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Accurate determination of relapses in multiple sclerosis is important for diagnosis, classification of clinical course and therapeutic

decision making. The identification of biofluid markers for multiple sclerosis relapses would add to our current diagnostic arma-

mentarium and increase our understanding of the biology underlying the clinical expression of inflammation in multiple sclerosis.

However, there is presently no biofluid marker capable of objectively determining multiple sclerosis relapses although some, in par-

ticular neurofilament-light chain, have shown promise. In this study, we sought to determine if metabolic perturbations are present

during multiple sclerosis relapses, and, if so, identify candidate metabolite biomarkers and evaluate their discriminatory abilities at

both group and individual levels, in comparison with neurofilament-light chain. High-resolution global and targeted 1H nuclear

magnetic resonance metabolomics as well as neurofilament-light chain measurements were performed on the serum in four groups

of relapsing-remitting multiple sclerosis patients, stratified by time since relapse onset: (i) in relapse (R); (ii) last relapse (LR)

� 1 month (M) to < 6 M ago; (iii) LR� 6 M to < 24 M ago; and (iv) LR� 24 M ago. Two hundred and one relapsing-remitting

multiple sclerosis patients were recruited: R (n ¼ 38), LR 1–6 M (n ¼ 28), LR 6–24 M (n ¼ 34), LR� 24 M (n ¼ 101). Using

supervised multivariate analysis, we found that the global metabolomics profile of R patients was significantly perturbed compared

to LR� 24 M patients. Identified discriminatory metabolites were then quantified using targeted metabolomics. Lysine and aspara-

gine (higher in R), as well as, isoleucine and leucine (lower in R), were shortlisted as potential metabolite biomarkers. ANOVA of

these metabolites revealed significant differences across the four patient groups, with a clear trend with time since relapse onset.

Multivariable receiver operating characteristics analysis of these four metabolites in discriminating R versus LR�24 M showed an

area under the curve of 0.758, while the area under the curve for serum neurofilament-light chain was 0.575. Within individual

patients with paired relapse–remission samples, all four metabolites were significantly different in relapse versus remission, with the

direction of change consistent with that observed at group level, while neurofilament-light chain was not discriminatory. The per-

turbations in the identified metabolites point towards energy deficiency and immune activation in multiple sclerosis relapses, and

the measurement of these metabolites, either singly or in combination, are useful as biomarkers to differentiate relapse from remis-

sion at both group and individual levels.
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Introduction
Accurate determination of relapses in multiple sclerosis is

important for diagnosis, classification of clinical course

and therapeutic decision making. To date, the history

and neurological examination of a patient, as compared

to previous examinations, are the principal methods used

to establish relapses. This is often supplemented by MRI

where the presence of gadolinium (GAD)-enhancing or

new/enlarging T2 lesion/s consistent with the neurological

deficits offers supportive evidence for diagnosing relapses.

However, a clinico-radiological discordance is often

encountered at the time of a relapse, which is, in part,

contributed by the limited sensitivity of conventional

MRI to detect small lesions, particularly in the spinal

cord, cortical grey matter and optic nerve.1–3 There is a

need to understand the biology underlying the clinical ex-

pression of the inflammatory attack, and also, to measure

it objectively in biofluids so as to discover biomarkers of

multiple sclerosis relapses. Although none are as yet used

in routine clinical practice, some biofluid markers show

promise especially neurofilament-light chain (NfL), which,

is observed to be elevated during relapses compared to

remission in several publications and in a recent meta-

analysis,4–9 and has also been reported to be able to pre-

dict and monitor future disease activity.10,11

Clinical metabolomics is the comprehensive investiga-

tion of low molecular weight (< 1500 Da) metabolites

within a biological sample and is emerging as a useful

downstream ‘omics’ platform for biomarker discovery

and in the understanding of disease pathophysiology.12

Our previous work on metabolomics in neuroinflamma-

tory diseases showed that metabolites can function as

diagnostic and prognostic biomarkers by: (i) distinguish-

ing multiple sclerosis from aquaporin-4-antibody disease

and myelin oligodendrocyte glycoprotein-antibody disease

accurately13; (ii) aiding in the classification of patients

with overlapping features of multiple sclerosis and neuro-

myelitis optica spectrum disorder14; (iii) predicting clinical

conversion of clinically isolated syndrome to multiple

sclerosis15; and (iv) distinguishing relapsing-remitting mul-

tiple sclerosis (RRMS) from secondary progressive mul-

tiple sclerosis with high accuracy.16,17 With regards to

the application of metabolomics in the context of mul-

tiple sclerosis relapses, two studies have reported meta-

bolic perturbations in CSF during relapses compared to

remission.18,19 However, this was not the primary object-

ive in both studies, which also had modest sample sizes

(range, 50–54 multiple sclerosis patients) and the use of

CSF precludes frequent sampling in the clinical setting.

In this study, we sought to determine if 1H nuclear

magnetic resonance (NMR) metabolomics using serum

could distinguish RRMS patients in relapse from those in

remission, and, if so, identify metabolite biomarkers for

relapses that are informative at both group and individ-

ual levels. First, we assessed whether global metabolomics

perturbations are present in patients in relapse compared

to those in stable remission (i.e. no relapse in the last 2

years), and, if present, we determined the duration of this

metabolic derangement. Next, we selected the top dis-

criminatory metabolites distinguishing patients in relapse

from those in stable remission and quantified the metabo-

lites using targeted metabolomics. We evaluated the shifts

(i.e. increasing or decreasing) in the top discriminatory

metabolites in a larger group of patients, stratified by

time since the onset of relapse. Consistent shifts across

the patient groups were found to support the use of these

metabolites as potential biomarkers of relapse. We then

determined whether these metabolites could be discrimin-

atory at an individual level in patients having paired re-

lapse–remission samples. Lastly, we sought to compare

the discriminatory abilities of the identified metabolite

biomarkers against serum NfL for distinguishing patients

in relapse from those in remission at both group and in-

dividual levels.

Materials and methods

Patients

RRMS patients were prospectively recruited from the

John Radcliffe Hospital, Oxford University Hospital

Trust, consented under the Oxford Radcliffe Biobank and

approved by the NRES Committee South Central—

Oxford C (REC reference: 09/H0606/5þ 5). All patients

fulfilled the 2017 revisions to the McDonald criteria for

multiple sclerosis.20 Patients with symptoms suggestive of

a relapse were first triaged by an experienced multiple

sclerosis nurse via phone consultation and those sus-

pected to have a relapse were then seen at the ‘relapse’

clinic. Relapse status was established by multiple sclerosis

neurologists and defined clinically in accordance with the

2017 McDonald criteria—a monophasic clinical episode

with patient-reported symptoms and objective findings

typical of multiple sclerosis, reflecting a focal or multi-

focal inflammatory demyelinating event in the CNS,

developing acutely or subacutely, with a duration of at

least 24 h, with or without recovery, and in the absence

of fever or infection.20 Patients with pseudo-relapses were

excluded by performing a systematic review of infective

symptoms, temperature measurement, and urine dipstick

to evaluate for urinary tract infection. Detailed clinical,

MRI and demographic data were collected at the time of

recruitment.

Patients were divided into four groups according to the

interval between their last relapse to blood sampling:

(i) in relapse, defined as < 1 month from the onset of

first symptom/s of relapse; (ii) last relapse (LR) �
1 month to < 6 months ago; (iii) LR � 6 months to <

24 months ago; and (iv) LR � 24 months ago. These

groups are henceforth referred to as ‘R’, ‘LR 1–6 M’,

‘LR 6–24 M’ and ‘LR � 24 M’, respectively.
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Blood collection

A validated, optimized blood collection protocol for

serum metabolomics was employed.16 Blood was collected

in vacutainer tubes (BD 367837), left to stand for

30 min, and then centrifuged at 1300 �g for 10 min at

room temperature. Serum was then immediately aliquoted

and stored at �80�C until NMR experimentation.

Global metabolomics

Global metabolomics detects all measurable metabolites in

a sample and is ideal for comprehensive biochemical

profiling for biomarker discovery. All 1H NMR experi-

ments for global metabolomics were performed at the

Department of Chemistry, University of Oxford, using a

700-MHz Bruker AVIII spectrometer, with the Carr–

Purcell–Meiboom–Gill (CPMG) relaxation editing pulse se-

quence for spectra acquisition. Technical details of NMR

sample preparation, experiments and spectra processing

have been previously published.13,16 Integral values of indi-

vidual spectral ‘bins’ were computed with constant-sum-

normalization and used as quantitative variables expressed

in arbitrary units (AU). In all, 191 metabolite ‘bins’ were

available for multivariate statistical analysis. Metabolite

assignments were performed by referencing to literature

values and the Human Metabolome Database,21 as well as

inspection of the 1D total correlation spectroscopy spectra.

Targeted metabolomics

Targeted metabolomics detects pre-defined chemical groups

and known metabolites, and is optimized for focussed meas-

urements with absolute quantification. Targeted metabolo-

mics was performed with the AXINONVR lipoFITVR test for

advanced lipoprotein analysis on the standardized

AXINONVR system at numares AG, Regensburg, Germany,

using a 600-MHz Bruker AVIII 1H NMR spectrometer

with the zgpr30 pulse sequence for spectra acquisition as

previously described.22 This test system deconvolutes the

broad methyl lipoprotein NMR resonance into its constitu-

ent parts, allowing for the absolute quantification of the

cholesterol content, number of particles and mean particle

diameter of each lipoprotein subpopulation.23 The test sys-

tem also provides absolute quantification of metabolites

whose NMR resonances partially overlap with the lipo-

protein resonances. These metabolites include lactate,

glucose, alanine and the branched-chain amino acids

(BCAAs)—isoleucine, leucine and valine. In all, 29 param-

eters were available for multivariate statistical analysis.

Serum NfL level determination

Serum NfL levels were measured using the SimoaVR assay

(NF-LIGHT, Quanterix) performed at the University of

Basel, Switzerland. Assay techniques and principles have

been previously described.9

Multivariate statistical analysis

Orthogonal partial-least squares discriminant analysis

(OPLS-DA) using in-house R scripts (R foundation for

statistical computing, Vienna, Austria) and the ropls

package were used to interrogate the CPMG (global

metabolomics) and AXINONVR lipoFITVR (targeted metab-

olomics) spectral data to identify metabolomics differen-

ces between patient groups.24,25 All OPLS-DA models

were validated on independent test data using external

10-fold cross-validation with 100 iterations. Details of

this approach have been previously published.13 Briefly,

this involves repeated cycles of (i) balancing class sizes;

(ii) random splitting of the spectral data into a training

set (90% of data) and a test set (remaining 10% of

data); (iii) construction of OPLS-DA models using the

training set alone; and then (iv) determining the predict-

ive accuracy of the OPLS-DA model using the independ-

ent test set. The validity of the metabolic separation

between patient groups was confirmed if the mean pre-

dictive accuracy of the ensemble of model accuracies was

significantly higher than the mean predictive accuracy of

a separate ensemble created by random class assignments

on the same spectral data.

Univariable and multivariable

statistical analysis

Analysis of demographic, clinical and metabolite data

was performed using STATA (release 14) and GraphPad

Prism (version 6). Comparative analyses between patient

groups were performed using one-way ANOVA or

Kruskal–Wallis test as appropriate for continuous varia-

bles, with pair-wise post-hoc corrections using Bonferroni

and Dunn tests, respectively. Chi-square or Fisher exact

tests were used for categorical variables as appropriate,

with Bonferroni correction when comparing � 3 groups.

Pearson or Spearman correlation was used to explore

correlations depending on data normality. Area under the

curve (AUC) was obtained using receiver operating char-

acteristics (ROC) analysis. Two-tailed P-values of < 0.05

were considered statistically significant and data were

presented as mean 6 standard deviation (SD) unless

stated otherwise.

Data availability

Anonymized data and code will be shared by request

from any qualified investigator.

Results

Patient characteristics

A total of 201 RRMS patients were recruited: R (n ¼ 38),

LR 1–6 M (n ¼ 28), LR 6–24 M (n ¼ 34) and LR � 24
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M (n ¼ 101). Demographic and clinical characteristics are

shown in Table 1.

The R and LR 1–6 M patients were younger and fewer

were on disease modifying therapy (DMT), compared to

LR � 24 M patients. More R patients had steroid use

(n ¼ 5) compared to LR � 24 M patients, although all

patients had already completed steroids in the past 1

week before blood sampling. Expectedly, expanded dis-

ability status scale (EDSS) of R patients was higher com-

pared to the other three groups. A higher proportion of

LR 1–6 M patients had evidence of MRI activity (new

T2 and/or GAD-enhancing lesion/s) compared to

LR � 24 M patients. This reflected clinical practices as

clinicians were more likely to perform MRI in patients

after being seen in the ‘relapse’ clinic, with the MRI done

a few weeks later, whilst clinicians were less likely to per-

form frequent/GAD-contrasted scans in LR � 24 M

patients. While not all R patients had MRI performed

contemporaneous with their relapse, 6 of 24 (25%) had

GAD-enhancing lesion/s and 8 of 19 (42.1%) had new

T2 lesion/s (referenced to a baseline scan done within one

year) on MRI performed within the next 6 months after

relapse onset.

Global metabolomics

R versus LR � 24 M patients

To identify global metabolomics perturbations reflective

of clinical relapses, OPLS-DA was used to construct dis-

criminatory models using CPMG spectral data to distin-

guish between R and LR � 24 M patients. The

representative OPLS-DA scores plot showed a moderate

separation between R and LR � 24 M patients

(Fig. 1A). The mean predictive accuracy for the ensemble

of the OPLS-DA models of R versus LR � 24 M patients

was significantly higher than the mean predictive accur-

acy of the ensemble created by random class assignments

(62.6% 6 4.8% versus 50.9% 6 8.2%; P < 0.0001)

(Fig. 1B), validating the metabolomics differences be-

tween these two patient groups.

Figure 1 Global metabolomics. (A) Representative scores plot from the OPLS-DA models of R versus LR � 24 M patients (R ¼ red circles,

LR � 24 M ¼ green triangles). (B) Box plots of predictive accuracies, against random class assignment. **** indicates P < 0.0001 by

Kolmogorov–Smirnov test. (C) Fold change in predictive accuracies of the OPLS-DA models of the different patient groups with respect to the

reference comparator, i.e. LR � 24 M patients. The fold change of random chance is 1.0 as indicated by the dashed horizontal line. **** indicates

P < 0.0001 by post-hoc Bonferroni correction. (D) VIP score ranking plot obtained from the OPLS-DA models of R versus LR � 24 M patients.

The dashed red line indicates the VIP score threshold of 1.35, before a ‘drop-off’ in VIP score. Metabolites with VIP scores above this cut-off are

detailed in Table 2. LR 1–6 M ¼ last relapse � 1 month to < 6 months ago; LR 6–24 M ¼ last relapse � 6 months to < 24 months ago; LR � 24

M ¼ last relapse � 24 months ago; OPLS-DA ¼ orthogonal partial-least squares determinant analysis; R ¼ in relapse; VIP ¼ variable importance

in projection.
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LR 1–6 M versus LR � 24 M patients, and LR 6–24 M

versus LR � 24 M patients

To explore how long global metabolomics perturbations

persist after relapses, OPLS-DA models were constructed

using CPMG spectral data for LR 1–6 M as well as for

LR 6–24 M patients against the reference comparator,

i.e. LR � 24 M patients. The mean predictive accuracy

for the ensemble of the OPLS-DA models for LR 1–6 M

versus LR � 24 M patients was significantly higher than

that of the random class ensemble (61.2% 6 7.5% versus

48.8% 6 8.5%; P < 0 0.0001). In contrast, the mean ac-

curacy of the OPLS-DA models for LR 6–24 M versus

LR � 24 M patients was not different from that of the

random class ensemble (50.5% 6 6.7% versus

50.6% 6 7.8%; P ¼ 0.971). The fold change in the pre-

dictive accuracy (normalized to the accuracy of random

chance, i.e. 50%) of each patient group, using LR � 24

M patients as reference comparator, is shown in

Fig. 1C. Taking these findings in totality, this implies

that global metabolomics perturbations persist for at least

6 months after a clinical relapse.

Identifying discriminatory metabolites from the

R versus LR � 24 M OPLS-DA models

To identify the top discriminatory metabolites from global

metabolomics driving the distinction between R versus

LR � 24 M patients, variable importance in projection

(VIP) scores were generated. The VIP score is a measure

of the importance of a metabolite in the OPLS-DA

model—the higher the VIP score, the greater the contribu-

tion a metabolite makes to the model.25 The VIP score

cut-off at 1.35 was determined by identifying a ‘drop-off’

on the VIP ranking plot (Fig. 1D). Metabolites with VIP

scores above this cut-off are detailed in Table 2. These

consisted predominantly of lipoproteins, amino acids and

glucose. As two-thirds of these discriminatory metabolites

are covered by the AXINONVR lipoFITVR system, targeted

metabolomics was performed next.

Targeted metabolomics

R versus LR � 24 M patients

To investigate if metabolomics perturbations observed

in relapses can be confirmed by targeted metabolomics,

Table 1 Demographic and clinical details of the study population

R LR 1–6 M LR 6–24 M LR � 24 M P-value across

groups(n 5 38) (n 5 28) (n 5 34) (n 5 101)

Age in years, mean (SD) 38.3 (9.5)a 38.7 (7.0)b 43.5 (9.7) 44.2 (9.9)a,b 0.002

Female, no. (%) 27 (71.1) 23 (82.1) 22 (64.7) 73 (72.3) 0.503

White ethnicity, no. (%) 37 (97.4) 25 (89.3) 31 (91.2) 92 (91.1) 0.589

Recent/current steroid use, no. (%) 5 (13.2)a 0 (0.0) 1 (2.9) 1 (1.0)a 0.011

DMTuse, no. (%) 18 (47.4)a 12 (42.9)b 20 (58.8) 75 (74.3)a,b 0.002

Alemtuzumab 1 (5.6) 1 (8.3) 1 (5.0) 2 (2.7)

Dimethyl fumarate 6 (33.3) 2 (16.7) 6 (30.0) 13 (17.3)

Fingolimod 2 (11.1) 2 (16.7) 2 (10.0) 10 (13.3)

Glatiramer acetate 6 (33.3) 5 (41.7) 7 (35.0) 25 (33.3)

Interferons 1 (5.6) 0 (0.0) 3 (15.0) 18 (24.0)

Natalizumab 1 (5.6) 2 (16.7) 1 (5.0) 5 (6.7)

Teriflunomide 1 (5.6) 0 (0.0) 0 (0.0) 2 (2.7)

EDSS, median (range) 3.3 (1–7)a,c,d 2.5 (1–6.5)c 2.3 (0–8.5)d 2.0 (0–7)a < 0.001

Disease duration in years, median (range) 11.1 (0.73–28.7) 7.5 (0.19–28.3)b 4.4 (0.54–28.5)e 12.1 (2.3–47.3)b,e < 0.001

No comorbidities, no. (%) 16 (42.1) 10 (35.7) 8 (23.5) 42 (41.6) 0.271

Presence of new T2 lesion/s within last 1 year,

referenced to a baseline scan done � 1 year

apart, no. (%)

5/12 (41.7) 7/8 (87.5)b 4/9 (44.4) 3/22 (13.6)b 0.002

Presence of GAD-enhancing lesion/s within last

1 year, no. (%)

5/16 (31.3) 7/11 (63.6)b 4/12 (33.3) 1/21 (4.8)b 0.003

BMI, median (range) 26.5 (20–49) 25.0 (19–38.7) 27.0 (19.8–57.4) 24.8 (15–42) 0.081

Current smoker, no. (%) 5 (13.2) 5 (17.9) 3 (8.8) 12 (11.9) 0.751

Alcohol intake in units/week, median (range) 0 (0–16) 1.5 (0–35) 0 (0–18) 1 (0–24) 0.394

Time from last meal in hours, median (range) 3.7 (1.3–18.5) 3.6 (0.8–20.9) 3.6 (0.4–16.3) 3.3 (0.9–16.7) 0.319

P-values within the right most column indicate differences across the four groups of patients. Symbols indicate P < 0.05 for pair-wise comparison after post-hoc correction using

Bonferroni or Dunn tests as appropriate. Recent steroid use is defined as steroid use within 1 month of blood sampling.
aR versus LR � 24 M.
bLR 1–6 M versus LR � 24 M.
cR versus LR 1–6 M.
dR versus LR 6–24 M.
eLR 6–24 M versus LR � 24 M.

BMI ¼ body mass index; DMT ¼ disease modifying therapy; EDSS ¼ expanded disability status scale; GAD ¼ gadolinium; LR 1–6 M ¼ last relapse � 1 month to < 6 months ago; LR

6–24 M ¼ last relapse � 6 months to < 24 months ago; LR � 24 M ¼ last relapse � 24 months ago; R ¼ in relapse.
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OPLS-DA was performed on the AXINONVR lipoFITVR

parameters obtained from R and LR � 24 M patients.

The mean predictive accuracy for the ensemble of the

OPLS-DA models of R versus LR � 24 M patients was

significantly higher than that of the random class

ensemble (58.1% 6 5.5% versus 50.5% 6 7.0%;

P < 0.0001), confirming the presence of targeted

metabolomics differences.

Identifying discriminatory metabolites from the

R versus LR � 24 M OPLS-DA models

VIP scores from the R versus LR � 24 M OPLS-DA

models were generated to elucidate the principal discrim-

inatory metabolites from targeted metabolomics. The

VIP ranking plot revealed isoleucine and leucine (both

BCAAs) as the two most important metabolites

(Fig. 2A), with VIP scores of 2.05 and 2.01, respective-

ly. Isoleucine was not identified as one of the principal

discriminatory metabolites on global metabolomics al-

though it was the top discriminatory metabolite in tar-

geted metabolomics. This is likely due to its NMR

resonances overlapping with the broad, partly sup-

pressed methyl lipoprotein signal in the CPMG spectra,

thus masking its signal (Fig. 2B). In comparison, while

the resonances from leucine also overlap with the broad

lipoprotein signal, its integral value is greater as this

comprise of signals arising from six 1H nuclei (2x CH3),

hence enhancing its detection.

Exploring potential metabolite
biomarkers of clinical relapses

The top discriminatory metabolites from targeted (isoleu-

cine and leucine) and global metabolomics (metabolites

listed in Table 2 not measured by targeted metabolo-

mics) distinguishing R versus LR � 24 M patients were

shortlisted as potential metabolite biomarkers of relapses.

One-way ANOVA was performed for each of these

shortlisted metabolites across the four patient groups,

using LR � 24 M patients as the reference group. The

workflow for choosing the candidate metabolites for

ANOVA is illustrated in Fig. 3.

Lysine and asparagine (from global metabolomics), as

well as isoleucine and leucine (from targeted metabolo-

mics) were significant on one-way ANOVA. Both lysine

and asparagine were higher in R compared to LR � 24

M patients, and showed a decreasing trend with time

away from relapse (Fig. 4A and B). The converse was

observed for isoleucine and leucine—lower levels in R

compared to LR � 24 M patients and increasing over

time (Fig. 4C and D). Taking these observations in total-

ity, the measurements of lysine, asparagine, isoleucine

and leucine are highlighted as potential metabolite bio-

markers of clinical relapses.

On ROC analysis to distinguish R and LR � 24 M

patients, the univariable AUC of the four metabolite bio-

markers ranged from 0.610 to 0.697 (Fig. 4E–H). The

combination of the four metabolites as independent varia-

bles in a multivariable logistic regression model followed

by ROC analysis resulted in an improved AUC of 0.758

(Fig. 4I).

Exploring serum NfL as a potential
biomarker of clinical relapses

Serum NfL is a promising biomarker for inflammation-

driven neuro-axonal injury and is elevated in clinical

relapses, thus, its diagnostic performance in our cohort of

patients was explored. One-way ANOVA of serum NfL

levels, using LR � 24 M patients as the reference group,

showed that R patients had higher levels of serum NfL

compared to LR � 24 M patients (Fig. 5A). ROC ana-

lysis showed an AUC of 0.575 (P ¼ 0.176) for serum

NfL in distinguishing R versus LR � 24 M patients

(Fig. 5B). Next, we explored the combination of the

four identified metabolites and NfL to improve the ability

to distinguish R and LR � 24 M patients. A multivari-

able logistic regression ROC analysis showed a modest

increase in the AUC to 0.789 (Fig. 5C), as compared to

using the four metabolites alone.

Evaluating metabolites as
individualized, responsive
biomarkers of clinical relapses

From the previous sections, lysine, asparagine, isoleucine

and leucine were identified to be promising metabolite

biomarkers of relapses at group level. However, for a

biomarker to be clinically useful, it needs to be applicable

in an individualized manner, and be sufficiently

Table 2 Top discriminatory metabolites from global

metabolomics distinguishing R versus LR � 24 M

patients

Discriminatory

metabolites

Chemical shift of contributing spectral

‘bins’ (VIP score, VIP rank)

Mobile (-CH3-)n HDL/LDLa 0.84. . ..0.86 ppm (1.36, 12)

0.86. . ..0.88 ppm (1.62, 5)

Leucinea 0.96. . ..0.98 ppm (1.36, 13)

Mobile (-CH2-)n LDLa 1.22. . ..1.24 ppm (1.43, 9)

1.24. . ..1.26 ppm (1.74, 2)

Lysine 1.40. . ..1.42 ppm (1.61, 6)

1.42. . ..1.44 ppm (1.51, 8)

bCH2
a 1.62. . ..1.64 ppm (1.63, 3)

/¼CH-CH2-CH2-
a 1.96. . ..1.98 ppm (1.63, 4)

1.98. . ..2.00 ppm (1.84, 1)

Asparagine 2.84. . ..2.86 ppm (1.41, 10)

Glucosea 3.88. . ..3.90 ppm (1.38, 11)

Phenylalanine (meta-) 7.42. . ..7.44 ppm (1.60, 7)

aIndicates metabolites accessible for absolute quantification using the AXINON
VR

lipoFIT
VR

system (targeted metabolomics).

HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein; LR � 24 M ¼ last re-

lapse � 24 months ago; ppm ¼ parts per million; R ¼ in relapse; VIP ¼ variable im-

portance in projection.
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responsive such that the change in its levels between dis-

ease states is observable within a clinically useful time

frame.

Nine patients (within the R group) who had paired re-

lapse–remission samples (i.e. relapse first followed by re-

mission), and with the remission sample collected within

6 months of relapse onset were identified. Median EDSS

at relapse blood sampling was 4.0, decreasing to 2.5 at

remission sampling, and, the median duration between re-

lapse onset and remission sampling was 3.6 months

(range, 2.3–5.6). It is of note that none of these nine

patients had received steroids at the time of relapse blood

sampling.

Paired t-testing revealed that all four metabolites exhib-

ited significant differences in their levels in relapse and in

remission (Fig. 6A–D), and, the direction of change was

consistent with that observed at group level. There was

no significant difference in serum NfL levels within this

6-month time frame (Fig. 6E). Of these nine patients,

five had concordance in the direction of change for all

four metabolites, three had discordance in one metabolite

while one had disagreement for two metabolites. Given

these observations, the four metabolites were combined in

a multivariable ROC analysis to determine if a composite

biomarker could improve discriminatory accuracy. An

AUC of 0.911 (95% CI 0.728–1.000; P < 0.001) was

achieved, while the addition of serum NfL did not im-

prove accuracy (AUC ¼ 0.896, 95% CI 0.683–1.000;

P < 0.001).

Addressing potential confounders
for the identified metabolite
biomarkers

As shown in Table 1, several baseline characteristics

were different across the four patient groups—notably

age, steroid use and DMT use were dissimilar between R

versus LR � 24 M patients on post-hoc analysis. Two

approaches were used to address these potential con-

founders: (i) for quantitative variables, correlation of the

potential confounding variable with each of the four

identified metabolite biomarkers was performed; and

(ii) for categorical variables, the levels of the four metab-

olites were explored stratified by the potential confound-

ing variable.

There were no correlations between any of the four

metabolite biomarkers with age, EDSS and disease dur-

ation across the entire cohort of patients (n ¼ 201).

There were also no differences in any of the metabolite

concentrations stratified by steroid use in the whole

Figure 2 Identification of isoleucine and leucine as discriminatory metabolites. (A) VIP score ranking plot obtained from the OPLS-

DA models of R versus LR � 24 M patients on targeted metabolomics identifies isoleucine and leucine as the top two discriminatory

metabolites. (B) BCAAs 1H NMR resonances in CPMG-edited spectra (global metabolomics). The zoom in panel shows that the resonances

from isoleucine (a triplet centred at 0.941 ppm arising from three 1H nuclei and a doublet centred at 1.012 ppm also arising from three 1H nuclei)

overlap with the broad methyl (-CH3-)n lipoprotein resonance, thus, attenuating its signal. Leucine resonances (two CH3 doublets clustered at

0.963 ppm) also overlap with the lipoprotein signal, however, its integral value is greater (as compared to isoleucine) as this is derived from six
1H nuclei (note the taller and broader signals compared to isoleucine), thus, the signal is more apparent despite the masking effect of the broad

lipoprotein signal. AU ¼ arbitrary units; BCAAs ¼ branched-chain amino acids; CPMG ¼ Carr–Purcell–Meiboom–Gill; LR � 24 M ¼ last relapse

� 24 months ago; NMR ¼ nuclear magnetic resonance; OPLS-DA ¼ orthogonal partial-least squares determinant analysis; ppm ¼ parts per

million; R ¼ in relapse; VIP ¼ variable importance in projection.
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cohort (7 steroid users versus 194 non-steroid users)

and indeed within R patients (5 steroid users versus 33

non-steroid users). For DMT use, higher isoleucine lev-

els were observed in DMT users (mean 6 SD,

82.3 6 25.6 mmol/l versus 72.8 6 18.7 mmol/l; P ¼ 0.011)

across the entire cohort (125 DMT users versus 76 non-

DMT users). However, no differences in isoleucine levels

were observed between DMT users and non-users with-

in R patients (18 DMT users versus 20 non-DMT users)

(P ¼ 0.120) as well as within LR � 24 M patients (75

DMT users versus 26 non-DMT users) (P ¼ 0.304).

There were also no significant associations/correlations

of the discriminatory metabolites with smoking status,

alcohol intake, body mass index and time from last

meal.

Exploring associations of metabolite

biomarkers with MRI indices of
inflammatory activity

The associations of the identified metabolite biomarkers

with MRI indices of inflammation, i.e. the presence of

GAD-enhancing lesion/s or new T2 lesion/s (referenced

to baseline scan done � 1 year apart) within the last 1

year were explored in the entire cohort. Lysine (mean 6

SD, 25.5 � 10�4 6 2.1 � 10�4 AU versus

23.7 � 10�4 6 2.4 � 10�4 AU; P ¼ 0.008) and aspara-

gine (mean 6 SD, 9.6 � 10�4 6 1.2 � 10�4 AU versus

8.9 � 10�4 6 1.2 � 10�4 AU; P ¼ 0.048) levels were

significantly higher in patients who had GAD-enhancing

lesions. However, this association was not observed for

isoleucine (P ¼ 0.074) and leucine (P ¼ 0.231). There

were also no differences in the metabolite levels strati-

fied by the presence of new T2 lesion/s.

Discussion
The results from this study illustrate that (i) metabolic

perturbations are present in patients during relapses as

detected by global and targeted metabolomics, compared

to patients without relapses for the past 2 years, and

the summative magnitude of these perturbations

decreased with time away from relapse; (ii) the four dis-

criminatory metabolites that were significant on

ANOVA (lysine, asparagine, isoleucine and leucine)

across the different patient groups showed a consistent

trend (either increasing or decreasing) with time away

from relapse, and (iii) these metabolites are discrimin-

atory in an individualized manner within a clinically

useful time frame. Taken together, the results presented

Figure 3 Workflow illustrating the selection of metabolites for one-way ANOVA across the four patient groups. * indicates

metabolites accessible for absolute quantification by targeted metabolomics. HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein.
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here show that the use of a small set of blood-borne

metabolites could identify relapses to facilitate optimal

clinical management decisions.

The intra-individual differences of the four metabolite

biomarkers in relapse versus in remission within a 6-

month period is likely due to the dynamic nature of

metabolic perturbations produced by the summative

effects of various immunopathological processes that are

amplified during relapses: (i) activation of peripheral T-

cells and monocytes, and their subsequent access into the

CNS; (ii) activation of resident microglial and astrocytes;

(iii) initiation of injurious effector mechanisms leading to

the production of reactive oxygen/nitrogen species and

mitochondrial stress; and (iv) demyelination with possible

axonal injury.26 Although most of these pathophysio-

logical processes occur within the CNS, it is not unex-

pected that metabolic perturbations can be detected in

blood. Two possible explanations can account for this

observation: (i) CNS metabolites involved in or resulting

from these pathophysiological processes can move across

an inflamed, leaky blood brain barrier27; and/or (ii) the

metabolic perturbations are contributed mostly by periph-

eral processes, i.e. the activation of peripheral immune

cells as well as the peripheral response to CNS injury,

which, is mediated primarily by the liver.28,29

Concentrations of the BCAAs, isoleucine and leucine,

were observed to be lower during relapses in this study.

This is in agreement with another 1H NMR metabolomics

study demonstrating lower CSF isoleucine and valine in re-

lapse compared to remission in multiple sclerosis patients,

although discriminatory indices, such as AUC, were not

provided.19 Other metabolomics studies (both on 1H

NMR and mass spectrometry) have also reported that

BCAAs are low in the plasma and the CSF of multiple

sclerosis patients.30,31 BCAAs are essential amino acids,

which play roles in immune function and energy homeo-

stasis. It has been shown that leucine, being an activator

of the mammalian target of rapamycin (mTOR) complex

1, is involved in T-cell activation.32 Additionally, a pro-in-

flammatory state as seen in multiple sclerosis is character-

ized by a marked increase in demand for substrates by

activated immune cells, especially those required for energy

and protein production.29 Human immune cells express

branched-chain aminotransferase and branched-chain a-

ketoacid dehydrogenase, which, can metabolize BCAAs for

these purposes.33 Thus, the lower concentrations of isoleu-

cine and leucine observed during multiple sclerosis relapses

may reflect a consumptive deficiency as a result of these

catabolic processes.

Lysine concentrations were observed to be elevated dur-

ing relapses. This is consistent with observations in the

myelin basic protein (MBP)-induced experimental auto-

immune encephalomyelitis (EAE) model showing raised

lysine in both CSF and intact CNS tissues using mass

spectrometry and 1H NMR spectroscopy techniques.34,35

The putative role of lysine, an essential amino acid, with-

in the context of multiple sclerosis pathogenesis is less

clear although it is considered to be involved in the entry

of arginine into leucocytes and thus on nitric oxide me-

tabolism.34 It is interesting to note that lysine is a

Figure 4 Discriminatory abilities of the identified metabolites

at group level. (A–D) Significant metabolites on one-way ANOVA.

Lysine and asparagine levels were higher within R patients compared to

LR� 24 M patients and decreased with time away from relapse. In

contrast, isoleucine and leucine concentrations were lower during

relapses and increased with time away from relapse. ** indicates

P< 0.01 and * indicates P < 0.05 by post-hoc Holm–Sidak test, with LR

� 24 M patients as the reference comparator. (E–H) Univariable ROC

analysis of the four metabolite biomarkers in distinguishing R versus LR

� 24 M patients. (I) Multivariable ROC analysis of the four metabolites.

AU¼ arbitrary units; AUC¼ area under the curve; 95% CI¼ 95%

confidence interval; LR 1–6 M¼ last relapse� 1 month to< 6

months ago; LR 6–24 M¼ last relapse� 6 months to< 24 months

ago; LR� 24 M¼ last relapse� 24 months ago; R¼ in relapse; ROC

¼ receiver operating characteristics.
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component, together with alanine, tyrosine and glutamic

acid, of the complex mixture of linear and random poly-

peptides that make up glatiramer acetate, originally syn-

thesized to mimic MBP.36 The use of glatiramer acetate

is unlikely to be a confounder in this study as fewer R

patients (6/38, 15.8%) were on glatiramer acetate com-

pared to LR � 24 M patients (25/101, 24.8%), and that

if anything, would have reduced the discriminatory ability

of lysine. Additionally, the concentrations of alanine,

tyrosine and glutamic acid were not different for R ver-

sus LR � 24 M patients.

Asparagine levels were noted to be higher during relap-

ses. It has been reported that CSF asparagine is increased

in the MBP-EAE model as well as in the plasma and CSF

of multiple sclerosis patients (compared to healthy con-

trols).37–39 Asparagine is a non-essential amino acid and

may have a role in proper immune functioning, although

its exact involvement in multiple sclerosis pathogenesis is

not as yet clear. Asparagine has been shown to be

involved in the priming of mTOR complex 1 for activa-

tion and within the context of Salmonella infection, the

deprivation of asparagine in media abolishes T-cell activa-

tion, T-cell blastogenesis and interleukin-2 secretion.40,41

The concentrations of some lipoprotein species

(Table 2) were found to be altered on global metabolo-

mics during relapses, which, is consistent with a mass

spectrometry metabolomics study showing that multiple

sclerosis relapses were characterized by alterations in fatty

acid metabolism, along with arginine–proline and gluta-

thione perturbations in CSF.18 Another mass spectrom-

etry metabolomics study also observed that various serum

phosphatidylcholine/lysophosphatidylcholine species and

arachidonic acid were the main discriminatory metabo-

lites differentiating patients who had relapses from those

without relapses during a 2-year study period.42

No confounders for the relationship between the identi-

fied metabolites and relapses were observed. Steroids

(commonly prescribed as oral methylprednisolone for 3–5

days in the UK) are given to patients in relapse and there

is potential for steroids to induce changes to glucose and

lipid metabolism.43,44 Only 5 of the 38 R patients

received steroids prior to blood sampling and none were

Figure 5 Discriminatory ability of serum NfL at group level. (A) One-way ANOVA showed that R patients had higher levels of serum NfL

compared to LR � 24 M patients. **** indicates P < 0.0001 by post-hoc Holm–Sidak test, with LR� 24 M patients as the reference comparator.

(B) Univariable ROC analysis of serum NfL in distinguishing R versus LR � 24 M patients. (C) Multivariable ROC analysis using a combination of

lysine, asparagine, isoleucine, leucine and NfL. AUC ¼ area under the curve; 95% CI ¼ 95% confidence interval; LR 1–6 M ¼ last relapse � 1 month

to< 6 months ago; LR 6–24 M ¼ last relapse � 6 months to< 24 months ago; LR� 24 M ¼ last relapse � 24 months ago; NfL¼ neurofilament-

light chain; R ¼ in relapse; ROC ¼ receiver operating characteristics.
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on steroids during sampling. Of note, targeted metabolo-

mics (which measures predominantly lipid parameters

and also glucose) showed that there was no difference be-

tween LR 1–6 M versus LR � 24 M patients—the mean

predictive accuracy of the OPLS-DA models was

51.7% 6 8.0% and was not statistically different from

random chance (P ¼ 0.482). This illustrates that the

metabolic effects of short course, albeit high dose steroids

are unlikely to persist in the longer term.

The pragmatic, observational nature of this study co-

hort meant that patients underwent MRI only when clin-

ically indicated, which, would have reduced the detection

of subclinical MRI-defined inflammation up till the point

of relapse, especially for R patients. Additionally, a delay

in presenting and then obtaining MRI meant that more

GAD-enhancing and new T2 lesions were seen in the 6

months after relapse. However, we focussed on clinical,

not subclinical activity, and silent GAD-enhancing and

Figure 6 Discriminatory abilities of the identified metabolites and NfL at individual level. (A–D) Paired relapse–remission levels of

the four metabolite biomarkers within individual patients. (E) Paired relapse–remission levels for serum NfL. * indicates P < 0.05 on paired t-test.

For isoleucine, two patients had one missing data point, while for leucine, one patient had one missing data point, as the samples did not pass the

quality control of the respective quantifier algorithms of the AXINON
VR

lipoFIT
VR

system. These patients were thus excluded from paired t-testing.

AU ¼ arbitrary units; NfL ¼ neurofilament-light chain.
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new T2 lesions outside of a relapse are characteristics

occurring around 10 times more frequently on MRI,

thus, the differences we note may reflect this difference

also. This could account for the fact that there were no

associations between the four metabolites with the pres-

ence of new T2 lesion/s, while only lysine and asparagine

were associated with the presence of new GAD-enhancing

lesion/s. Also, further analysis (not shown in the Results

section) with the addition of MRI parameters, which,

would theoretically increase the distinction between

R versus LR � 24 M patients did not result in higher

accuracies—the mean predictive accuracy of OPLS-DA

models of CPMG spectral data from R patients with

presence of new GAD-enhancing lesion/s and/or new T2

lesion/s (referenced to baseline scan done �1 year apart)

in the next 6 months after relapse blood sampling

(n ¼ 13) versus LR � 24 M patients with no new T2 le-

sion/s (referenced to baseline scan done �1 year apart) in

the last 1 year (n ¼ 19) was only 58.6% 6 7.8%.

We have identified metabolites that appear to be able

to distinguish multiple sclerosis patients in relapse from

those downstream. Future metabolomics studies will need

to prospectively include frequent MRI scans to under-

stand metabolic signatures underlying subclinical MRI-

defined inflammation and this may lead to the discovery

of metabolite biomarkers to monitor disease activity that

is independent of clinical relapses. Larger studies with

regular metabolomics sampling involving more paired re-

lapse–remission patients, and indeed remission–relapse

patients, are also required to validate the predictive abil-

ities of these candidate metabolites, which, may help to

predict future relapses in an individualized manner to en-

able timely treatment escalation to obviate potential

relapses. Additionally, objective assessment of clinical

relapses using these metabolites would be useful in clinic-

al trials and in monitoring DMT efficacy, and would add

to our current diagnostic armamentarium as well as in-

crease our understanding of the biology underlying the

clinical expression of inflammation in multiple sclerosis.
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