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Abstract

Original Article

IntroductIon

Cancer has become one of the leading causes of mortality in the 
whole world. It is one of the major public health concerns of 
every government.[1] The world is in midst of an unprecedented 
pandemic, that is, coronavirus disease (CoViD-19). However, 
death rates of cancer and AIDS, the number of deaths due 
to infectious diseases like the CoViD-19 would pale in 
comparison. In the year 2018 alone, 9.6 million deaths were 
due to various types of cancer.[2]

There are six common types of cancer such as prostate, 
colorectal, breast, stomach, cervical, and lung cancer. Lung 
cancer was thought to occur only in high per capita income 
countries. In the past decade, it has been identified as a 
global scourge.[3] Among the six most common cancer types 
worldwide mentioned above, lung cancer leads in terms of both 
incidence and mortality rate with an estimated 2.1 million new 
cases and deaths of 1.8 million people in the year 2018 alone.[4] 

Recent estimates point out that the lung cancer indents are 
about to increase by 38% and the total number of cases would 
rise to 2.89 million by 2030. The mortality due to the same 
would be a staggering 2.49 million (39% increase) by 2030.[5]

Computed tomography (CT) scans to detect lung cancer 
are taken in large volume and significant success has been 
achieved in reducing lung cancer mortality. The generated CT 
scan images are analyzed manually by the radiologist’s slice 
by slice. Even though, the CT scans helped in the reduction 
of lung cancer-related deaths by 20%, the task of analyzing 
CT scans has created problems like human error. The task is 
time-consuming and is not economical.[6]

Purpose: In the field of medical diagnosis, deep learning-based computer-aided detection of diseases will reduce the burden of physicians 
in the diagnosis of diseases especially in the case of lung cancer nodule classification. Materials and Methods: A hybridized model which 
integrates deep features from Residual Neural Network using transfer learning and handcrafted features from the histogram of oriented gradients 
feature descriptor is proposed to classify the lung nodules as benign or malignant. The intrinsic convolutional neural network (CNN) features 
have been incorporated and they can resolve the drawbacks of handcrafted features that do not completely reflect the specific characteristics 
of a nodule. In the meantime, they also reduce the need for a large-scale annotated dataset for CNNs. For classifying malignant nodules and 
benign nodules, radial basis function support vector machine is used. The proposed hybridized model is evaluated on the LIDC-IDRI dataset. 
Results: It has achieved an accuracy of 97.53%, sensitivity of 98.62%, specificity of 96.88%, precision of 95.04%, F1 score of 0.9679, 
false-positive rate of 3.117%, and false-negative rate of 1.38% and has been compared with other state of the art techniques. Conclusions: The 
performance of the proposed hybridized feature-based classification technique is better than the deep features-based classification technique 
in lung nodule classification.
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To overcome these difficulties, computer-aided diagnosis (CAD) 
has come to the front to analyze the large volume dataset. The 
application of CAD has improved the 5-year survival rate 
from 15% to over 70%.[7] Hence, the importance of CAD for 
the management of lung cancer disease has gained traction in 
the past decade.

Lung nodules are small masses of tissue appearing in the lung 
due to various reasons. They appear as opaque white objects 
on a CT image and the sizes vary from 3 mm to 30 mm. 
There can be benign lung nodules and malignant (cancerous) 
lung nodules. In few scans and subsequent analyses, a benign 
nodule can be classified as a cancerous lung nodule.[7] To 
avoid this error, an efficient classification scheme is the need 
of the hour. It is not easy to differentiate benign nodules and 
malignant nodules because both are having similar visual 
representations. Many CADs available in the literature are 
based on image processing and traditional machine learning 
techniques. Very recently, deep learning-based CADs are being 
introduced in most of the areas for detecting the abnormalities 
in the medical images.

Classifying benign nodules from malignant nodules is 
imperative in the analysis of lung cancer.[8] This can be carried 
out also by a biopsy or a positron emission tomography scan. 
Although many researches are available for differentiating 
pulmonary nodules, they depend on image processing-based 
segmentation and feature extraction techniques.[9,10] There are 
two broad categories in the classification of lung nodules. One 
category is the traditional classification where the features 
from the nodule images are calculated using different feature 
engineering techniques and these features are used to classify 
the lung nodules into benign and malignant. Another category 
is entirely independent of feature engineering by domain 
experts. Such method is based on deep learning where the 
deep learning algorithm itself learns the features from the 
given input images and classifies the nodules into benign 
and malignant. Among deep learning methodologies, CNN 
has been extensively used for extracting the features without 
manual intervention which are termed as deep features.

In the conventional CAD system, handcrafted features were 
computed from malignant and benign nodule images for the 
lung nodule classification using traditional classifiers such 
as linear discriminant analysis, artificial neural network, 
and support vector machine (SVM).[11-15] Deep learning 
architectures such as deep belief networks and CNN were able 
to classify the nodules more efficiently than the traditional 
classifiers which used handcrafted features.[16] A multi-crop 
convolutional neural network (MC-CNN) was developed 
to detect the malignancy of the nodules.[17] For improving 
the lung nodule classification, evolutionary algorithms were 
incorporated in CNN architecture.[18] Recently, the deep 
features were combined with the specific handcrafted features 
to improve the classification accuracy.[19-25]

Deep learning architecture has given better classification 
accuracies when compared with traditional handcrafted 

features. However, one inherent difficulty is in obtaining of 
the large volume of datasets to have significant results which 
is difficult in medical applications. It is imperative to note that 
while deep learning architecture is enough for detecting images 
in biometric systems, it may not be sufficient to outperform the 
handcrafted features in all cases where these methodologies 
are employed. For example, the handcrafted features are found 
to have better output in the cases of face and iris recognition 
whereas the deep features have outperformed the handcrafted 
features in fingerprint recognition systems. In the classification 
of lung nodules by handcrafted features, the accuracy is not 
better when compared with deep features-based classification. 
The classification scheme based on deep features may miss 
out few salient points if it is used alone as it is evident from 
the literature review. Hence, this research article presents 
an automatic system to assist clinicians in diagnosing lung 
nodules with the hybridized feature set where the experiments 
are carried out using the LIDC-IDRI dataset.

MaterIals and Methods

In this proposed approach, hybridization of deep features and 
handcrafted features are used to classify the lung nodules into 
benign and malignant. Figure 1 shows the schematic diagram 
of the proposed methodology. This system uses the modified 
ResNet50 model using the transfer learning technique for 
deep feature extraction and integrates the deep features with 
the traditional histogram of oriented gradient (HOG) features. 
Since the fused feature set is very large, training the machine 
learning classifier will be complex and take much time. 
To reduce the complexity and computation time, principal 
component analysis (PCA) has been introduced. PCA not 
only reduces the dimension of the data but also preserves the 
important information. For differentiating malignant nodules 
from benign nodules, radial basis function SVM (RBF-SVM) 
has been employed.

Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC‑IDRI) dataset
LIDC/IDRI dataset[26] contains 1018 scans and each scan 
consists of CT images of the chest and an XML file which has 
annotations of 4 radiologists. In this XML file, the malignancy 
level for the nodules is specified. The malignancy rating of 
each nodule is represented in the range of 1–5. Based on the 
information given in the XML file, 2625 nodules have been 
extracted for this work with the help of pylidc library as given 
in Table 1.[27] The nodules which got the malignancy rating 1 and 
2 are termed as “highly unlikely for cancer” and 1136 nodules 

Table 1: Malignancy rate for lung nodules in lung image 
database consortium ‑ image database resource initiative

Malignancy rate Number of nodules Nature of the nodule
1, 2 1136 Highly unlikely for cancer
3 980 Indeterminate
4, 5 509 Highly likely for cancer
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have been extracted; the nodules who got the malignancy rate 3 
are termed as indeterminate nodules and 980 such nodules have 
been extracted. The nodules which got the malignancy rate 4 
and 5 are termed as “highly likely for cancer” and 509 nodules 
have been extracted. The classification scheme employed in 
this work is based on bi-level classification. The nodules with 
malignancy ratings 1 and 2 are considered as benign nodules 
and the malignancy ratings 4 and 5 are considered as malignant 
nodules. The number of benign nodules and malignant nodules 
extracted from the database are 1136 and 509 respectively. 
These data are not sufficient to train the machine learning 
model to predict the classes. To increase the number of nodules, 
data augmentation technique is employed in this work. This 
technique will avoid the overfitting of the model. Using data 
augmentation techniques such as horizontal flipping and vertical 
flipping, the number of nodule images has been increased to 
4544 benign nodules and 2036 malignant nodules [Table 2].

Preprocessing
The lung CT images collected from the LIDC-IDRI dataset and 
each image has the matrix size of 512 × 512. The thoracic CT 
scan not only consists of lung parenchyma but also comprises 
of the image of sternum, rib, ascending aorta, superior vena 
cava, trachea, descending aorta, vertebra, thecal sac with the 
spinal cord. These extraneous information are not necessary 
for the experimentation. Thus, the aim of pre-processing is 
to extract the nodule region from the lung parenchyma. The 
centroid information of the nodule is available in the XML 
file and the region of interest of size 64 × 64 is cropped with 
respect to the centroid information. A sample of cropped lung 
nodule images from the dataset is shown in Figure 2.

Feature extraction
The images carry a lot of information and processing the 
entire information requires a huge necessity of memory 
and computation time. The aim of feature extraction is to 
extract the important properties or features from the input 
image which can differentiate one pattern from the rest of the 
patterns. During this feature extraction process, the irrelevant 
information will be eliminated without any significant loss in 
important information related to the input images.[28]

Handcrafted feature extraction using histogram of 
oriented gradient
HOG feature descriptor[29] is employed in the present work 
to extract the features related to the shape characteristics of 

lung nodules. The lobulated, spiculated, and ragged nodules 
are having more probability to be malignant whereas round, 
tentacular and polygonal-shaped nodules are having more 
probability to be benign. Wang et al. have reported that the 
HOG features are suitable for describing the shape and edge 
characteristics of the malignant and benign nodules.[30] In this 
work for calculating the HOG features, the orientation bin has 
been set to 9, the size of a cell is (8,8) and the number of cells 
in each block is (3,3).

Deep feature extraction using convolutional neural 
network
Deep CNN (DCNN) is the end-to-end machine learning 
framework which does not need feature engineering of the 
input images. In natural image analysis, DCNNs have made 
a giant stride in tasks such as object recognition and image 
classification. If they are trained with less number of data, they 
cannot classify or recognize the given input with high accuracy.

There are two difficulties a researcher faces when he/she uses 
DCNNs in lung nodule classification. Firstly, the datasets 
available in the public domain like LIDC-IDRI for lung 
nodule classification task is very small in number when it is 
compared with millions of data available with the ImageNet 
dataset. The second difficulty is the subtlety of the nodule 
classification task as the differences between a benign and 
malignant nodules are not self-evident. The initial problem can 
be overcome by transferring the weights from pretrained CNNs 
which are trained for different applications to the problem at 
hand. This technique is referred to as transfer learning. The 
second difficulty can be taken into account by concatenating 
deep features and handcrafted features and creating hybridized 
features.

Residual Network (ResNet) is a DCNN model which is 
less complex than other models.[31] It is easier to optimize 
the residual network. When the network becomes deep, 
the accuracy of the network reaches saturation or it starts 
decreasing suddenly due to vanishing gradient problem. To 

Table 2: Dataset used for this work

Type of nodule Nodules extracted 
from database

Augmented 
nodules

Benign 1136 4544
Malignant 509 2036

Figure 1: Proposed methodology for lung nodule classification
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eliminate the vanishing gradient problem, skip connections 
have been introduced in the ResNet architecture. The skip 
connections make a way to add the output from a previous 
layer to a later layer.[31]

The basic principle of the residual network is utilized in the 
lung nodule classification problem. The initial convolution 
layer has been modified to accept 64 x 64 size grayscale image 
input. Using the transfer learning concept, the pretrained 
weights are used at the starting point. The fully connected 
layers have been completely removed from the baseline 
ResNet50 model.

The modified architecture of ResNet50 is shown in Figure 3. 
This architecture consists of 5 stages. The first stage has a 
convolution layer, a batch normalization layer, a ReLu Layer 
and a max-pooling layer. In stage 2 to stage 5, convolution 
block and identity blocks are available. The convolution 
block has 3 convolutional layers and the identity block (ID 
block) has 3 convolutional layers. The identity block with 
the layers and skip connections are shown in Figure 4. The 
lung nodule image size used in this work is 64 × 64 and 
this image is given as input to stage 1. After stage 1, the 
image has been converted into feature map, the feature map 
of size 16 × 16 × 64 is obtained. Stage 2 gives the feature 
map of size 16 × 16 × 256. Stage 3, stage 4, and stage 5 
give the feature map of size 8 × 8 × 512, 4 × 4 × 1024, and 
2 × 2 × 2048, respectively. These feature maps are allowed 
to pass through the average pool layer and then flatten 
layer. A feature vector of size 1 × 8192 is obtained from 
the flatten layer. Thus, deep features are collected from all 
the training images.

Hybridized features
The hybridized features (fh) have been formed by concatenating 
the deep ResNet50 features (fres) with the handcrafted HOG 
features (fhog). It is proposed to hybridize the two different 
features because one set of feature extraction methodology may 
overlook the significant results of the other methodology.[20] 
The hybridization methodology takes complete advantage 
of the powerful handcrafted features and the highest level 
DCNN features.[25] The features extracted by traditional 
feature descriptor and DCNN are complementary in nature 
and if concatenated, they give features that are combinations 
of both.[30]

Feature reduction using principal component analysis
PCA is one of the feature reduction methods. It will 
transform a large set of predictor variables into a smaller set 
of predictor variables but maintains most of the information 
present.[28] The hybridized feature set has a large number of 
features (predictor variables). If these features are applied to 
the classifier directly, it will lead to computational complexity 
and more computation time. To mitigate these problems, 
the PCA technique is employed in this work without losing 
much information.

Classification
Support vector classifier (SVC) is a highly admired machine 
learning algorithm for classification. It provides highly accurate 
classification. The SVC can handle non-linear data points using 
kernels. Linear kernel, polynomial kernel, and RBF kernel are 
common types used in SVC. Among these three types, the RBF 
kernel has been selected in the proposed methodology because 
of the attractive properties of RBF.

Sample
Benign
Nodule
Images

Sample
Malignant

Nodule
Images

Patient ID

Patient ID

LIDC-IDRI-0092 LIDC-IDRI-0132 LIDC-IDRI-0300 LIDC-IDRI-0491 LIDC-IDRI-0608

LIDC-IDRI-0001 LIDC-IDRI-0044 LIDC-IDRI-0436 LIDC-IDRI-0775 LIDC-IDRI-1002

Figure 2: Sample benign and malignant nodule slices from LIDC‑IDRI datase

Figure 3: Modified ResNet50 model to extract deep features
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RBF kernel is invariant to translation and it is easy to tune 
this kernel because it has single parameter. Moreover, this 
kernel is isotropic.

The mathematical representation of the RBF kernel is given 
in equation 1.

( ) σ

2
i j

2

x - x
-

2
i, jK x x = e  (1)

where σ is variance. It is a hyperparameter.

xi represents the support vector and xj represents data point.

xi − xj represents the Euclidean distance.

If the Euclidean distance between the support vector and 
data point is less, they are similar and the kernel value will 
be maximum for that data point. If the distance between the 
support vector and data point is more, they are dissimilar and 
the kernel value will be minimum for that data point. The 
maximum value of the kernel will be 1 and the minimum 
value of the kernel will be 0. It is important to find the 
optimal value for the parameter σ. This single parameter is 
tuned by employing Grid Search Cross-Validation approach. 
A significant advantage of using RBF SVM is less memory 
requirement because during training, it will store only the 
support vectors and not the entire data points.

Model evaluation
The performance of the proposed model has been evaluated 
by generating confusion matrix and receiver operating 
characteristic (ROC) curve. The structure of the confusion 
matrix for lung nodule classification is shown in Table 3. 
True negative (TN) infers that the benign nodule is correctly 
identified as benign nodule. True positive (TP) tells that the 
malignant nodule is correctly identified as malignant nodule. 
False-positive (FP) represents that the benign nodule is 
wrongly identified as malignant nodule. False-negative (FN) 
indicates that the malignant nodule is wrongly identified as 
benign nodule.

Based on the values generated in the confusion matrix, different 
performance metrics such as Accuracy, Sensitivity, Specificity, 
Precision, F1 score, FP rate (FPR) and FN rate (FNR) are 
calculated.

For comparing the performance of the proposed model, different 
feature extraction and classifier combinations have been 
experimented. The handcrafted features extraction techniques 

such as Gray Level Co-occurrence Matrix (GLCM),[32] Local 
Binary Pattern (LBP)[33] and HOG[29] are used for extracting 
features. These feature sets are applied independently to train 
four different classifiers such as logistic regression, linear 
SVM, RBF SVM, and Random Forest. In the handcrafted 
feature-based experiments, 12 different combinations (models) 
have been analyzed. These models are listed in Table 4. To 
analyze the performance of deep features in lung nodule 
classification, VGG16, VGG19, and ResNet50 features are 
considered, and these features are used to train four different 
classifiers such as logistic regression, linear SVM, RBF SVM, 
and Random Forest. In the deep feature-based experiments, 
12 different combinations (models) have been analyzed. These 
models are listed in Table 5. The proposed hybridized feature 
technique has been tested for 12 different combinations and 
those combinations (models) are listed in Table 6.

results and dIscussIon

The experiments have been carried out using NVIDIA Titan 
RTX GPU. For training the classifiers, 80% of data (benign 
nodule = 3635; malignant nodule = 1629) is used for 
training and 20% of data (benign nodule = 1629; malignant 
nodule = 407) is used for testing. The hyper-parameters of all 
the classifiers are tuned by the Gridsearch Cross Validation 
method.

Analysis of handcrafted features
Under handcrafted features-based lung nodule classification 
experiments, out of 12 models (Model 1 to Model 12), four 
models such as HOG with Logistic Regression (Model 9), 
HOG with Linear SVM (Model 10), GLCM with Logistic 
Regression (Model 1) and GLCM with Linear SVM (Model 2) 
can differentiate the benign lung nodules from malignant lung 
nodules. The rest of the models have become underfitting and 
are not able to identify the malignant class. The performance 

Table 3: Structure of the confusion matrix for lung nodule 
classification

Benign Malignant
Actual class

Benign TN FP
Malignant FN TP

Predicted class
TN: True negative, TP: True positive, FP: False positive, FN: False 
negative

Figure 4: Skip connection in ResNet50
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measures obtained through the experiments for these models 
are listed in Table 4. From Table 4, it is understood that 
even though many models got 62.24% of accuracy, they do 
not identify any malignant nodule. They have misclassified 
all the nodules as benign nodules and this led to maximum 

FNR (100%). It is noted that GLCM features misclassified 
benign nodules as malignant nodules. Therefore, for GLCM 
features, Model 1 and 2 have produced high FPR. Among 
the three feature descriptors, HOG features are better than 
GLCM and LBP features because they have produced less 

Table 4: Performance measures of handcrafted features

Model Explanation Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score FPR (%) FNR (%)
Model 1 GLCM + logistic regression 57.31 85.18 40 46.44 0.6 60 14.8
Model 2 GLCM + linear SVM 56.86 83.79 40.53 46 0.59 59 16
Model 3 GLCM + RBF SVM 62.24 0 100 0 0 0 100
Model 4 GLCM + random forest 62.24 0 100 0 0 0 100
Model 5 LBP + logistic regression 62.24 0 100 0 0 0 100
Model 6 LBP + linear SVM 62.24 0 100 0 0 0 100
Model 7 LBP + RBF SVM 62.24 0 100 0 0 0 100
Model 8 LBP + random forest 62.24 0 100 0 0 0 100
Model 9 HOG + logistic regression 74 93.47 62 60 0.73 38 6.52
Model 10 HOG + linear SVM 62.24 0 100 0 0 0 100
Model 11 HOG + RBF SVM 78 95.45 67 64 0.77 32.6 4.5
Model 12 HOG + random forest 62.24 0 100 0 0 0 100
FPR: False-positive rate, FNR: False-negative rate, GLCM: Gray level co-occurrence matrix, RBF: Radial basis function, SVM: Support vector machine, 
LBF: Local binary pattern, HOG: Histogram of oriented gradients

Table 5: Performance measures of deep features

Model Explanation Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score FPR (%) FNR (%)
Model 13 VGG16 + logistic regression 58.36 63.24 55.4 46.24 0.534 44.6 36.76
Model 14 VGG16 + linear SVM 62.24 0 100 0 0 0 100
Model 15 VGG16 + RBF-SVM 82.985 83.79 82.49 74.39 0.788 17.5 16.2
Model 16 VGG16 + random forest 77.84 82.21 75.18 66.77 0.737 24.8 17.78
Model 17 VGG19 + logistic regression 74.22 80.04 70.69 62.31 0.701 29.3 19.96
Model 18 VGG19 + linear SVM 76.42 76.68 76.26 66.21 0.711 23.74 23.32
Model 19 VGG19 + RBF-SVM 83.06 90.12 78.78 72.04 0.8 21.22 9.88
Model 20 VGG19 + random forest 80.15 84.58 77.46 69.48 0.763 22.54 15.4
Model 21 ResNet50 + logistic regression 78.36 83 75.54 67.31 0.74 24.46 17
Model 22 ResNet50 + linear SVM 79.03 87.15 74 67.12 0.758 25.89 12.85
Model 23 ResNet50 + RBF-SVM 83.06 95.06 75.78 70.42 0.81 24.2 4.94
Model 24 ResNet50 + random forest 80.3 87.15 79.14 68.9 0.77 23.86 12.85
FPR: False-positive rate, FNR: False-negative rate, RBF: Radial basis function, SVM: Support vector machine

Table 6: Performance analysis of hybridized features in lung nodule classification

Model Explanation Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

F1 
score

FPR 
(%)

FNR 
(%)

Model 25 VGG16 + HOG + logistic regression 78.66 80.83 77.34 68.39 0.74 22.66 19.16
Model 26 VGG16 + HOG + linear SVM 78.43 82 76.25 67.69 0.74 23.74 17.98
Model 27 VGG16 + HOG + RBF-SVM 82.46 54.35 99.5 98.56 0.7 0.005 45.6
Model 28 VGG16 + HOG + random forest 73.88 31.22 99.76 98.75 0.47 0.002 68.77
Model 29 VGG19 + HOG + logistic regression 76.56 87.15 70.14 63.9 0.74 29.85 12.84
Model 30 VGG19 + HOG + linear SVM 76.49 85.38 71 79.37 0.82 28.89 14.89
Model 31 VGG19 + HOG + RBF-SVM 93.28 89.5 95.6 92.43 0.91 4.44 10.5
Model 32 VGG19 + HOG + random forest 73.65 30.63 99.76 98.72 0.47 0.002 69.37
Model 33 ResNet50 + HOG + logistic regression 82.9 89.72 78.77 71.94 0.79 21.2 10.27
Model 34 ResNet50 + HOG + linear SVM 79.6 95.8 69.78 65.8 0.78 30.2 4
Model 35 ResNet50 + HOG + random forest 88.13 84.78 90.16 83.95 0.84 9.8 15.2
Model 36 ResNet50 + HOG + RBF-SVM 97.53 98.62 96.88 95.04 0.97 3.12 1.38
FPR: False-positive rate, FNR: False-negative rate, RBF: Radial basis function, SVM: Support vector machine, HOG: Histogram of oriented gradients
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FNR. Model 11 (HOG+RBF-SVM) performed better in lung 
nodule classification which has got 78% of accuracy, 95.45% 
of sensitivity, 67% of specificity, 64% of precision, 0.77 
of F1 score, 32.6% of FPR and 4.5% of FNR. However, in 
medical image analysis, both FNR and FPR should be low. 
The FPR of Model 11 is very high. It is observed that the 
handcrafted features are not able to classify the lung nodules 
more accurately.

Analysis of deep features
From the deep features-based experimentations, it is observed 
that ResNet50 + RBF-SVM (Model 23) has performed 
better when compared to other models (Model 13–24). 
The performance metrics of deep features in lung nodule 
classification is given in Table 5. Model 23 has achieved the 
accuracy of 83.06%, sensitivity of 95.06%, specificity of 
75.28%, the precision of 70.42%, F1 score of 0.81, FPR of 
24.2%, and FNR of 4.94%. It is noted that the accuracy of 
deep features is better than handcrafted features but FPR is 
not reduced much. To reduce FPR, the hybridized features and 
classification combinations are tested.

Analysis of hybridized features
The dimension of the hybridized feature set is large. From 
the HOG feature descriptor, 2916 features are computed. The 
number of deep features from VGG16, VGG19, and ResNet50 
models are 2048, 2048, and 8192, respectively. After feature 
concatenation, the dimension of the hybrid feature set is very 
large, and it is shown in Figure 5. If the classifiers are trained 
with such large dataset, the computation time would be large. 
To preserve the important features and reduce the computation 
time, PCA is employed. The number of hybridized features 
is reduced with the help of PCA and the reduced number of 
features is shown in Figure 5. Due to the reduced feature set, 
the computation time for classification has been reduced and 
it is shown in Figure 6.

After including HOG features with deep features, the 
performance of the classifiers has been improved in most of the 
cases as it is evident from Table 6. If the specificity of Model 27 
and Model 28 is considered, the values are 99.5% and 99.76%, 
respectively, but they cannot be considered as the best model 
for lung nodule classification because their sensitivity values 
are 54.35% and 31.22% respectively. Hence they are not able 
to detect the malignant nodules and their FNR is very high, 
i.e. 45.6% and 68.77%, respectively.

Model 19 is a deep feature model where VGG19 features are 
analyzed using RBF-SVM classifier. This model has produced 
the accuracy of 83.06%, sensitivity of 90.12%, specificity of 
78.78%, precision of 72.04%, F1 score of 0.8, FPR of 21.22% 
and FNR of 9.88%. Model 31 is a hybridized model where 
the hybridized features (VGG19 + HOG) are analyzed with 
RBF-SVM classifier which has produced the accuracy of 
93.28%, sensitivity of 89.5%, specificity of 95.6%, precision 
of 92.43%, F1 score of 0.91, FPR of 4.44%, and FNR of 10.5%.

When Model 19 and Model 31 are compared, it has been 
inferred that after including HOG with VGG19 features the 
accuracy of Model 31 has got increased by 10.22% and FPR 
has got reduced by 16.78%.

The proposed Model 36 (ResNet50 + HOG with RBF-SVM 
classifier) has performed very well when compared to all 
other models (TP = 401; TN = 1581; FP = 51; FN = 6). The 
performance of Model 36 has outperformed in all the metrics 
with the accuracy of 97.53%, sensitivity of 98.62%, specificity 
of 96.88%, precision of 95.04%, F1 score of 0.97, FPR of 
3.12%, and FNR of 1.38%. When Model 36 is compared with 
Model 23 (ResNet50 with RBF-SVM Classifier), it is found 
that the accuracy, sensitivity, specificity, precision and F1 score 
of Model 35 got improved by 14.47%, 3.56%, 21%, 24.62, 
and 0.16%, respectively. Moreover, FPR and FNR have got 
reduced by 21.08% and 6.58%, respectively. It is observed 
that the proposed model (model 36) can classify malignant 
nodules and benign nodules efficiently. The ROC curve of the 
proposed model is shown in Figure 7.

Table 7 gives the comparison of the proposed method with 
other state-of-the-art methods. It can be observed that the 
proposed methodology has outperformed in lung nodule 
classification when compared to the related works. Li et al. 
have employed a hybridization technique which integrates 
handcrafted features such as intensity, geometric features and 
texture features with MC-CNN features and reported 88.58% 
of accuracy, 82.6% of sensitivity, 91.82% of specificity, 8.28% 
of FPR and 17.4% of FNR.[25]

The proposed method is less complex than the method given 
by Shulong Li and gives improvement in accuracy by 8.95%, 
sensitivity by 16.02%, specificity by 4.8%. The FPR and 
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FNR values are very less when compared to Shulong Li’s 
approach. Wang et al. have fused LBP and HOG features 
with features from multichannel CNN’s features.[30] The 
accuracy of Wang et al. is lesser than the proposed model by 
5.78%. Antonio et al. have used topology-based phylogenetic 
diversity index and CNN for lung nodule classification. Their 
approach has given good results because segmentation of 
nodules has been done for the input images.[36] However in 
the proposed methodology without segmentation of nodules, 
the features have been extracted from the 2D nodule patches 
and the results are better than the methodology given by 
Antonio et al. with 4.9% improvement in accuracy, 7.92% 
improvement in sensitivity, and 3.41% improvement in 
specificity. The proposed methodology promises an agreeable 
balance between sensitivity and specificity and it implies that 
it is well balanced in classifying the malignant and benign 
nodules.

conclusIons

This research work proposes a deep hybridized model to 
classify the lung nodules into two different categories: 
malignant nodule and benign nodule. In clinical routine, 
there are a few complications in the classification of lung 
nodules due to visual representation of these nodules may 
appear similar. The proposed methodology enjoys the benefits 
of both ResNet50 based deep features and the handcrafted 
HOG features. Due to the hybridization of the features, the 
classifier can differentiate the malignant nodules and benign 
nodules with high accuracy of 97.53%, sensitivity of 98.62%, 
specificity of 96.88%, precision of 95.04%, F1 score of 0.97, 
FPR of 3.12%, and FNR of 1.38%. In addition, our proposed 
approach has been compared to handcrafted feature-based 
lung nodule classification and deep feature-based lung nodule 
classification models. The proposed approach outperforms 
well when it is compared to different deep learning models 
used in lung nodule classification. The future scope of this 
work will be focused on the hybridization of EfficientNet with 
HOG features.
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