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Abstract: Bayesian methods are an important set of tools for performing meta-analyses. They avoid
some potentially unrealistic assumptions that are required by conventional frequentist methods.
More importantly, meta-analysts can incorporate prior information from many sources, including
experts’ opinions and prior meta-analyses. Nevertheless, Bayesian methods are used less frequently
than conventional frequentist methods, primarily because of the need for nontrivial statistical coding,
while frequentist approaches can be implemented via many user-friendly software packages. This
article aims at providing a practical review of implementations for Bayesian meta-analyses with
various prior distributions. We present Bayesian methods for meta-analyses with the focus on odds
ratio for binary outcomes. We summarize various commonly used prior distribution choices for
the between-studies heterogeneity variance, a critical parameter in meta-analyses. They include the
inverse-gamma, uniform, and half-normal distributions, as well as evidence-based informative log-
normal priors. Five real-world examples are presented to illustrate their performance. We provide all
of the statistical code for future use by practitioners. Under certain circumstances, Bayesian methods
can produce markedly different results from those by frequentist methods, including a change in
decision on statistical significance. When data information is limited, the choice of priors may
have a large impact on meta-analytic results, in which case sensitivity analyses are recommended.
Moreover, the algorithm for implementing Bayesian analyses may not converge for extremely sparse
data; caution is needed in interpreting respective results. As such, convergence should be routinely
examined. When select statistical assumptions that are made by conventional frequentist methods
are violated, Bayesian methods provide a reliable alternative to perform a meta-analysis.

Keywords: Bayesian analysis; Markov chain Monte Carlo; meta-analysis; odds ratio; prior distribu-
tion

1. Introduction

Systematic reviews and meta-analyses have been a popular tool for synthesizing
evidence in many fields, including evidence-based medicine, public health, and environ-
mental research [1–3]. Through systematic reviews and meta-analyses, researchers can
combine findings from independent studies on common research topics, with one goal
being to produce overall results that may be more precise than individual studies.

Coming along with the mass production of meta-analyses in recent years, the quality
of many meta-analyses may be low, being partly related to certain methodological limita-
tions [4]. For example, the method that was proposed by DerSimonian and Laird [5] is the
most widely-used meta-analysis approach, with over 30,000 Google Scholar citations as of
March 21, 2021. However, this approach has been shown to be outperformed by several
alternative estimation methods, such as the restricted maximum-likelihood (REML) [6,7].
In addition, conventional meta-analysis methods often assume that within-study sample
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variances are known, fixed values. Thus, sampling errors from within-study variances are
ignored, which may be unrealistic and they can lead to substantial biases in some situations
(e.g., small sample sizes) [8,9]. For example, the sample variance of the log odds ratio (OR)
is typically calculated as 1/a + 1/b + 1/c + 1/d, where a, b, c, and d represent the four
data cells in a 2 × 2 table for a binary outcome. This sample variance is conventionally
treated as a fixed variable in a meta-analysis, although the four data cells are actually ran-
dom variables. More advanced frequentist approaches, such as generalized mixed-effects
models, can avoid this unrealistic assumption, particularly for meta-analyses of binary
outcomes [10–13]. Many simulation studies have compared various frequentist methods
for meta-analyzing binary outcomes and they have offered useful recommendations under
different scenarios [14–17]. However, these approaches may require maximizing certain
likelihood functions that involve complicated integrals and are generally less familiar
among meta-analysis practitioners.

When comparing frequentist approaches to meta-analysis, Bayesian methods are
widely used in medical research among other fields, and they provide a flexible way for
implementing complicated models [18–24]. Another major benefit of Bayesian methods is
that prior information can be explicitly incorporated in meta-analytic models and, thus,
have an impact on the results [25]. In the literature of multivariate meta-analysis of mul-
tiple outcomes and/or multiple treatments, Bayesian methods are a standard approach
for effectively modeling complicated variance-covariance structures [26,27]. However,
frequentist methods still dominate conventional univariate meta-analyses that compare
each pair of treatments for each outcome separately [28]. The widespread use of frequentist
methods in univariate meta-analyses is partly due to the relatively easy implementation in
several popular software packages [29]. Bayesian methods, on the other hand, typically
require nontrivial statistical coding, which may limit their promotion in applications. Fortu-
nately, with the advance of meta-analysis methodology, more software programs are being
developed to provide user-friendly functions for implementing Bayesian meta-analyses.
For example, the R package “bayesmeta” contains a collection of functions for deriving
and evaluating posterior distributions of parameters in a random-effects meta-analysis [30].
Another R package “brms” fits Bayesian multilevel models and supports a wide range of
distributions and link functions [31]. The R packages “gemtc” and “pcnetmeta” can be
used to implement Bayesian network meta-analysis of multiple treatments [32,33]. The
relatively new bayesmh command in Stata and BGLIMM procedure in SAS can be also
used to fit Bayesian meta-analysis models.

The objectives of this article are three-fold, with a focus on univariate meta-analyses
of ORs for binary outcomes. First, we review Bayesian methods, as well as frequentist
methods, for conducting meta-analyses. As the heterogeneity of effect sizes plays a critical
role when combining primary study results, we introduce three commonly used estimators
of the between-studies variance under the frequentist framework. Under a Bayesian
framework, we present four prior distributions with different sets of hyper-parameters. It
is of note that this manuscript does not aim to provide recommendations for prior selection,
because preferable priors may differ case-by-case, particularly when experts’ opinions are
available to derive informative priors. Second, we present detailed steps to implement a
Bayesian meta-analysis via the Markov chain Monte Carlo (MCMC), with an emphasis
on the importance of validating the posterior samples (i.e., MCMC convergence). Third,
we apply the various methods to data from five meta-analyses that were published in The
BMJ. Based on these examples, we empirically examine the impact of different priors on
the overall effect estimates, including point and interval estimates, and explore potential
problems that are caused by sparse data.

2. Materials and Methods
2.1. Bayesian Meta-Analysis of Odds Ratios

The Supplementary Materials (Data A) review the frequentist meta-analysis meth-
ods. The frequentist framework assumes unknown parameters of interest to be fixed; by
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contrast, the Bayesian framework treats unknown parameters as random variables with
assigned prior distributions. Bayesian methods have serval advantages over frequentist
ones. For example, they can be easily applied to complicated models [34,35], improving
convergence issues, and improving estimates using informative priors [36–38]. Neverthe-
less, the required computation is usually more extensive than frequentist methods [39].
Under the Bayesian framework, the estimation and inference of parameters are based on
their respective posterior distributions. In some instances, such posterior distributions may
not have explicit forms. To overcome this difficulty, MCMC algorithms are widely used to
numerically draw samples from posterior distributions [40].

In order to implement Bayesian random-effects meta-analysis of ORs, we consider a
meta-analysis containing k studies with binary outcomes; study i has rTi and rCi events in
the treatment and control groups, respectively. The event counts are assumed to indepen-
dently follow binomial distributions with sample sizes nTi and nCi within each study. The
Bayesian hierarchical model is [41–44]:

rCi ∼ Bin(nCi, πCi), rTi ∼ Bin(nTi, πTi);
logit(πCi) = µi, logit

(
πTi

)
= µi + δi;

δi ∼ N
(
θ, τ2);

µi, θ, and τ ∼ priors,

where πTi and πCi are the underlying true event rates in study i’s treatment and control
groups. Additionally, µi denotes the baseline risk in each study. Because baseline charac-
teristics may differ greatly across studies, researchers often treat it as a nuisance. Of note,
one may also treat these baseline risks as random effects; we do not make this assumption
in this article because there are ongoing debates about this assumption for randomized
controlled trials [10,45–47].

Using the logit link function logit(t) = log[t/(1 − t)] for the true event rates, δi’s
represent the underlying true log ORs within studies. To account for potential heterogeneity,
they are assumed to be random effects, following a normal distribution with mean θ and
variance τ2, where θ is interpreted as the overall log OR, and τ2 is the between-studies
variance.

The vague normal prior N
(
0, 1002) is frequently assigned for µi and θ; meta-analysis

results are usually robust to the choice of priors for these parameters, as long as the priors
are sufficiently vague. If available, more precise priors may be used for them based on
experts’ opinions. Similar to the frequentist framework, where multiple estimators are
available for τ2 [7], choosing the prior for the heterogeneity parameter is critical in Bayesian
meta-analyses, especially when k is small or events are rare, as this prior may greatly impact
the credible interval (CrI) length [48].

2.2. Priors for Heterogeneity

We consider four types of priors for the heterogeneity parameter: inverse-gamma,
uniform, half-normal, and log-normal priors. Different hyper-parameters are used for
each prior distribution. We choose these priors, because they have been used in many
Bayesian meta-analyses. One may also tailor a specific prior using experts’ opinions on a
case-by-case basis; such practice is out of the scope of this article.

The inverse-gamma prior, which is denoted by IG(α, β), is widely used for τ2. It is
conjugate (producing a posterior within the same distribution family and, thus, yielding a
closed-form expression) and facilitates computation [40]. Small parameter values are often
assigned to the hyper-parameters α and β, which determine the distribution shape and scale,
respectively. As both hyper-parameters approach zero, this prior corresponds to a flat prior
for log

(
τ2). We consider setting both hyper-parameters as equivalent and to values 0.001,

0.01, or 0.1; these are common choices in practice [49]. The inverse-gamma prior may be
advantageous for dealing with sparse data, as it may improve stability and convergence [50].
Nevertheless, because the inverse-gamma prior is not truly “non-informative”, the choice
of hyper-parameters may have a substantial impact on meta-analytic results.
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The uniform prior, denoted by U(0, c), is also widely used for the heterogeneity
standard deviation τ [51], where c determines the prior’s upper bound. The lower bound
is fixed to zero, as τ must be non-negative. We consider c = 2, 10, and 100 [52]. The
justification for choosing an appropriate hyper-parameter c should be based on specific
cases. For example, it might be reasonable to set c = 2 for log ORs, as they usually range
between −2 and 2. However, when the effect measure is the mean difference for continuous
outcomes, the choice of c should be based on the outcomes’ scales.

The half-normal prior, which is denoted by HN
(
0, σ2), is another candidate prior for

τ [38,53]. This prior is a special case of the folded normal distribution, i.e., the absolute
value of a random variable following N

(
0, σ2), where σ2 controls the extent of heterogeneity.

We consider σ2 = 0.1, 1, or 2 [38].
In addition, the evidence-based informative log-normal prior has been suggested for

τ2 [54]. We denote this prior by LN
(
µ , σ2); equivalently, log

(
τ2) has the normal prior

N
(
µ, σ2). The hyper-parameters µ and σ2 are derived from over 10,000 meta-analyses from

the Cochrane Library, which may accurately predict the extent of heterogeneity of an exter-
nal meta-analysis. As a result, the prior is viewed as “informative”, and it may be useful
for meta-analyses with a few studies. The values of hyper-parameters depend on the type
of treatment comparison and outcome in a meta-analysis, as detailed in Table 1. Treatment
comparisons are classified as pharmacological treatment vs. placebo/control, pharma-
cological treatment vs. pharmacological treatment, or comparisons involved with non-
pharmacological treatments (e.g., medical deviance, surgery), according to Turner et al. [54].
Outcomes are classified as all-cause mortality, semi-objective outcomes (e.g., cause-specific
mortality), and subjective outcomes (e.g., mental health condition).

Table 1. Summary of prior distributions for the heterogeneity component (variance τ2 or standard
deviation τ ) in a meta-analysis of odds ratios.

Prior Distribution Used for Hyper-Parameter

Inverse-gamma,
IG(α, β) τ2

α = β = 0.1; or
α = β = 0.01; or
α = β = 0.001.

Uniform, U(0, c) τ
c = 2; or
c = 10; or
c = 100.

Half-normal,
HN

(
0, σ2) τ

σ2 = 0.1; or
σ2 = 1; or

σ2 = 2.

Log-normal,
LN

(
µ, σ2) τ2

Pharmacological vs. placebo/control comparison:
µ = −4.06, σ = 1.45 (all-cause mortality);

µ = −3.02, σ = 1.85 (semi-objective outcome);
µ = −2.13, σ = 1.58 (subjective outcome).

Pharmacological vs. pharmacological comparison:
µ = −4.27, σ = 1.48 (all-cause mortality);

µ = −3.23, σ = 1.88 (semi-objective outcome);
µ = −2.34, σ = 1.62 (subjective outcome).

Non-pharmacological comparison:
µ = −3.93, σ = 1.51 (all-cause mortality);

µ = −2.89, σ = 1.91 (semi-objective outcome);
µ = −2.01, σ = 1.64 (subjective outcome).

2.3. Implementation

Figure 1 shows the flowchart of a general process for implementing a Bayesian meta-
analysis via MCMC algorithms. The burn-in period draws posterior samples early in
the iteration process to achieve the convergence and stabilization of the Markov chains.
Posterior draws during the burn-in period are discarded before making statistical inference.
The diagnostic procedures are often overlooked in applications of Bayesian meta-analyses.
If the Markov chains have not converged and stabilized, estimates that are based on the
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posterior samples may be invalid and/or misleading. Several factors may contribute
to this problem. For example, if the number of iterations is insufficient, drawing more
posterior samples may solve the problem. The convergence issue may also arise from
a multi-modal posterior distribution, possibly because of subgroup effects. In this case,
separate meta-analyses may be performed for each subgroup.
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Figure 1. Flow chart for implementing a Bayesian meta-analysis.

Various approaches, including trace and density plots, are available for diagnosing
MCMC samples and their possible convergence. A trace plot presents the posterior samples
after the burn-in period in each Markov chain iteration for each parameter. If it shows
well-mixed samples, this provides evidence that the Markov chains have stabilized and
converged. A density plot depicts the posterior sample density for each parameter. If
the density shows multiple modes (e.g., “peaks”), then the Markov chains may not have
converged. When Markov chains’ convergence and stabilization have been justified, point
estimates (usually posterior medians), and their 95% CrIs, often formed by 2.5% and 97.5%
posterior quantiles, can be computed for the Bayesian meta-analysis.
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2.4. Application to Real Data

We used five real-world datasets with different sizes (number of studies and within-
study sample sizes), event rates, and heterogeneity extents to illustrate the implementation
of Bayesian meta-analyses, the impact of prior distributions on meta-analytic results, and
the potential problems of MCMC convergence. All of the datasets had binary outcomes;
regardless of original analyses, (log) ORs were used as effect measures in our re-analyses.

Example 1. The meta-analysis by Lamont et al. [55] investigated the risk of recurrent
stillbirth from 13 cohort studies, all with large sample sizes. The comparison type was non-
pharmacological (previous stillbirth vs. previous live birth), and the outcome (recurrent
stillbirth) might be classified as semi-objective.

Example 2. The meta-analysis by Crocker et al. [56] combined eight studies to investi-
gate the impact of patient and public involvement (PPI) on patient enrollment in clinical
trials. The intervention PPI was non-pharmacological, and the outcome (enrollment in
clinical trials) was likely semi-objective.

Example 3. The meta-analysis, as reported by Baxi et al. [57], included 13 studies to
synthesize the association between anti-programmed cell death 1 (anti-PD-1) drugs and
immune-related adverse events. This meta-analysis compared pharmacological treatments
with control. In this example, the outcome was the adverse event colitis, which may be
considered subjective according to Turner et al. [54] The event rate in each primary study
was fairly low; many zero event counts existed.

Example 4. This meta-analysis is also from Baxi et al. [57]; it combined 15 studies
with the adverse event hepatitis, which was also considered as a subjective outcome. The
treatment comparison was also pharmacological treatments (anti-PD-1 drugs) vs. control.
All of the studies had zero events in the control group.

Example 5. The fifth meta-analysis by Martineau et al. [58] collected 25 randomized
controlled trials to assess the effect of vitamin D supplementation on the risk of acute
respiratory tract infection (ARTI). The comparison was the pharmacological treatment
(vitamin D supplementation) vs. control. The outcome was the experience with at least
one ARTI, which might be considered to be subjective.

2.5. Statistical Analyses

For each dataset, we implemented the random-effects meta-analysis using the
DerSimonian–Laird (DL) [5], maximum-likelihood (ML), and REML estimators [59] for τ2

under the frequentist framework and using the Bayesian models with 12 different priors
for τ2 or τ. Specifically, we considered all four prior distributions that are reviewed in
Section 2.2. For each of the inverse-gamma, uniform, and half-normal priors, we used
three sets of hyper-parameters, as shown in Table 1. For the informative log-normal priors
proposed by Turner et al. [54], we identified the treatment comparison type of each meta-
analysis. Recall that the outcomes were classified as all-cause mortality, semi-objective
outcomes, and subjective outcomes (Section 2.2). Such classifications might be ambiguous
in some cases, particularly when distinguishing semi-objective and subjective outcomes.
Therefore, according to the treatment comparison type of each meta-analysis, we used all
three possible sets of hyper-parameters for three outcome types.

In the presence of zero event counts, when implementing the conventional frequentist
methods, studies with zero counts in both the treatment and control groups had to be ex-
cluded (see Data A.3 in the Supplementary Materials for details). The continuity correction
of 0.5 was applied to studies with zero counts in only a single treatment arm. Such ad hoc
corrections were not needed in Bayesian analyses.

We used the R package “rjags” (version 4–7) to implement the Bayesian models via the
MCMC algorithm. For each Bayesian model, we used three Markov chains, each having a
burn-in period of 50,000 iterations, followed by 200,000 iterations for drawing posterior
samples with thinning rate 2. Trace plots were used to assess the chains’ convergence. We
obtained the posterior medians of the overall OR, the heterogeneity standard deviation τ̂,
and 95% CrIs for both parameter estimates. The frequentist methods were implemented
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via the R package “metafor” [60]. We used the Q-profile method to obtain 95% confidence
intervals (CIs) of τ̂ [61]. The Supplementary Materials (Data B) provide all of the statistical
code.

This study did not require ethical approval and patient consent, because it focused on
statistical methods for meta-analyses, and all the analyses were performed using publicly
available data.

3. Results

Table 2 provides the estimated ORs and heterogeneity standard deviations of the five
real-world meta-analyses using all priors under the Bayesian framework, as well as three
different estimators under the frequentist framework. All of the ORs were computed for
comparing treatment against control. Figure 2 shows the forest plot for the meta-analysis
on stillbirth; Figures S1–S4 in the Supplementary Materials (Data C) present those for the
remaining four meta-analyses. In addition, Figures S5–S64 in the Supplementary Materials
(Data D) provide trace plots related to MCMC processes, and Figures S65–S69 in the
Supplementary Materials (Data E) present posterior density plots.

3.1. Example 1: Meta-Analysis on Stillbirth

The estimated overall ORs by all methods ranged from 4.30 to 4.59, and their CIs/CrIs
were all above 1, which suggested a significantly increased risk of recurrent stillbirth among
women with a previous stillbirth compared with those with a previous live birth. The
results were relatively robust to the different meta-analytic methods, likely because this
meta-analysis contained a moderate number of studies (k = 13), with each study having
many patients. These two combined qualities likely provided enough information for
similar estimation results. The trace plots (Figures S5–S16) and posterior density plot
(Figure S65) indicate that the Markov chains converged and stabilized well.

Nevertheless, different methods indicated some noticeable dissimilar point and in-
terval estimates. For example, the frequentist DL, ML, and REML methods estimated the
overall OR as 4.59, 4.52, and 4.47, respectively, and τ̂ was, accordingly, 0.38, 0.43, and
0.46. Among the Bayesian methods, the inverse-gamma and uniform priors produced
fairly similar results. Those by the half-normal and log-normal priors led to some small
differences. Specifically, as the hyper-parameter of the half-normal prior increased from
0.1 to 2, the estimated overall OR changed from 4.35 to 4.26, with τ̂ changing from 0.45 to
0.53 and yielding wider CrIs. The estimated overall ORs ranged from 4.31 to 4.39 for the
log-normal priors.

In addition, the 95% CrIs that were produced by the Bayesian methods were generally
wider than the 95% CIs produced by the frequentist methods. This was possibly because
the frequentist methods failed to account for sampling errors within sample variances and
the uncertainty in τ̂.

3.2. Example 2: Meta-Analysis on Patient Enrollment in Clinical Trials

All three frequentist methods produced τ̂ = 0, which then corresponded to the same
estimated overall OR 1.16 with 95% CI [1.03, 1.30]. This suggested a statistically significant
effect of PPI on patient enrollment in clinical trials. However, all of the Bayesian methods
produced 95% CrIs containing 1, which indicated that the effect of PPI was not significant.
The trace plots (Figures S17–S28) and the posterior density plot (Figure S66) indicate that
the Markov chains converged and stabilized well.

The number of studies (k = 8) was relatively small. The uniform and half-normal
priors with different hyper-parameters led to fairly similar results. Nevertheless, the
inverse-gamma prior had an influence on the results. As its hyper-parameters changed
from 0.001 to 0.1, although the OR estimates remained nearly unchanged, the associated
95% CrI became much wider, changing from [0.99, 1.39] to [0.87, 1.57], with τ̂ changing
from 0.09 to 0.29. The informative log-normal prior also had a noticeable impact on the
95% CrIs, and τ̂ was 0.10, 0.12, and 0.16 while using different hyper-parameters.
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Table 2. The estimated odds ratios (OR) and heterogeneity standard deviations (Tau) with their 95% credible/confidence intervals using different methods in the five examples.

Bayesian Method Frequentist Method e

Estimate Inverse-Gamma Prior a Uniform Prior b Half-Normal Prior c Log-Normal Prior d
DL ML REML

IG1 IG2 IG3 U1 U2 U3 HN1 HN2 HN3 LN1 LN2 LN3

Example 1: meta-analysis on stillbirth

OR 4.30
(2.95, 5.86)

4.30
(2.95, 5.87)

4.26
(2.90, 5.90)

4.26
(2.85, 5.95)

4.25
(2.85, 5.94)

4.25
(2.85, 5.95)

4.35
(3.13, 5.78)

4.26
(2.89, 5.91)

4.26
(2.86, 5.92)

4.39
(3.16, 5.76)

4.33
(3.04, 5.82)

4.31
(3.01, 5.83)

4.59
(3.56, 5.93)

4.52
(3.42, 5.96)

4.47
(3.34, 5.99)

Tau 0.49
(0.29, 0.89)

0.50
(0.30, 0.89)

0.52
(0.32, 0.91)

0.53
(0.31, 0.98)

0.54
(0.31, 0.98)

0.54
(0.31, 0.98)

0.45
(0.28, 0.71)

0.52
(0.31, 0.93)

0.53
(0.31, 0.95)

0.43
(0.26, 0.72)

0.47
(0.28, 0.80)

0.48
(0.29, 0.82)

0.38
(0.28, 0.91)

0.43
(0.28, 0.91)

0.46
(0.28, 0.91)

Example 2: meta-analysis on patient enrollment in clinical trials

OR 1.17
(0.99, 1.39)

1.17
(0.95, 1.44)

1.17
(0.87, 1.57)

1.17
(0.96, 1.43)

1.17
(0.96, 1.43)

1.17
(0.96, 1.43)

1.17
(0.98, 1.41)

1.17
(0.96, 1.42)

1.17
(0.98, 1.41)

1.17
(0.99, 1.39)

1.17
(0.97, 1.41)

1.17
(0.95, 1.45)

1.16
(1.03, 1.30)

1.16
(1.03, 1.30)

1.16
(1.03, 1.30)

Tau 0.09
(0.02, 0.34)

0.15
(0.06, 0.42)

0.29
(0.16, 0.63)

0.11
(0.01, 0.46)

0.12
(0.01, 0.47)

0.11
(0.01, 0.47)

0.10
(0.01, 0.36)

0.10
(0.01, 0.44)

0.11
(0.00, 0.45)

0.10
(0.03, 0.28)

0.12
(0.03, 0.36)

0.16
(0.05, 0.43)

0.00
(0.00, 0.46)

0.00
(0.00, 0.46)

0.00
(0.00, 0.46)

Example 3: meta-analysis on colitisf

OR 6.90
(2.28, 102)

7.15
(2.25, 84.30)

7.99
(2.25, 141)

7.59
(2.24, 47.85)

9.83
(2.24, 2008)

11.37
(2.25, 105)

6.09
(2.23, 22.46)

6.88
(2.23, 35.32)

7.62
(2.28, 56.53)

5.89
(2.25, 21.04)

5.95
(2.18, 23.08)

6.34
(2.20, 26.20)

3.39
(1.45, 7.95)

3.39
(1.45, 7.95)

3.39
(1.45, 7.95)

Tau 0.25
(0.03, 3.89)

0.44
(0.08, 3.37)

0.73
(0.22, 3.98)

0.74
(0.03, 1.90)

1.13
(0.05, 7.32)

1.33
(0.05, 12.84)

0.20
(0.01, 0.68)

0.51
(0.02, 1.78)

0.66
(0.03, 2.45)

0.13
(0.03, 0.49)

0.21
(0.04, 1.02)

0.31
(0.07, 1.26)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

Example 4: meta-analysis on hepatitisg

OR NA NA NA NA NA NA NA NA NA NA NA NA 3.14
(0.76, 12.98)

3.14
(0.76, 12.98)

3.14
(0.76, 12.98)

Tau NA NA NA NA NA NA NA NA NA NA NA NA 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

Example 5: meta-analysis on acute respiratory tract infection

OR 0.83
(0.70, 0.95)

0.82
(0.69, 0.95)

0.81
(0.67, 0.95)

0.82
(0.68, 0.95)

0.82
(0.68, 0.95)

0.82
(0.68, 0.95)

0.82
(0.69, 0.95)

0.82
(0.69, 0.95)

0.82
(0.69, 0.95)

0.83
(0.71, 0.95)

0.83
(0.70, 0.95)

0.82
(0.70, 0.95)

0.83
(0.72, 0.95)

0.83
(0.72, 0.95)

0.83
(0.71, 0.95)

Tau 0.21
(0.05, 0.41)

0.23
(0.10, 0.43)

0.29
(0.18, 0.48)

0.25
(0.08, 0.46)

0.25
(0.08, 0.45)

0.25
(0.08, 0.46)

0.23
(0.07, 0.41)

0.25
(0.08, 0.45)

0.25
(0.08, 0.45)

0.19
(0.06, 0.36)

0.22
(0.08, 0.40)

0.24
(0.10, 0.42)

0.21
(0.08, 0.47)

0.21
(0.08, 0.47)

0.23
(0.08, 0.47)

a Inverse-gamma priors for τ2 with three sets of hyper-parameters: IG1, IG(0.001, 0.001); IG2, IG(0.01, 0.01); IG3, IG(0.1, 0.1). b Uniform priors for τ with three sets of hyper-parameters: U1, U(0, 2); U2,
U(0, 10); U3, U(0, 100). c Half-normal priors for τ with three sets of hyper-parameters: HN1, HN(0, 0.1); HN2, HN(0, 1); HN3, HN(0, 2). d Log-normal priors for τ2 with three sets of hyper-parameters. For
the meta-analyses on stillbirth and on patient enrollment in clinical trials (non-pharmacological treatment comparisons), they are: LN1, LN

(
−3.93, 1.512); LN2, LN

(
−2.89, 1.912); LN3, LN

(
−2.01, 1.642). For the

meta-analyses on colitis, on hepatitis, and on acute respiratory tract infection (pharmacological treatments vs. placebo/control), they are: LN1, LN
(
−4.06, 1.452); LN2, LN

(
−3.02, 1.852); LN3, LN

(
−2.13, 1.582).

The results in italic are based on the set of hyper-parameters that best matches the outcome categorization (all-cause mortality, semi-objective, and subjective outcomes) according to Turner et al. [54] e The
frequentist methods include the DerSimonian–Laird (DL), maximum likelihood (ML), and restricted maximum likelihood (REML) estimators. fMarkov chains might have convergence issues when using some
priors, so the results may be interpreted with cautions. gMarkov chains had poor convergence when using all priors, so the results by the Bayesian methods may not be reliable and are reported as not available
(NA). The results by the frequentist methods should also be interpreted with great caution.
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3.3. Example 3: Meta-Analysis on Colitis

This meta-analysis contained k = 13 studies; four studies had zero event counts in
both arms, thus their ORs were not estimable, and they were subsequently removed when
using the frequentist methods. All three frequentist estimators gave τ̂ = 0 and estimated
the overall OR as 3.39 with 95% CI [1.45, 7.95], indicating that patients that were treated
with anti-PD-1 drugs were at significantly higher risk of developing colitis as compared
with those in the control group.

The trace plots (Figures S29–S40) and the posterior density plot (Figure S67) indicate
that some Markov chains might have convergence issues when using some priors. The
posterior samples of the overall OR might take extreme values in a few MCMC iterations.
Caution was advised when interpreting the results to assess their reliability. If more
informative priors were available for colitis than the 12 priors considered here, one may
further examine whether such priors could improve the MCMC convergence and, thus, the
validity of the results.

The Bayesian OR estimates, ranging from 5.89 to 11.37, were much larger than those
that were obtained from the frequentist methods. The large difference was likely because
the Bayesian methods effectively accounted for the double-zero-event studies, while the
conventional frequentist methods could not use such studies.

Besides the four double-zero-event studies, six studies contained zero counts in the
control group. Because of the sparse data, the results from the Bayesian methods were fairly
sensitive to the choice of hyper-parameters. The 95% CrIs were also much wider than the
95% CIs produced by the frequentist methods, although they still suggested a significant
effect of anti-PD-1 drugs on colitis. The frequentist 95% CIs were narrow, likely yielding
low coverage probabilities, because the frequentist methods used large-sample properties
to derive within-study sample variances and treated them as known, fixed values.

3.4. Example 4: Meta-Analysis on Hepatitis

This meta-analysis was from the same systematic review as the previous meta-analysis
on colitis [57]; it investigated another adverse event, hepatitis. The data were even sparser
in this meta-analysis, which may serve as an excellent example to illustrate the importance
of checking MCMC convergence in Bayesian meta-analysis. All k = 15 studies had zero
counts in the control group, and only five studies had non-zero counts in the treatment
group. In total, this meta-analysis only had six events among all 7156 patients.
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Again, all three frequentist methods yielded τ̂ = 0 and produced the overall OR
estimate 3.14 with 95% CI [0.76, 12.98], indicating no significant effect of anti-PD-1 drugs
on hepatitis. The results that were produced by the Bayesian methods with the considered
12 priors were not reliable, because the trace plots (Figures S41–S52) showed that nearly all
Markov chains did not converge. The posterior density plot (Figure S68) indicated multiple
modes of the posterior distributions. These issues were likely caused by the extremely
sparse data with few events. The estimated heterogeneity standard deviation τ̂ was very
sensitive to the choice of priors; it was primarily influenced by the priors, because the
sparse data contained little information about heterogeneity. If the researchers had better
prior beliefs than the priors used in this article, they may try such alternatives to examine
if the inference for this extremely sparse dataset could be improved.

Of note, although the frequentist methods successfully produced the results, as re-
ported in Table 2, they may also be unreliable. For example, the likelihood function for the
sparse data may be fairly flat, making the ML algorithm used for deriving the estimates
highly unstable [62,63]. The event rate was close/equal to the boundary value 0, and
technical issues existed when making inference on the ML estimates.

3.5. Example 5: Meta-Analysis on Acute Respiratory Tract Infection

The number of studies (k = 25) was relatively large in this meta-analysis, and no
zero-count appeared in any arm. All three frequentist methods produced nearly the same
point and interval estimates for the overall OR, showing that vitamin D supplementation
significantly reduced the risk of ARTI. Because of sufficient data information, the results
were fairly robust to prior distribution specifications. Across all 12 sets of priors, the overall
OR estimate was about 0.82, and its 95% CrI lower and upper bounds were about 0.70 and
0.95, respectively. The trace plots (Figures S53–S64) and posterior density plot (Figure S69)
indicate that the Markov chains converged and stabilized well.

4. Conclusions

This article has provided a practical review of Bayesian meta-analyses of binary out-
comes and summarized several commonly used priors for the heterogeneity variance. We
have shown five worked examples to highlight the implementations of incorporating differ-
ent prior distributions and the importance of checking MCMC convergence. The Bayesian
methods are advantageous over the conventional frequentist methods, primarily because
they make more practical assumptions and they can incorporate informative priors.

Generally, when the data provided by a meta-analysis are limited (e.g., few studies,
small sample sizes, or low event rates), the choice of prior may have a noteworthy impact
on meta-analysis results. Ideally, meta-analyses may use priors that represent experts’
opinions. If such priors are unavailable or disputed, sensitivity analyses that use different
candidate priors are recommended. In addition, meta-analysts should routinely examine
the convergence and stabilization of MCMC processes when performing Bayesian meta-
analyses; this is often overlooked in current practice, as illustrated in Examples 3 and 4.
When event rates are low and zero event counts appear in many arms in a meta-analysis,
the MCMC algorithm may not converge; as such, the inference that is based on posterior
samples is unreliable. We have summarized several possible solutions to handle this
problem in Figure 1. If the Bayesian meta-analysis still fails to produce valid results after
considering these solutions, researchers may refer to several papers that especially focused
on the cases of few studies [38,64–67] and rare events [68–75] for alternative approaches.
Moreover, if individual participant data are available, incorporating them into the meta-
analysis might help to improve the estimation of treatment effects [13,76–78].

Bayesian methods for meta-analysis are not problem-free, and their results must be
carefully validated before being applied to decision-making, as discussed above. This
article did not intend to promote Bayesian meta-analyses to all situations and involve
in the debates on frequentist vs. Bayesian inference. Instead, we aimed at providing
some practical guidelines for researchers who are interested in implementing Bayesian
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meta-analyses. One may refer to other papers that especially aimed at comparing these
two types of methods to better understand the pros and cons of frequentist and Bayesian
meta-analyses [74,79–84].

This article limited the review of Bayesian methods to the case of ORs. Bayesian
methods are broadly available for meta-analyses of other effect measures (e.g., relative
risks) with binary outcomes and for meta-analyses with other outcomes (e.g., continuous or
count data) [42,85]. Similar implementations of Bayesian analyses may be applied to these
cases with proper adjustments (e.g., different specifications of likelihood, link functions,
and priors).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18073492/s1, In the Supplementary Materials, Supplementary Materials data A presents
conventional frequentist meta-analysis of odds ratios, Supplementary Materials data B gives R code
for analyzing the five examples, Supplementary Materials data C presents forest plots, Supplemen-
tary Materials data D presents trace plots, and Supplementary Materials data E presents posterior
density plots.
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