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Intracavity optical trapping of microscopic particles
in a ring-cavity fiber laser
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Standard optical tweezers rely on optical forces arising when a focused laser beam interacts
with a microscopic particle: scattering forces, pushing the particle along the beam direction,
and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the
incoming laser beam is not affected by the particle position because the particle is
outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces
emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude
higher confinement along the three axes per unit laser intensity on the sample. This scheme
allows trapping at very low numerical apertures and reduces the laser intensity to which
the particle is exposed by two orders of magnitude compared to a standard 3D optical
tweezers. These results are highly relevant for many applications requiring manipulation
of samples that are subject to photodamage, such as in biophysics and nanosciences.
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ARTICLE

ptical tweezers are a powerful technique to manipulate

microscopic particles!=3 and have found applications in

various research fields, from biology* and spectroscopy”
to statistical physics® and nanosciences’. Standard optical twee-
zers consist of a single, typically Gaussian, beam focused by a
microscope objective with a high numerical aperture (NA)38. A
microscopic particle whose refractive index is higher than that of
the embedding medium can be trapped near the focal spot
because of the emergence of scattering and gradient optical for-
ces>. The scattering forces are due to the radiation pressure of
the light beam and act in the direction of propagation of the
beam. The gradient forces push the particle toward the high-
intensity focal spot. To provide gradient forces strong enough to
stably trap a particle, typically water- or oil-immersion objectives
with NA >1.20 are used®3. Importantly, in standard optical
tweezers, the laser emission is independent of the position of the
particle, which is outside the laser cavity; this corresponds to an
open-loop control.

The possibility of implementing an intrinsic closed-loop con-
trol, where intracavity nonlinear feedback forces emerge when
the microparticle is placed within the laser cavity, has not been
exploited until now, even though we put forward this idea
some years ago in some conference proceedings®!0. Feedback
mechanisms are pervasive in science and technology, in
particular linear feedback is used in resonant radiation
pressure waveguides!112, haptic optical tweezers!3, cavity opto-
mechanics!4, laser cooling of single atoms!>, and recently in near-
field trapping in liquid medium!®!7 and laser cooling in
vacuum!®, However, the deliberate arrangement where a laser
modifies a material’s optical properties or position so that the
material modifies the laser beam in return, constituting a non-
linear feedback mechanism, has been largely overlooked. We
recently employed such arrangements to create laser-induced
spatial nanostructures on various material surfaces with unpre-
cedented uniformity!®, to produce 3D structures deep inside
silicon?0, to demonstrate a new mechanism of highly-efficient
laser material ablation2!, and to obtain complex behavior from
dynamic self-assembly of colloidal nanoparticles?2.

Here, we demonstrate that we can dramatically enhance optical
tweezers action by taking advantage of intracavity nonlinear
feedback forces emerging when the microparticle is placed within
the laser cavity, effectively implementing a closed-loop control.
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We now describe an intracavity optical tweezers based on non-
linear feedback forces using a ring-cavity fiber laser and a very
low numerical aperture lens (NA = 0.12), which does not even
permit trapping with a standard optical tweezers because of the
overwhelming strength of the scattering forces that push the
particle along the beam direction. We achieve intracavity optical
trapping inside an active laser cavity where the laser mode is
directly influenced by the position of the particle. We show that
these optical tweezers can stably hold microscopic objects (3-7-
pm-diameter polystyrene and silica particles), thanks to a power
self-regulation, due to optomechanical coupling, obtaining a two-
order-of-magnitude reduction of the average light intensity at
the sample and the associated potential photodamage when
compared with a standard optical tweezer that achieves the
same degree of confinement (see Supplementary Fig. 1 and
Supplementary Note 1).

Results

Working principle of intracavity optical trapping. In our
scheme, the particle is trapped inside the cavity of a fiber laser,
which leads to a feedback between the position of the particle
and the laser emission. When no particle is trapped (Fig. 1a),
the optical loss of the cavity is low, and the laser operates above
threshold, creating a strong optical potential. When a particle is
trapped (Fig. 1b), the particle scatters light out of the cavity,
increasing the cavity loss and reducing the quality factor of the
cavity; this leads to an increase of the lasing threshold so that
the laser turns off. When the particle tries to escape from the trap
due to thermal fluctuations (Fig. 1c), it scatters less light so that
the lasing threshold decreases, the laser power increases and the
particle is pulled back. This optomechanical coupling between the
trapped particle and the laser cavity leads to a self-regulation of
the laser power, which increases whenever the particle is about to
escape, and therefore permits us to stably hold micro-objects with
a very low numerical aperture lens and at a low average intensity.

Toy model. We first describe a simple toy model for our intra-
cavity trapping scheme to clarify how the nonlinear feedback
forces emerge as a result of the interplay between the particle’s
motion and the laser’s dynamics. Like any toy model, it is
designed to be simplistic, while explaining clearly and concisely

Poump

Fig. 1 Intracavity optical trapping. The trapping optics (collimators C; and C,, lenses L; and L,) are placed within the cavity of a ring fiber laser (whose
direction is indicated by the red arrows) so that the position of the particle can influence the cavity loss. a When the particle is not in the trap region, the
optical loss of the cavity is low, the intracavity laser power P is high, and consequently the particle is attracted toward the center of the trap. The laser
power scaling curve (solid line) shows that the pump power Ppym, (vertical dashed line) is above the lasing threshold. b When the particle is at the center
of the trap region, cavity losses due to scattering of light out of the cavity by the particle are maximum. The power scaling curve is right-shifted and the
laser is below or barely above threshold for the same Ppymp. The particle is not strongly trapped. € When thermal fluctuations displace the particle away
from the trap region, the optical loss of the cavity decreases, P increases, and the particle is pulled back toward the center of the trap
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the nonlinear feedback mechanism underlying the trap. It also
quantifies how and to what extent this scheme reduces the
average laser power to which a trapped particle is exposed. For
algebraic simplicity, we discuss motion in one dimension; gen-
eralization to three dimensions is straightforward, and the results
are qualitatively the same. Here, we provide an overview, while
we refer to the ‘Methods’ section for the details.

The motion of a Brownian particle suspended in a liquid
medium and held in an attractive harmonic potential is described
by the overdamped Langevin equation3

#(t) = —%r(t) + V2DE(t), (1)

where r(t) is the particle displacement from its equilibrium
position, k is the trap stiffness, y is the particle friction coefficient,
D is the particle diffusion coefficient, and &(¢) is a stochastic term
corresponding to white noise with zero mean and unit power.
The variance of the particle position in the trap is given by
‘Tf,OT = kBTTv (2)

where kg is the Boltzmann’s constant and T is the ambient
temperature. The trap stiffness is proportional to the laser power,

k= KPPa (3)

where xp is a proportionality constant determined by the
geometrical and optical properties of the setup and the sample,
but independent of the laser power. For standard optical tweezers,
P and k are independent of r.

In the intracavity optical trapping scheme, the crucial
difference is that the optically trapped particle is part of the laser
cavity and the particle’s position modulates the loss of the cavity.
We describe this coupling using a well-known model for laser
dynamics by H. Haken?3. We choose the laser parameters such
that the net gain of the laser is negative for particle displacements
smaller than a finite amount, i.e., for r<ry, so that the laser
remains off. Once the particle reaches beyond ry, the laser power
turns on, increasing quadratically with r. Importantly, the
timescale for the displacement of the particle (milliseconds) is
much greater than the response time of the laser (nanoseconds),
so that we can consider the laser to be always at its steady state for
what concerns its effect on the particle motion. Therefore, the
stationary value of the laser power is

0 r<r

Pir) = {PO (% - 1) r>r )
where P, is a proportionality constant. P(r) is plotted by the
dashed red line in Fig. 2a for typical values of the parameters;
the actual laser power saturates (solid line in Fig. 2a), but this
occurs in a region where the particle probability density is
negligible and therefore is not included in the toy model. The
corresponding results from detailed simulations of the intracavity
optical trapping (see below) show a similar nonlinear behavior
(Fig. 2b).

Using Eq. (3), the restoring force is F(r) = —kr = —xpP(r)r,
which is now non-harmonic because the trap stiffness depends on
r in the intracavity optical trapping scheme—this positional
dependency constitutes the nonlinear feedback force, which
permits this approach to go beyond what can be achieved with
linear feedback. Integrating the force, we obtain the correspond-
ing trap potential U(r) = — [{F(x)dx, and using the Boltzmann
factor, the probability density of the particle position becomes
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Fig. 2 Dependence of the laser power on the particle position. a Laser
power P(r) as a function of particle position r (Eg. (4)) employed in the toy
model (dashed line) and the the actual laser power including saturation
(solid line). b Intracavity laser power versus position for a 4.9-pm-diameter
polystyrene particle obtained from detailed simulations of the intracavity
optical trapping. ¢ Corresponding probability density of the particle position
(Eq. (5), with parameters Po =3 mW, r, = 0.5 pm, kp = 0.1 pN pm~TmW~-7,
and T=300K). The solid line represents the probability density of the
particle position obtained with a standard optical tweezer employing the
same average power. d Probability distribution along the transverse x-
direction obtained from detailed simulations for a 4.9-um-diameter
polystyrene particle held in the intracavity optical trap. The inset shows that
the probability distribution is Gaussian (black line) for small displacements
but it is sub-Gaussian for large displacement, where the nonlinear effect
plays a leading role

Pokp b= Pokp
kT Ty T’
The blue histogram in Fig. 2c shows an example of this
probability distribution for typical values of the parameters.
The corresponding histogram from detailed simulations of
the intracavity optical trap (see below) is shown in Fig. 2d,
where it can be clearly seen that the probability distribution is
Gaussian for small displacements but becomes sub-Gaussian for
large displacement because of the presence of the nonlinear
feedback.

A key advantage of this toy model is that it can be solved exactly,
obtaining expressions for the variance of the particle position,
o2 = [ 'r*p(r)dr, and the average laser power to which the
particle is exposed, P, = [, °P(r)p(r)dr (these exact solutions,
which are rather complex, are explicitly provided in the ‘Methods’
section). For example, using the values of the parameters employed
in Fig. 2, we obtain ¢ = 0.11pm?* and P, = 0.09 mW.

We can now compare these results in the case of a standard
optical tweezer with the same average power. Using Egs. (2) and

where a =

and p, is the normalization factor.

(3), we obtain that o7 . = %; for the values of the parameters
employed in Fig. 2, this corresponds to 07 5 = 0.36 um?, which
represents more than three times less confinement than in
the intracavity optical trapping scheme. The corresponding
probability distribution is shown by the solid black line plotted
in Fig. 2c.
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Further insight can be gained by analyzing some limiting cases
that are amenable to simple analytical solutions. We will briefly
consider a lower and an upper limit to the laser power exposure,
providing the detailed derivation in the ‘Methods’ section. We
first obtain a lower limit to the average laser power by neglecting
the r2 term in the Maxwell-Boltzmann distribution (Eq. (5)) so
that the probability function drops faster than in the exact case.

This yields
2 (kyT\?
P2 (B2) ©
0 \Xp'L

which corresponds to PL_ =0.02mW for the parameters

employed above. Next, we obtain an upper limit by considering
a uniform distribution extending to some 7y,,y, Where p(r,..) <
1/C with C > 1 (the result is highly insensitive to the particular
choice of r,):

ky T

pY ~p
(rmax) 41,% KPP07

ave In(C) (7)

which corresponds to PY. = 0.70mW for the parameters
employed above. These results show that the average power
exposure is much reduced, if the laser can turn on sharply (ie.,
large P, or large small-signal gain); this result motivates the
choice of a fiber laser, because these lasers have extremely high
small-signal gain factors (30-40 dB)?%. Furthermore, this shows
that, from an experimental perspective, we are most interested in
the case of r S 7., For r<ry, the laser is off and the particle
experiences free diffusion with a uniform probability density. To
take advantage of intracavity trapping, we are interested in
parameter combinations for which free diffusion is dominant. In
this case, the laser has to be off or operating at low power up to
some large 71 and be turned on quickly for > 1, so as to erect a
steep potential barrier that confines the particle.

Simulations. The toy model we have discussed until now is a
simplified model that describes the qualitative behavior of the
intracavity optical trapping scheme as well as its nonlinear
response for large particle displacements. In this model, the
power and hence trapping force are considered to be zero for
small particle displacements. However, in reality they have small
values that do operate the trap even when the particle is near the
equilibrium position. Thus, we need an accurate description of
the coupling between the laser and the trapped particle thermal
dynamics at equilibrium to compare with experiments. In parti-
cular, accurate simulations can help to associate an effective
harmonic potential to the optical trap for small displacements
from the equilibrium position, and hence to define a meaningful
stiffness using the standard calibration methods based on the
thermal fluctuations of a trapped particle (see Supplementary
Figs. 2-4, and Supplementary Notes 2 and 3).

We therefore present a series of numerical simulations based
on an extended theoretical model, including highly realistic
descriptions of the laser dynamics, optical losses incurred by
the particle, and the particle’s Brownian motion in order to
gain a quantitative understanding of the dynamics of intracavity
optical trapping and to guide the experiments. The dynamics of
the trapped particle are similarly governed by the interplay
between the optical force F,(r, P), the gravity minus the
buoyancy F,, the viscous drag acting on the particle, and the
therme;l fluctuations. The resulting overdamped Langevin equa-
tion is:

P=y! [Fm(r, P)+ Fg} + V2DW(t), 8)

where r is the particle position, y = 671R is its friction coefficient
that depends on the particle radius R and the medium viscosity
n, P is the power of the laser, D = kgT/y is the particle diffusion
that depends on the temperature T, kg is the Boltzmann constant,
and W(f) is a vector of independent white noises.

The laser dynamics is modeled using standard power rate
equation®* (see ‘Methods’ section for details). This is a highly
realistic model that includes gain saturation, which was ignored
in the toy model. We note that the characteristic timescale for
particle displacement due to Brownian motion is in the
millisecond range, whereas the laser dynamics is in the
nanosecond range. Thus, we take the laser to be always at its
steady state and calculate its power, given the loss corresponding
to the particle position.

Since the size of the particles is significantly larger than the
wavelength?>, we have calculated the trapping force, as well as
the loss, using the geometrical optics approach implemented in
the software package Optical Tweezers in Geometrical Optics
(OTGO)2%: The incoming laser beam is decomposed into a set of
optical rays, which are then focused by the focusing lens. As the
rays reach the particle, they get partially reflected and partially
transmitted. The direction of the reflected and transmitted rays
are different from those of the incoming rays. This change of
direction entails a change of momentum and a force acts on the
particle due to the action-reaction law. If the refractive index of
the particle is greater than that of the medium as is usually the
case, these optical forces tend to pull the sphere toward a stable
equilibrium position near the focal spot. The optical forces are
proportional to the laser power. As the scattered rays reach the
collecting lens, they are collected and projected onto the back-
focal plane input of the fiber.

Figure 3 illustrates the simulations’ results for a 4.9-um-
diameter polystyrene particle held in an intracavity optical trap.
The particle confinement is 02 = 0.18 pm? and 02 = 0.38 um?,
which are in good agreement with the results obtained for the
experiments presented in the next section. Some interesting
configurations of particle and laser are shown in Fig. 3a,
corresponding to the positions indicated in Fig. 3b. When the
particle is in the center of the trap, a significant part of the
light is scattered out of the collector lens, as can be seen in
the ray-optics diagram shown in panel i of Fig. 3a, which
leads to a low laser power (position i in Fig. 3b). When the
particle moves away from the trap along the radial direction
(panel ii of Fig. 3a), this leads to an increase of the laser power
that reaches the collector lens (position ii in Fig. 3b) and,
therefore, to an increased restoring force pulling back the particle.
Similarly, when the particle moves down along the axial direction
(panel iii of Fig. 3a), there is an increase of the collected power
(position iii in Fig. 3b) and an increase of the scattering force that
pushes the particle up. Finally, when the particle moves up along
the axial direction (panel iv of Fig. 3a), the rays are scattered away
from the collector lens (position iv in Fig. 3e) and this decreases
the laser power letting the particle fall back toward the center of
the trap.

To better understand the coupling between the particle
position fluctuations and the laser power, we have plotted the
laser power as a function of the radial and axial position of
the particle in Fig. 3c. The power increases whenever the
radial position r increases, confirming that, when the particle
tries to escape along the radial direction, the laser increases its
power and pulls back the particle toward the center of the
trap. When the particle moves down, the laser power increases
and the scattering force pushes the particle up toward the
trap center, and, when the particle moves up, the laser power
and associated scattering force decrease, which permits the
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Fig. 3 Detailed simulations. a Ray-optics diagrams of the propagation of a focused beam through an optically trapped particle (i) when the particle is at the
center of the trap (equilibrium position in the trap that takes into account also the effective gravitational force acting on the particle), (ii) when it is
displaced in the radial direction, (iii) when it is displaced along the axial direction downward and (iv) upward. b Radial (r) and axial (z) particle position, and
corresponding laser power (P) obtained from the simulation of the motion of a 4.9-pm-diameter polystyrene particle trapped in the intracavity optical trap.
¢ Dependence of the laser power on the radial and axial position of the particle. The points (i)-(iv) correspond to the configurations in (a) and the dashed
lines correspond to the insets graphs the dependence on z and r on the left and bottom, respectively

particle to fall down toward the center of the trap. These results
can be directly compared with the toy model results shown
in Fig. 2. We observe that for small displacements the power
is small (Fig. 2b), rather than zero, and constant (Fig. 2b,
Supplementary Fig. 4 and Supplementary Note 3), and the force
is linear consistent with a Hookean response of the trap
(Supplementary Fig. 4 and Supplementary Note 3). In fact, the
power is below the laser threshold in this linear regime for
small displacements and increases suddenly for large displace-
ments within the nonlinear regime. As a consequence, the
corresponding probability distribution (Fig. 2d) is close to a
Gaussian enabling a calibration of optical forces for small
displacements (Supplementary Fig. 2 and Supplementary Note 2).
For large displacements nonlinear effects can be observed in the
tails that yield a sub-Gaussian probability distribution (inset
of Fig. 2d). Furthermore, the positional fluctuations follow
the Gaussian distribution typical of an optical tweezer, which
for small displacements is well approximated with a harmonic
potential.

Differently, for high-NA optical tweezers the power is
decoupled from the trapped particle fluctuations (Supplementary

Note 4). High-NA optical tweezers require a minimum power
that is higher than an intracavity optical trap in order to achieve
stable trapping. Clearly, this power is constant as a function of
the particle position (Supplementary Fig. 5).

We note that the basic theoretical concepts hold also for
particles smaller than the trap wavelength. However for our
experimental parameters, the smaller the particle the less effective
the intracavity trapping. In fact, it is possible to describe
the light-particle interaction and optical forces in intracavity
optical trapping of small particles by exploiting the dipole
approximation®’ (see Supplementary Note 5). Since for small
particles the power scattered in the trap decreases rapidly, the
nonlinear feedback that regulates intracavity trapping is reduced.
Thus, for negligible optical losses, the intracavity trap behaves as
a standard single-beam optical tweezer and cannot efficiently trap
small particle at low intensity (see Supplementary Fig. 6). For our
experimental parameters, microparticles are needed to increase
light scattering and hence optical losses in the trap to efficiently
operate the intracavity feedback trapping. Thus, the intracavity
feedback trapping is efficient at the microscale while reduces to a
standard single-beam optical trapping at the nanoscale that

NATURE COMMUNICATIONS | (2019)10:2683 | https://doi.org/10.1038/541467-019-10662-7 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

cannot efficiently trap nanoparticles. However, the intracavity
optical trapping approach can in principle be scaled down to
particles significantly smaller than the wavelength by changing
the experimental parameters. In particular, increasing the
numerical aperture would allow to increase the losses due to
the particle and therefore make the intracavity optical trapping
more efficient at the nanoscale.

Experimental results. Finally, guided by the simulation results,
we have built an experimental setup to prove the operational
principle of intracavity optical trapping (Fig. 4a). We constructed
a continuous-wave ring-cavity fiber laser emitting at 1030 nm
with the trapping optics placed inside the cavity. The laser beam
is directed upward and the trap is achieved by a lens with an
effective NA = w/f= 0.12, where w = 1.0 mm is the beam waist at
the lens and f= 8.0 mm is the lens focal length.

The cavity further comprises a single-mode Yb-doped fiber
(Yb 1200-6/125, nLIGHT, Inc., core diameter of 6 pm, cladding
diameter of 125 um) as gain medium, pumped by a single-mode
fiber-pigtailed diode-laser at 976 nm through a wavelength
division multiplexer. To achieve spectral stability, we included a
fiberized band-pass filter (centered at 1030 nm, full width at half
maximum of 2 nm, placed after the gain fiber). After the band-
pass filter, the beam is split by a coupler with 99:1 coupling ratio:
the larger portion is sent to a single-mode fiber-pigtailed
collimator (OZ Optics, Ltd.), and the smaller portion is sent to
a photodiode power sensor (S150C, Thorlabs, Inc., 10 pW
resolution) for power monitoring. The output of the collimator
is reflected by a short-pass dichroic mirror (DMSP1000, Thorlabs,
Inc.) and focused on the sample by an aspheric lens (8.0 mm focal
length, NA = 0.12). The laser light is then collected by a second
identical aspheric lens, reflected by a short-pass dichroic mirror
(DMSP1000, Thorlabs, Inc.), and coupled back into the fiber by a
collimator. An in-line isolator is used to ensure that the light is
traveling within the cavity unidirectionally. The response time of
the laser, as measured using an acousto-optic modulator inside
the cavity, is about 20 ns (see Supplementary Note 6). This is
several orders of magnitude faster than the dynamics of the

intracavity trapping (~100 ms, see Supplementary Fig. 7) and the
Brownian dynamics at equilibrium (~10s) that shows up in the
autocorrelation function and power spectrum analysis (see
Supplementary Figs. 2 and 3) of the trapped particle tracking
signals (see Supplementary Note 2). The red circles in Fig. 4b
show the power scaling curve of the laser as a function of the
pump power.

We have suspended polystyrene (diameter of 4.9 and 6.2 um,
Microparticles, GmbH) or silica (diameter of 2.8, 4.0, and 4.8 pm,
Microparticles, GmbH) particles in water and placed a droplet
of the resulting solution in a sample chamber realized between
two microscope slides separated by a parafilm layer (100-pm
thick). We placed the sample on a 3-axis translation stage. The
orange squares in Fig. 4b show the power scaling curve of the
laser as a function of the pump power when a 4.9-um-diameter
polystyrene particle placed at focal point: at the pump power of
66 mW, the laser power is reduced from 5.0 to 0.2 mW.

For imaging, we have illuminated the sample using a LED (630
nm wavelength, 20 nm bandwidth) whose coherence length is
much shorter than the thickness of the microscope slides and
the separation between the two slides to avoid interference. We
have recorded the motion of the particle using a CMOS camera
(DCC1645C, Thorlabs, Inc., 50 Hz frame rate) and used digital
video microscopy to track its trajectory in 3D (see ‘Methods’
section).

In Fig. 5, we show the results we obtained by trapping a 4.9-
pm-diameter polystyrene particle at a pump power of 66 mW
corresponding to 5.0 mW laser output in the absence of the
particle. Figure 5a shows the time evolution of the particle
radial position r, its axial position z, and the laser power P. We
have measured the confinement achieved by the trap in the radial
and axial directions calculating the variance of the particle
position, which are o2 = 0.038um?* and ¢ = 0.41 um?, whose
numerical values are in good agreement with the results of the
simulations presented in the previous section. Figure 5b shows
how the laser power depends on the radial and axial particle
position, which is also in agreement with the results of the
simulations presented in Fig. 3c. Along the radial direction,
the laser power increases when r is large, providing enough
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Fig. 4 Experimental setup. a The setup comprises a diode-pumped Yb-doped fiber laser, the trapping optics, and the digital video microscope. The arrow
represents the direction in which the light travels. b Measured power scaling with a trapped 4.9-pm-diameter polystyrene particle (orange squares) and
without the trapped particle (red circles). At a pump power of 66 mW (dashed vertical line), the laser is below threshold with the particle (orange squares),

but above threshold without the particle (red circles)
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Fig. 5 Experiments. a Radial (r) and axial (2) particle position, and corresponding laser power (P) for a 4.9-pm-diameter polystyrene held in the intracavity
optical trap. b Dependence of the laser power on the radial and axial position of the particle. The positions indicated with i, ii, iii, and iv correspond to
particle position and laser power configurations similar to those illustrated in the diagrams shown in Fig. 3a. The points (i)-(iv) correspond to the
configurations shown in Fig. 3a, and the dashed lines correspond to the insets graphs the dependence on z and r on the left and bottom, respectively

restoring force to push the particle back toward the center of the
trap. Along the axial direction, the laser power decreases when the
particle moves upward leading to the particle moving downward
because of sedimentation, and increases when the particle moves
downward, leading to enhanced scattering forces pushing the
particle back upward.

Comparison with standard optical tweezers. It is instructive to
compare intracavity optical trapping with a standard single-beam
optical tweezer. To this end, we have compared the inverse radial
and axial confinement, 0,2 and o2, per unit intensity at the
sample, I, measured using the intracavity optical tweezers to those
obtained using a different setup with low and high numerical
aperture lenses where intensity is constant and no feedback is
occurring.

For the case of low-NA standard optical tweezers (NA = 0.12),
we observe that the particle is never trapped along the axial
direction because the restoring force is not strong enough.
Therefore, intracavity optical trapping provides a simple, self-
aligning technique to achieve trapping at low NA. We remark
that several alternative approaches have been proposed to make
optical tweezers capable of trapping particles at low NA (see the
comparison in Supplementary Fig. 1 and Supplementary Note 1).
Clearly, each technique has its own strengths and weaknesses
with respect to intracavity trapping. For example many of these
methods require the use of multiple or structured optical beams,
such as in counterpropagating optical tweezers?’-3%, in mirror
trapping’! and in trapping with focused Bessel beams32, or
special sample preparation, such as in trapping using self-induced
back action!®1”, Intracavity trapping has fundamental differences
in that it operates at the microscale with an all-optical nonlinear
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feedback scheme coupling the laser cavity with the optomecha-
nical response of the trapped particle.

For the case of high-NA standard optical tweezers (NA = 1.30),
we trapped a 4.9 um-diameter polystyrene particle with a standard
optical tweezer using a high-NA microscope objective (NA = 1.30)
using a laser with a central wavelength of 976 nm. We measured
the particle trajectories using digital video microscopy and
analyzed them to obtain the trap stiffness. We measured
Oear/Iwa = 6.3mW ™! and 02, ,/Iina = 3.7 mW ™!, where
Iina=35mW pm~2 is the intensity at the sample. Instead, the
intracavity optical trap achieves about two order of magnitude
tighter confinement for the same intensity at the sample: 0,2/ =
2180mW™! and 0,2/ = 200mW !, where I=0.012 um Wm—2
is the intensity at the sample.

Figure 6 shows a comparison of the experimental and
simulated confinement per unit intensity at the sample for
polystyrene and silica particles of various sizes. This is a quantity
that is directly related to the effective stiffness of the trapping
potential explored by the particle for small displacement. The
intracavity confinement per unit intensity is consistently about
two orders of magnitude higher than that for standard optical
tweezers. We observe that for the radial direction we find a good
agreement with no free parameters between experimental and
simulated results. On the other hand, for the axial direction
the intracavity experimental confinement is smaller than the
simulated curves. This can be accounted for by noting that
simulations do not take into account effects such as aberrations
or distortions by the sample chamber (glass-water interfaces) that
might change the feedback and trapping point, weakening
the axial trapping efficiency in experiments. Furthermore, for
the axial direction ray optics might not provide a very accurate
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Fig. 6 Enhancement of particle confinement per unit intensity at the sample. Comparison of the experimentally measured inverse radial and axial trap

confinement (¢, 2 and 0} 2, respectively) per unit intensity at the sample for an intracavity optical trap (circles) and a standard high-NA optical tweezer
(squares) for polystyrene a, b and silica ¢, d particles of various radii R. The dashed lines are the corresponding results from numerical simulations with no
free parameters. In the radial direction the agreement between experiments and simulations is quite good, while in the axial direction the experimental
results are smaller than the simulated ones because in this direction aberration and distortion from the glass-water interfaces can play an important role in

weakening the feedback and axial trapping stiffness in the intracavity trap

description of optical forces even for this large particle size3334,
Therefore, we can consider that the overall agreement between
our ray-optics theory without free parameters and experiments to
be quite fair.

Discussion
We have demonstrated through a simple analytical model,
simulations of a realistic model, and experiments, a novel optical
trapping scheme where the laser operation is nonlinearly coupled
to the motion of the trapped particle. This coupling gives rise to
instrinsic nonlinear feedback forces that confine microparticles
efficiently at low intensity. We implemented this scheme within
the cavity of a fiber laser because its large, small-signal gain is
essential for achieving a high trap stiffness per unit intensity. We
have trapped polystyrene and silica microparticles of different
sizes. Tracking of the particle thermal fluctuations has enabled us
to investigate the optomechanical coupling between the ring-
cavity fiber laser and the optical trap elucidating its working
principles. For small displacements from the equilibrium posi-
tion, the intracavity trap is well approximated by an effective
harmonic potential that can be calibrated by standard methods®
(see Supplementary Note 2) yielding a direct calibration of the
trap stiffness. Thus, intracavity optical trapping can also be used
to controllably apply and measure small forces.

One of the major advantages of the intracavity optical trapping
scheme is that it can operate with very low-NA lenses, with a

consequent large field-of-view, and at very low average power,
resulting in about two orders of magnitude reduction in exposure
to laser intensity compared with standard optical tweezers.
When compared with other low-NA optical trapping schemes
such as SIBA trapping!'®!7, counterpropagating beam?8-30:3> or
mirror optical trapping3!, positive and negative aspects can be
considered, such as in terms of trap stiffness and average
irradiance of the sample (see Supplementary Fig. 1 and Supple-
mentary Note 1). Another advantage of the intracavity optical
trapping scheme is that it intrinsically features a high
bandwidth thanks to the intracavity feedback. Furthermore, since
intracavity optical trapping is a self-regulated mechanism, it can
be designed to work for different particle types without the
need to explicitly determine their properties, such as in any
external feedback scheme which requires an explicit detection
and identification of the particle and its properties. In summary,
intracavity optical trapping is all-optical and easy to implement
as the feedback mechanism is intrinsically built in; furthermore,
it has no need for separate electronics or recalibration. Thus,
intracavity optical trapping is fundamentally different from other
approaches as it is an all-optical nonlinear feedback scheme that
exploits a single-beam in a laser cavity.

These features can yield advantages when dealing with biolo-
gical samples. In fact, biological matter is sensitive to light
intensity and the typical tight focus of standard optical tweezers
has detrimental effects over cell manipulation, phototoxicity, and
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long-term survival. Ultra-low intensity at our wavelength can
grant a safe, temperature controlled environment, away from
surfaces for microfluidics manipulation of biosamples. There are
multiple mechanisms that can yield cell cycle inhibition and
destruction in optical trapping that are related with local
heating3®37, induction of reactive oxygen species, light-induced
protein inactivation, and specific pigment absorption8. Accurate
studies on Saccharomices cerevisiae yeast cells in near-infrared
counterpropagating traps>® and standard optical tweezers*0 have
found no evidence for a lower power threshold for phototoxicity.
In particular, in counterpropagating traps®® it has been shown
that 3.5 mW power (corresponding to an intensity of about 0.33
mW pm~2) is needed for 3D trapping of a single cell, but 0.7 mW
(corresponding to about 0.07 mW um~2) is already sufficient to
detect phototoxicity over long-term exposure time (few hours). In
standard optical tweezers?0, a power of 10 mW (about 22 mW pm
~2 intensity) has been reported as the minimum 3D trapping
power, but a pulsed mode operation of optical tweezers has been
observed to reduce phototoxicity because of the reduced inter-
action area. Despite the amount of sustainable dosage by a cell or
specific mechanisms involved are still debatable*’, we observed
that we can 3D trap single yeast cells with about 0.47 mW, cor-
responding to an intensity of 0.036 mW pm~2, that is more than
a tenfold less intensity than standard techniques.

We anticipate that intracavity optical traps, enabling 3D con-
finement with long-working-distance lenses, low operating
intensity, simple optics, and low costs can prove useful in several
research fields, particularly in biology where low photodamage of
the sample is often crucial. It is also tantalizing to consider the
interplay that might arise when the timescales of the laser and of
the particle dynamics become comparable, e.g., when trapping
particles in air or in vacuum.

Methods

Detailed description of the toy model. First, we derive the model for laser
dynamics in Eq. (4). We describe the laser dynamics using a model based on the
one introduced by H. Haken??

P=NwpP— li—r)P, )

R

where N = N; — Z‘h\'l”/TP is the electron population in the excited state, N is the

population in the excited state determined by the pump power, W is the sponta-
neous emission rate at which excited electrons relax to the ground state, 7 is the
relaxation time, 7y, is the cavity round-trip time, h is the Planck’s constant, v is the
optical frequency of the laser output, and I(r) is the loss of the cavity, which
depends on the particle position r. Inserting N into the equation above gives

_2NgTW

pP= Ghet (V)P hv s

(10)
where Gye(r) = NoW — I(r)/1R is the net gain, which depends on the particle
position. While the dependence of the losses on the particle’s position is, in general,
complex, it is maximum at the center and drops quadratically for small displace-
ments as I(r) = Ij(1 — r?/r?), where r, characterizes the scaling of the losses with
the particle’s position, which depends on the radius of the particle, relative indices
of refraction of the particle and the liquid medium, and the losses due to absorption
and scattering. The laser cavity is intentionally arranged to be below threshold (i.e.,
Ghet(r) < 0) for r<ry, where ry is the characteristic particle displacement where
lasing turns on. Therefore, the stationary value of the laser power is given by Eq.
(4), i.e.,

0
””:{%@o

where Gy = lo/tr — NoW, 1|, = 1.1/ G,Tr /ly» and Py = hvGo/(NotW), which is the
the normalized slope of laser power with respect to the particle position and
depends on laser parameters, such as optical loss, gain characteristics, and pump
power. A more complete model would incorporate gain saturation as well as the
saturation of the decrease of losses with increasing r, which ultimately limits the
laser power to a finite value. Nevertheless, we can use this algebraically simpler
model because the probability of the particle to be displaced to large values of r,
where saturation matters, decreases exponentially.

Second, we derive the stationary probability density of the particle position in
Eq. (5). The restoring force is given by

0 r<rn
—Pyxp (% - 1) r
This is an important result that warrants several comments. First, it is the
dependence of trap stiffness on position that constitutes a nonlinear feedback
mechanism. Second, the particular form of this nonlinear response is such that the
laser power is zero up to a certain displacement, ry, and increases quadratically
afterward (until reaching saturation, which is ignored here). We will show below
that this particular form results in a much reduced average power that a trapped
particle experiences, compared with having fixed laser power as in a traditional trap
for the same level of confinement (i.e., variance in the trap). Integrating the force,
the corresponding trap potential is found to be

r O
Ur:i/dex: 4 2 R
=~/ Fe {Pokp(;,izu)

From the potential, we use the Boltzmann factor to determine the probability
density of the particle position, obtaining Eq. (5).

Third, we derive the analytical expressions for af and P,... We can calculate the
variance of the particle position as

F(r) = —kr = —xpP(r)r = { (11)

(12)

00 . 00 i
= / p(r)dr = / r*p,dr +/ Ppye o bi2gy, (13)
0 0 r
and the average laser power value to which the particle is exposed as
o 0 T'2 4 2 2
P = / P(r)p(r)dr = / P, <—2 - 1>poe’”’ b2 gy, (14)
0 n U

The solutions of integrals in Eqs. (13) and (14) can be expressed as series: If we
expand € in a Taylor series, with its convergence guaranteed by the faster
*, we can exactly evaluate the integrals corresponding to each
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where I'(s, x) is the upper incomplete gamma function defined as
I(s,x) = [Jute " dutl.

Fourth, we derive the lower limit for the exposure to laser power (Eq. (6)). We
can calculate a lower limit to the average laser power to which the particle is
exposed by neglecting the 12 term in the expression for p(r) (Eq. (5)). Compared
with the exact form, the probability function drops faster without the r2 term,
ensuring that such a calculation constitutes a lower limit. We therefore obtain

P o0
2 . 2 ‘ 2 —ar'+brl/2
a”:po/ rdr+p0/ re v/edr
0 n

PL ~ A ocP ﬁ ~1 —ar"+byf/2d
ave = Po 0 T2 € r,
i L

b2 2
L
1

(17)

and

(18)

, -1 -1
where p, = [f(:Lder fffE’“"’*b’f/zdr] = [r,_ +T F(i,arﬂ) . These
o
integrals can be evaluated using the upper incomplete gamma functions, obtaining

3 ebrﬁ/z 3
?L + EF(;M?)

Po | 1 3 1
PaL“:P"T;eYL/ZL/‘Tr%FG’mﬁ -T Zﬁur}f .

Even though these results are also not completely transparent, it is evident from the
equation above that Pt will be much smaller than P, for reasonable choices of the

ave

Oty =Py (19)

and

(20)

parameters because p, is in the order of i, ai is much larger than 7y, and the
remaining terms are either order of 1 or smaller. To estimate Pk, for ar{ > 1 and
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Pykpri > 4k T, we can use the asymptotic series*!

I(a, x) :x“*le*"<1+“_1+...>, (21)

X

which is valid for large x. Retaining the first two terms of the series, we obtain

3 o1 1
I(>,art) ~e ™ 1-— 22
(4"”‘“) ¢ al/4r, ( 4ar]‘f>’ (22)

(AR | 3
F(Z,urL>_e Lm I—W. (23)

The substitution of the above equations into Eq. (20) gives the lower bound for P,

in Eq. (6):
Lo 2/P, ks T\? 2 (kgT\®
e () ) TR )
MR

Finally, we derive the upper limit to exposure to laser power (Eq. (7)). To
calculate an upper limit to the laser power, we assume a uniform distribution of the
particle position. We make use of the fact that, while p(z) extends to infinity, it
drops extremely fast as a result of the quartic term of r within the exponential. This
creates an excellent opportunity for the calculation of an approximate result and
suggests a well-defined point to terminate the uniform distribution. To this end, we
introduce a new parameter, ry,,y, Which represents a finite amount of displacement
beyond which the probability of finding the particle is taken to be negligible. More
precisely, at 7.y, the probability is 1/C, where C >> 1. This value is given by
e metUrabi/2 — 071 which is easily solved to yield

41n(C)k, T

. (24)
riKkpPy

While the choice of C is arbitrary, ry.y is remarkably insensitive to this choice due
to the presence of the logarithm, which is furthermore imbedded within two square
roots. The utility of this approach derives from this extreme insensitivity.

With these simplifications, the upper bound to the variance of the particle
position can be calculated as

1 Tmax 1
2 2 2
o= [ rar=in, (25)
Tmax 0

and that to the average power to which the particle is exposed is given by

1 [Tmx (72 T, 1 2
P =— Py(5—1)dr=p - e . (26
e = -/q O(rf > 7= Py (Fnax VL)<3’,% +3’L 3"max> (26)

It is important to remember that the uniform distribution is not an exact upper
limit to the exact result by virtue of the region from 7, to c. However, it is
straightforward to show that this region has a negligibly small contribution due to
the rapidly decaying p(r) for r > .y for sufficiently large 7,,,,. Namely, we want to

show that f:z‘“‘e'“’“rb'z dr> [ e~ "t dr. To this end, we introduce S(r),

S(r) = / e gy, (27)

‘max

Using the definitions of a and b, $(r) = [% e~ (*~2i)dr. For r > v/2r,

ar’(r? —2r}) > ar?, and S(r) < [T e dr = ‘/Tf(erf(\/ﬁr) —erf(\/ar.))-

Therefore, as a limiting case, we obtain

Nz e—(nCy?
~Va C

It is clear that the contribution to power exposure from the region of r> ryax
which will be neglected in the calculation of the approximate upper limit is,
bounded, small in absolute terms, and significantly smaller than the overestimation
that arises from the region ry, <7 < 1, for any experimentally relevant choice of
the parameters.

In the case of 1, < Fimay the average power exposure is given by

1 [re (2 P P
Ppe=— Polm—1)dr=—52— (e — 1) = — (T — 7). (29
ave Tas /r, 0 (rlz_ ) 371% ( max L) r ( max L) ( )

rmax max

lim §(r)< lim %(1 —erf(InC)) ~ 0 for C> 1. (28)
r—o0 r/a

r—o0

Introducing A = r,,, — . < 11, and using the Taylor expansion,

A\? A A\?
Ra=rnll+—) = 1+3=+3(—) +..], (30)
n n n

we obtain the upper bound to the average power given by Eq. (7), i.e.,

A kg T
PY. = P(fya) = = Pty )1 [ In(C) 52—
ave max zrmax max 4rf KP PO

Rate equations for the laser dynamics. The fiber laser in our experiment consist
of an Yb-doped fiber section of length Lg. To calculate the laser power circulation
in the ring cavity of the laser, we solve the rate equations2*. The governing
equations for the pump power, P, signal power P, and amplified spontaneous
emission, Pag, in a given longitudinal position Z at the mth round trip are:

dP, ,(Z) . N

de = I‘p (Ule,m(Z) - Ule.m(Z))Pp.m(Z) - O‘ppp,m(z)v (31>
dp,, (2) ,

s,m _ e _ A _ 32
= 1 (08N, 0(2) = 0N (2) ) P (2) — i (2), (32)

dl fsnm Z e, + a,+ +

Tl ‘dz( )= £ (‘TS‘ Ny (Z) = o} Nl.m(Z))PASE,m(Z)

2 (33)
* 20—? * rs % AASNZ,m (Z)

where 629, 63) are the absorption (emission) cross sections at signal and pump

wavelengths, respectively; I', and I stand for pump and signal filling factors; h is

the Plank’s constant; A; and AA, are the signal wavelength and spectral width; N,

and N, are the population densities of the upper and lower lasing levels at Z and are

given by

N, Ry + Wo + Wo + Aise o + Asem

2m
Nl.m Ra + Re.m + Wa.m + We,m + Wa,m + We.m + AXSE,m + A;SE,m + AS ’
(34)
a(e)
where A; is the spontaneous transition rate, Ry ,, = P, r“s’ are the pump
P

ot . . -
<% are the signal transition probabilities,

s

. In the ring cavity, a portion of the output power is

transition probabilities, W, o),y = Py

.m

+ _ + Lo®* (A
and Ajgp,, = ? Prsem =2

fed back to the cavity for the next round trip and satisfy the following boundary
condition:

Ps,m+1(0) =(1- lsca()(l - lcavity>Ps,m (Lg)7 (35)

where leayity and L, represent optical loss of the cavity and the particle, respec-
tively. The power in the cavity effectively reaches to a steady state, P, after many
roundtrips, ie., for m > 1.

Numerical simulations. To perform the numerical simulations, we project Eq. (8)
on the Cartesian axes x, y and z, to obtain a set of uncoupled overdamped Langevin
equations, corresponding to the following system of coupled finite difference
equations*2,

X=X+ VﬁlFm,x (%1, P;) At + 2AtDw,;, (36)
Yi=Yiat yilFol.y(yi—lvpi)At + V2AtDw,,;, (37)
Zi =2 + y71 Fol.z(zi—lvpt) - Fg] At + v 2Atl)wz.ia (38)

where r; = [x;, y;, z;] is the particle position at timestep i, P; is the stationary power
at timestep i, Foi(r, P) = [Fogu(, P), Fory(ps P), For (2, P)] is the optical force, Fy is
the gravity minus the buoyancy acting on the particle, and w,;, w,,; and w.; are
independent Gaussian random numbers with zero mean and unitary variance.
The incident power on the particle, P;, is updated at each timestep. The optical loss
due to the trapped particle is obtained as Iy = 1 — Pycar,i/ Py Where Py, ; is the
power of the scattered light collected by the second collimator. This information
is used together with the laser power rate equations to calculate the laser power
at timestep i. We note that in these ray-optics simulations aberration and distortion
by the glass-water interfaces is not taken into account. These effects might
contribute to a weakening of the axial confinement in the experimental
intracavity trap.

3D digital video microscopy. We have acquired videos of the particle at 50 Hz
and then used standard digital video microscopy algorithms to detect its position®3.
For the measurement of the lateral position (r) of the particle, we have used the
standard centroid algorithm (lateral resolution 20 nm). For the measurement of the
axial position (z) of the particle, we have acquired a stack of reference images of a
stuck particle as a function of its z-position and compare them to the image of the
particle in each frame (axial resolution of 40 nm).

Data availability
Data and resources in support of the findings of this study are available from the
corresponding authors upon reasonable request.
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