lookup against all
chains in the database. This is different from the setting
used by the Dali server where the 3D-lookup is used to
identify the first entry in the database with a significantly
large number of SSE pair matches to the query (and then
the full DALI alignments are carried out in the precomputed
structure neighborhood of the identified entry). 3D-lookup
uses 3D hashing and is not a projection method in the sense
we used here.

3.1 SCOP benchmark: single-domain chains
Our first experiment follows the model of Zotenko et al. (2006).
The dataset is the Astral 1.65 40% non-redundant set (Chandonia
et al., 2004), which contains 5345 scop chains, with pairwise
sequence identities <40%. Zotenko et al. compared the performance
of different projection methods for the task of classifying a new
structure into its proper scop categories. For a projection method,
one chain is considered being correctly classified if its nearest
neighbor in the projected high-dimensional space (its highest scoring
hit from database, self-hits excluded) belongs to the same scop
category.

Writher is not designed to compete with single projection methods
in identifying global structural similarities. Since writher needs to
handle the added ‘noise’ from decomposed fragments, it is expected
to suffer from more false positives than global, single-chain,
projection methods. The additional fragments also make writher
run slower. However, the test result shown in Table 2 demonstrate
that our fragment-based method produces an accuracy comparable
with SGM in terms of classifying scop domains according to global
structural similarity. It is not surprising that SSE-based methods
SSEA, SSEF and 3D-lookup achieve better accuracies, since scop
classification is largely based on SSE packing patterns. 3D-lookup
outperforms other methods with a significant margin, with a trade-off
of much longer running time.

In terms of running time, Writher is slower than SGM and
SSEF; but it is still orders of magnitudes faster than residue-level
structural alignment methods. Writher’s running time includes the
time for database queries and the time for scoring the structures by
summarizing database hits. Database queries only consume 28% of
the total wall time. Since writher is currently implemented using
Perl as a prototype, the running time could be improved further by
using faster programming languages.

3.2 SCOP benchmark: multi-domain chains
In the second experiment, we test the writher’s ability to detect
local structural similarities between multi-domain proteins (queries)
and a database of scop domains (mostly single-domain chains).
We construct our benchmark query set by selecting whole PDB
chains with at least two domains present in the Astral 1.65 40%
non-redundant set, yielding 699 multi-domain chains. These queries
were searched against the same Astral-40% database as in the single-
domain test. As a reference, we also bring the frequently used full
3D alignment method CE into comparison; we certainly do not
expect any projection methods would outperform CE, but CE may
be thought loosely as a ceiling on performances for the projection
methods.

Our goal is to measure methods’ ability to recognize the
superfamily memberships for parts of a multi-domain query. Some

protein superfamilies may be over- or underrepresented in the
database. For example, if a domain of a multi-domain protein
belongs to a large superfamily then the result list of a query search
might contain mostly proteins from that superfamily. However, in
this test, we are interested in the ability to identify representative
protein chains for each domain of a multi-domain protein. For
this purpose in the search results we designate the score of a
superfamily by its top-scoring member (the Astral domains that
are part of the query multi-domain protein are excluded from the
results). Superfamilies containing a domain in the query protein are
considered ‘trues’, and others ‘falses’.

We generate the ROC curve as following. At a rank cutoff k, 1≤
k ≤300, and for each query, the following quantities for computing
ROC curves are defined: TP is the number of trues with a rank
better than k; TN is the number of falses with a rank worse than
k; FP is the number of falses with a rank better than k; and FN
is the number of trues with a rank worse than k. Consequently,
sensitivity = TP/(TP + FN); specificity = TN/(TN + FP). Now, for a
single k, we take the average of sensitivity for all queries as the
estimated sensitivity for k, the average of specificity for all queries
as the estimated specificity for k, and draw a ROC curve for
the estimated sensitivity versus the estimated specificity (Fig. 3a).
Notice that, due to a non-uniform distribution of multi-domain
proteins in Astral superfamilies, the ROC-like curve from random
ordering of the chains in Astral 1.65 40% set is different from the
diagonal line with a 0.5 area.

In this test, writher achieves the highest accuracy among
projection methods. It is not surprising to see CE reach the highest
accuracy, at a price of being 1000 times slower than writher. The scop
classification is closely related to secondary structure composition
and SSEF (Zotenko et al., 2006) uses a 1500-dimensional vector
that represents extensive information regarding the configurations
of SSE triples. Therefore, it is quite significant that writher also
outperforms SSEF and SSEA. The top performer in single-domain
test, 3D-lookup, is only better than writher at the very specific
range (better than 99% specificity). Since SGM is the underlying
global projection method of writher, and writher leads SGM by
a wide margin, we ascribe the performance of writher to the
fragment-decomposition stage we introduced here.

We also computed the test statistics for the query subset of 399
chains belonging to superfamilies with at least four structures in the
database (Fig. 3 and Table 3). In this subset, writher outperforms
SSEF with an even larger margin. For example, for a query multi-
domain protein, selecting writher’s top 114 superfamily hits (out of
1287) includes each of the true superfamilies (the ones containing
any of the domains in the query protein) with a 80% chance, while
the same cutoff by the second best performer, SSEF, has a 68%
chance. Moreover, selecting a protein’s top 260 superfamily hits by
writher has only a 10% chance missing any of its true superfamilies.

Surprisingly, we found that writher even outperforms CE for a
number of multi-domain structures. For example, there are 42 cases
among queries with two domains for which writher identifies the
correct superfamilies as its top two hits. Among those, there are
16 cases where CE fails to correctly identify superfamilies from
its top two hits. This result has not occurred by chance, since
SGM, SSEA and Random have not identified correctly any of the
two-domain proteins. One of the examples is 1l3s chain A, crystal
structure of Bacillus DNA polymerase I fragment complexed to
DNA (Johnson et al., 2003). scop classifies it into two domains
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Fig. 3. (a) Multi-domain benchmark result. Multi-domain proteins are
queried against the database of single-domain proteins. See text for the exact
protocol for generating these ROC curves. (b) Multi-domain benchmark
result using only the multi-domain proteins that belong to superfamilies with
at least four database members.

belonging to the Ribonuclease H-like superfamily (e.8.1) and to
the DNA/RNA polymerases superfamily (c.55.3). Writher identified
the correct superfamilies for both domains as its top two hits—
domains d1t7pa2 and d1kfsa1. CE also identified the ribonuclease
H-like domain as the top hit, but failed to rank the DNA/RNA
polymerase domain as the second hit. Although CE outperforms
writher in general, this result shows that writher has potential to
improve sensitivity of a full alignment method such as CE in a local
alignment task.

In addition we investigated performance of these methods for
domains in four major scop classes, including all-α, all-β, α/β

and α+β, among these 399 chains. As shown in Supplementary
Figure S3, writher displays a superior performance in all classes
except the all-α class. In the case of the all-α class all
methods perform poorly, comparable with random classification.
Surprisingly, results of writher is even comparable with CE for
all-β, α/β and α+β classes, only losing by a large margin for the

Table 3. Multi-domain benchmark test result

Sensitivity at

99.7% 99% 95% 90% Time
Specif. Specif. Specif. Specif. (s/query)

CE 71 78 85 88 17748.9

3D-lookup 54 59 67 70 404.2
Writher 50 59 75 81 17.3
SSEF 37 44 60 68 1.9
SSEA 15 26 44 53 0.34
SGM 9 18 41 48 0.14
Random 2 7 27 41 NA

Multi-domain chains are queried against theAstral 1.65 40% non-redundant superfamily
benchmark set. Only those multi-domain chains with at least four members in its scop
superfamily are used for the query. Sensitivities at several specificity levels are reported.
Bold values signify the highest sensitivity achieved at a specificity level.

all-α class. We speculate that the poor performance of writher for
all-α domains may be due to that the backbone smoothing procedure
before writhe decomposition has over simplified α-helices. A special
smoothing treatment for α-helix-rich proteins may improve writher
further.

Compared with the running time of the single-domain test, the
running time of multi-domain test for global projection methods
SSEF and SGM remain unchanged. The running times for writher,
SSEA and 3D-lookup increase as the length of the queries increases.
However, writher is still quite rapid and remains an order of
magnitude faster than 3D-lookup.

4 CONCLUSIONS AND DISCUSSIONS
In this article, we present a new method, writher, for rapid protein
structure similarity search. Writher compares structures by first
decomposing them into a compact representative set of fragments,
and then matching fragments by a fast projection technique. Our
approach allows efficient detection of both global and local structural
similarities. To provide computation time practical for real-time
queries, we employ a database-indexing scheme. In a benchmark
test for recognition of scop domains from a set of full-length multi-
domain proteins, we show that writher is able to identify local
structural similarities substantially more effectively than existing
filter methods.

Our writhe decomposition has some resemblance to
fragment-based protocols employed in structure prediction
(see Tyagi et al., 2008, for a recent review). However, writhe
decomposition is fundamentally different from existing fragment
decomposition methods. First, writhe decomposition is designed
to comprehensively represent all major local structural features
of a single structure, while fragmentation for structure prediction
are to build empirical library of possible local folding patterns
in all existing structures. Moreover, the fragments in writhe
decomposition are not limited in length and can be as long as
hundreds of residues; while the local structure libraries for structure
prediction usually contain short fragments of fixed length (4–15
residues).
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In practice, our decomposition scheme is rather general, in that it
can transform any global projection method into a local projection
method using any meaningful fragmentation procedure. In this work,
we employed the projection method SGM (Røgen and Fain, 2003)
to describe individual. It is possible to generalize this approach to
use other projection methods, such as the SSE-based methods (Choi
et al., 2004; Holm and Sander, 1995; Zotenko et al., 2006).

Moreover, while writher has been evaluated for superfamily
classification in our benchmark experiment, it is possible to
apply writher to detect local similarities that have functional
characterization. For example, it may be possible to use ligand
binding site knowledge to limit the search only to fragments
proximate to the binding site, and to alter the smoothing associated
with such focused studies.

Just as blast allows for flexible specifications of sequence
similarity that arise in various biological enquiries, a structural
search engine would empower biologists with means for searching
user-defined structural similarity, to complement the existing
carefully curated but rigid structural classification systems, allowing
one to realize goals such as protein function prediction (Petrey and
Honig, 2009). In 1990, when blast was published, the number of
sequences in the Genbank was only 39 533. The number of structures
in the PDB is already over 55 000, yet structural biologists still
do not have a correspondingly fast search engine for structural
similarity. We believe that this lack of tool is not due to the lack
of demand but rather due to the lack of technological development.
Like blast, a successful structural search system would meet the
following specifications: (i) fast, able to search a whole database
in interactive time; (ii) accurate in detecting local similarities; and
(iii) accurate in aligning amino acids. Achieving all these goals is
a grand goal which is unlikely to be feasible with one algorithmic
solution. In this article, we proposed a method that can be used
as a fast filter to screen a whole structural database. The main
advantage of this method is that, unlike previous filter approaches,
writher is sensitive not only to global similarities but also to local
structural similarities. Therefore, we believe writher is an important
step toward a rapid practical search system for structural biology
research.
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