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Abstract

Summary: Germline copy-number variants (CNVs) are relevant mutations for multiple genetics fields, such as the
study of hereditary diseases. However, available benchmarks show that all next-generation sequencing (NGS) CNV
calling tools produce false positives. We developed CNVfilteR, an R package that uses the single-nucleotide variant
calls usually obtained in germline NGS pipelines to identify those false positives. The package can detect both false
deletions and false duplications. We evaluated CNVfilteR performance on callsets generated by 13 CNV calling tools
on three whole-genome sequencing and 541 panel samples, showing a decrease of up to 44.8% in false positives
and consistent F1-score increase. Using CNVfilteR to detect false-positive calls can improve the overall performance
of existing CNV calling pipelines.

Availability and implementation: CNVfilteR is released under Artistic-2.0 License. Source code and documentation
are freely available at Bioconductor (http://www.bioconductor.org/packages/CNVfilteR).

Contact: clazaro@iconcologia.net or bgel@igtp.cat

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy-number variants (CNVs) are a type of structural variant which
has been a matter of interest in multiple genetic fields. In the re-
search and diagnosis of hereditary diseases, where CNVs are rele-
vant contributors (Zhang et al., 2019), the analysis of germline
CNVs plays a key role. Recent improvements in next-generation
sequencing (NGS) have resulted in the release of several tools for
germline CNV detection on whole-genome sequencing (WGS),
whole-exome sequencing and panel data (Mason-Suares et al., 2016;
Roca et al., 2019; Zhao et al., 2013). Nevertheless, CNV detection
in NGS is challenging due to aspects relative to the technology, such
as short-read lengths or GC-content bias (Teo et al., 2012).

Available benchmarks show that all germline CNV calling tools
produce false positives (Kim et al., 2017; Moreno-Cabrera et al.,

2020; Zhang et al., 2019), frequently reaching high false discovery
rates (FDRs). These false-positive calls impact downstream analysis.
In a clinical setting, where the use of an orthogonal method is neces-
sary to validate a CNV, false-positive calls lead laboratories to make
an important effort to validate them. A tool able to identify these
false-positive calls could help in this regard.

Most NGS CNV callers are based on one or more of these strat-
egies: read-pair, split-read, read-depth and assembly based
(Pirooznia et al., 2015). However, information from single-nucleo-
tide variants (SNVs), usually available in NGS pipelines, is rarely
used in CNV detection strategies although SNV allele frequency can
provide evidence to confirm or discard CNV calls.
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Here, we present CNVfilteR, an R/Bioconductor package that

uses SNVs to identify false positives in the output of CNV calling
tools.

2 False-positive identification strategy

CNVfilteR uses two different strategies to identify false-positives
CNV calls in diploid genomes. Heterozygous deletions are loss-of-

heterozygosity regions and cannot overlap with heterozygous SNVs,
since only one allele remains. If a heterozygous SNV is detected
within a deleted region, either the SNV or the deletion is a false posi-
tive (Fig. 1a). To account for errors in SNV calling, a CNV deletion

is identified as false positive if at least a percentage of the SNVs over-
lapping that CNV is heterozygous, 30% by default. On the other
hand, CNV duplications are evaluated using a fuzzy-logic-inspired
model which scores all heterozygous SNVs overlapping the CNV. If
the duplication was a true-positive, the expected allele frequency of

heterozygous SNVs would be either 33% or 66%, while it would be
50% if the duplication was a false positive (Fig. 1b). Therefore, each
SNV is scored with a value between �1 and 1 depending on how
close the allele frequency is to the nearest expected allele frequency
(Fig. 1c). If the sum of the scores of all the SNVs in the CNV is

greater than the duplication threshold value, the CNV duplication is
identified as false positive. Further details of the scoring model can
be found in Supplementary File S1.

3 Features

3.1 Input formats
VCF format is the most common output of SNV callers and its inter-

pretation is challenging due to the flexibility provided by the format
specification. CNVfilteR provides a function to interpret automatic-
ally VCFs produced by VarScan2, Strelka/Strelka2, freeBayes,
HaplotypeCaller (GATK) and UnifiedGenotyper (GATK). Output

from other tools can also be loaded if adequate parameters are
provided.

3.2 Visual output
Results can be plotted and customized through plotting functions

based on karyoploteR (Gel and Serra, 2017) and CopyNumberPlots
(https://github.com/bernatgel/CopyNumberPlots) packages
(Supplementary Fig. S1).

4 Performance evaluation

CNVfilteR was evaluated on 3 WGS samples and 541 gene-panel
samples. The default parameters were chosen based on their

performance in a WGS sample (HuRef sample) and a gene-panel

dataset (HiSeq-panel) (Supplementary File S1).

4.1 Evaluation on WGS data
We evaluated CNVfilteR performance on three reference WGS sam-

ples: the HuRef/Venter genome (Zhou et al., 2018), the AK1 genome

(Seo et al., 2016) and the NA12878 genome. The HuRef and AK1
samples were evaluated using a published reference CNV callset and

the results of six CNV calling tools (Canvas, cn. MOPS, CNVnator,

ERDS, Genome_STRiP, RDXplorer) (Trost et al., 2018). For these

two samples, we also ran an additional CNV calling tool, LUMPY
(Layer et al., 2014). On the other hand, we evaluated the NA12878

sample with a reference callset and the output of ten CNV calling

tools (Canvas, cn. MOPS, CNVnator, RDXplorer, iCopyDAV,

GROM-RD, Rsicnv, Control-FREEC, ReadDepth) from a previous
work (MacDonald et al., 2014; Parikh et al., 2016; Zhang et al.,
2019). For the three WGS samples, SNV calls were obtained using

Strelka2 (Kim et al., 2018). Further details are available in
Supplementary File S1.

CNVfilteR identified between 15.3% and 44.8% of the false pos-

itives and the FDR decreased for all tool-sample evaluations (up to

10.4%). Additionally, F1-score was improved in 19 out of the 24

tool-sample evaluations reaching up to 20.7% F1-score increase
(Fig. 1d–f). Sensitivity, however, decreased slightly: tool-sample

evaluations had an absolute sensitivity decrease between 0.001 and

0.035. Metrics details are available in Supplementary File S2 and

Figures S2–S7. Moreover, additional evaluations were performed to
show CNVfilteR performance on different CNV size ranges, on dif-

ferent number of SNVs overlapping each CNV, and on different par-

ameter values (Supplementary Figs S8–S25 and Files S5–S7).

4.2 Evaluation on gene-panel data
We also evaluated CNVfilteR performance on two gene-panel tar-

geted datasets: one containing 411 samples from different Illumina
HiSeq runs (HiSeq-panel dataset) and another with 130 samples

from different Illumina MiSeq runs (MiSeq-panel dataset). All sam-

ples were captured with a 135-gene panel (Castellanos et al., 2017).

To evaluate CNVfilteR, previous MLPA results for a subset of genes
were used as gold-standard, CNVs were called using DECoN

(Fowler et al., 2016), and SNVs were called using VarScan2

(Koboldt et al., 2012) (Supplementary Files S1, S3 and S4).
In the HiSeq-panel and MiSeq-panel datasets, CNVfilteR identi-

fied 15% of the false-positive calls (3 out of 20 false positives) and

12.5% of the false-positive calls (2 out of 16), respectively.
On both datasets, no true CNV was misidentified as false posi-

tive (Supplementary File S1), so sensitivity did not change.

Fig. 1. (A) CNV deletion example, adapted from CNVfilteR output. (B) CNV duplication example, adapted from CNVfilteR output. (C) Scoring model for CNV duplications,

plotted by CNVfilteR. (D–F) F1-score differences before (light blue) and after (dark blue) removing the false-positive CNVs identified by CNVfilteR in the HuRef, AK1 and

NA12878 WGS samples
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4.3 Runtime
Runtime was evaluated on a subset of 79 gene-panel samples and
the HuRef WGS sample. The median runtime per sample was 0.85 s

for the gene-panel samples and 3.53 min for the HuRef sample

(Supplementary File S1).

5 Conclusion

We developed CNVfilteR, an R/Bioconductor package to identify

false-positive calls generated by CNV calling tools from germline
NGS data using SNVs’ allele frequency. CNVfilteR identified false-

positive calls in all tested tools and datasets, from gene-panel to

WGS, and F1-score was improved in most tool-sample combina-
tions. CNVfilteR can be plugged in most existing CNV calling pipe-

lines to improve calling performance at virtually no cost.
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