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Abstract: Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes seedling death im-
mediately after emergence, in addition to leaf chlorosis and necrosis, vascular discoloration, plant
wilting, defoliation, and plant death at late stages. Breeding for FOV4 resistance is the most cost
effective management method. In this study, 163 recombinant inbred lines (RILs) of FOV4-resistant
Pima S-6 × susceptible 89590, together with the two parents (Gossypium barbadense), were artificially
inoculated with FOV4 and assayed for resistance based on foliar disease severity ratings (DSR) at
30 days post inoculation (dpi) in two replicated tests in the greenhouse or controlled conditions.
Significant genotypic variations were detected for FOV4 resistance in a combined analysis of variance.
Although a significant genotype × test interaction was detected for DSR, the 10 most resistant RILs
had significantly and consistently lower DSR than the susceptible parent in both tests. The heritability
estimate for DSR was 0.65, indicating that two-thirds of the phenotypic variation for FOV4 resistance
in this Pima RIL population was due to genetic factors. Based on 404 polymorphic SSR markers,
five and four quantitative trait loci (QTL) on six chromosomes (c14, c17, c19, c21, c24, and c25) were
detected in Tests 1 and 2, respectively, and each explained 15 to 29% of the phenotypic variation.
Three QTL on c17, c24, and c25 were in common between the two tests, accounting for 60% and 75%
of the QTL detected in Tests 1 and 2, respectively. The three QTL were also reported in previous
studies and will be useful for marker-assisted selection for FOV4 resistance in Pima cotton.

Keywords: cotton; fusarium wilt; resistance; quantitative trait locus

1. Introduction

Extra-long staple cotton or Pima cotton (Gossypium barbadense L.) has superior fiber
quality, including long, strong, and fine fibers and is grown in about a dozen countries
including the U.S. [1]. Fusarium wilt (FW), caused by the soil-borne fungal pathogen
Fusarium oxysporum f. sp. vasinfectum Atk. Sny & Hans (FOV), is one of the serious
problems in cotton production in the U.S. and worldwide [2]. FOV decreases cotton yield
by causing leaf wilting, chlorosis and necrosis, vascular discoloration, plant stunting,
defoliation, and plant death [3,4]. In the U.S., FOV races 1, 2, 3, 4, and 8 were identified with
race 4 (FOV4), reported first in California in 2000 [5] and most recently in Texas in 2018 [6]
and New Mexico in 2019 [7,8]. Although Upland cotton is generally more resistant to FW
than Pima cotton, Pima S-6 is resistant to FOV4 and has served as an important source of
resistance to FOV4 in breeding and genetic studies [9–12]. Zhu et al. [13] recently showed
that Pima S-6 and its derived resistant genotypes decrease the penetration of FOV4 into the
root and prevent it from invading the vascular system. Intraspecific genetic and breeding
populations using the FOV4-resistant Pima S-6 or its derived lines as a parent have been
created to develop promising lines and cultivars with FOV4 resistance and to identify
molecular markers associated with FOV4 resistance [9–12]. There have been numerous
studies to investigate the genetic basis of FOV resistance in Upland cotton (G. hirsutum L.)
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using bi-parental and association mapping populations (see [3] for a review). A meta-
analysis showed that most FOV resistance quantitative trait loci (QTL) were located on
five chromosomes, i.e., c6, c14, c17, c22, and c25 [14]. Abdelraheem et al. [15] recently
conducted a genome-wide association mapping in U.S. Upland cotton using high density
genome-wide single-nucleotide polymorphic markers (SNPs) based on the CottonSNP63K
array [16] and identified 13 FOV4 resistance QTL on six chromosomes (c8, c14, c16, c17, c18,
and c19). However, only a few studies in mapping QTL for FOV4 resistance were conducted
on Pima cotton. Using F2 populations, Ulloa et al. [10] reported a major gene/QTL for
resistance to FOV4 on c14 in Pima S-6 based on a limited number of simple sequence
repeat (SSR) markers. However, no RIL populations with Pima S-6 as a resistant parent
were previously used to verify the results. Based on a RIL population of susceptible
Pima S-7 × resistant Upland Acala NemX, two major QTL for FOV4 resistance on c14 and
c17 were identified, also based on SSRs [17].

FW caused by FOV4 is an inoculum density and temperature-dependent fungal
disease [18,19]. FOV4-caused plant wilt and death occurs under optimal and high inoculum
density and low temperature (21–23 °C) conditions. Zhang et al. [20] showed that disease
incidence caused by FOV4 was similar under high and low temperature conditions, but the
disease severity and plant mortality were significantly higher under the low temperature
conditions. However, it is unknown if previous genetic studies in FOV4 resistance were
performed under such conditions. In this study, we hypothesized that common and unique
genes/QTL could be detected under both temperature regimes. To test this hypothesis, the
objectives of this study were (1) to evaluate a Pima RIL population derived from a cross of
FOV4-resistant Pima S-6 × FOV4-susceptible 89590 for FOV4 resistance using high and
low temperature regimes under the greenhouse or controlled conditions and (2) to perform
QTL mapping to identify genomic regions for FOV4 resistance in Pima S-6.

2. Materials and Methods
2.1. Development of the RIL Population

The RIL population was developed from a cross of FOV4-resistant Pima S-6 [21] with
a susceptible Pima germplasm line 89590 [22], through a single-seed descent method [23].
F1 plants were self-pollinated to produce individual F2 plants which were subsequently
advanced to RILs through several generations of repeated self-pollination on an individual
F2 plant basis. Therefore, for most genes and DNA markers, an RIL was homozygous for
one genotype or another (e.g., AA or aa; or A1A1 or A2A2), with a minimum heterozygosity
(Aa or A1A2). Between the two parental lines, Pima S-6 is higher yielding, while 89590 has
a sea-island parentage and is an extra-long staple germplasm with longer, stronger, and
finer fibers [22].

2.2. Experimental Designs, Inoculation Methods, and Assessment of FOV 4 Resistance

Two replicated tests were conducted in the greenhouse or controlled conditions for
FOV4 resistance in 2019. Seeds were planted in 4-inch plastic pots (in five hills with
2–3 seeds per hill for each line). A randomized complete block design with two replications
for the RILs and the two parents was used in each test (10 plants genotype−1 replication−1).
To understand if temperatures affected genotypic responses to FOV4 and the detection of
QTL for FOV4 resistance, and to also compare results between potting soil and farm soil,
two types of soil were used in this study based on Zhang et al. [20]. Test 1 was conducted
using a commercial potting soil (Miracle-Gro Moisture Control Potting Mix 2 CF; Scotts
Co., Marysville, OH, USA) under a high temperature (HT) regime (24–32 ◦C), while Test 2
was conducted in a FOV4 pre-infected farm soil and under a low temperature (LT) regime
(20–21 ◦C). The greenhouse used natural sun light with no supplementary light provided.
Daily irrigation and weekly application of fertilizer were used to manage the plants.

In both tests, however, artificial inoculations were made at the first true leaf stage with
FOV4. A local FOV4 isolate, identified to be the most virulent in our previous study [8],
was used in this study. Ten ml of 1 × 106 spores mL−1 conidial suspension of FOV4 were
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inoculated to seedlings in each pot (10 plants pot−1) without root wounding, because FOV4
can penetrate the cotton root without the need of root-knot nematodes.

The disease severity ratings (DSR) were evaluated at 7, 14, 21, and 30 days post inocu-
lation (dpi) using a 0–5 rating scale, similar to Zhang et al. [24] for evaluating resistance to
Verticillium wilt, as the following:

0 no symptom
1 one wilted cotyledon
2 two wilted cotyledons or two cotyledons abscised
3 first true leaf wilted or three leaves including two cotyledons abscised
4 whole plant wilted or more than three leaves abscised
5 dead plant

2.3. Analysis of Variance

An average DSR was calculated on a plot (pot) basis for the subsequent analysis.
The results for DSR from the two tests were subjected to a combined analysis of variance
(ANOVA) using SAS v. 9.4 software (SAS Institute, Cary, NC, USA, 2012). Significance level
was set at the p < 0.05 level for both the F (ANOVA) and t tests, i.e., the least significant
difference (LSD) for mean separation. Broad-sense heritability (hb

2) for DSR was estimated
on a genotypic means based on ANOVA.

2.4. Linkage Mapping and QTL Analysis

The RILs were genotyped with a total of 403 SSR polymorphic loci which were
produced from 200 SSR primer pairs, because each primer pair produced one to mul-
tiple polymorphic markers [23]. The primer sequences for the SSR markers are avail-
able from the CottonGen database (http://www.cottongen.org, accessed on 1 September
2022). DNA was extracted using a cTAB-based quick extraction method [25], followed
by PCR and gel electrophoresis, as detailed by Abdelraheem et al. [23]. The linkage
map was constructed using JoinMap version 4.0 software [26]. Inclusive composite
interval mapping [27] was performed based on QTL IciMapping version 4.0 software
(https://www.integratedbreeding.net/, accessed on 1 September 2022). The linkage map
with QTL was visualized using MapChart [28].

3. Results and Discussion
3.1. Analysis of Variance of FOV4 Resistance Based on DSR

The RILs along with the two parents were evaluated in Tests 1 and 2 under a high
temperature (HT, 24–32 ◦C) and a low temperature (LT, 21–22 ◦C) regime, respectively.
A combined analysis of variance over the two tests detected a significant variation at
the p < 0.01 level in genotype (G) for DSR at 30 dpi. The two tests (T) also significantly
differed in DSR in that Test 2 at HT regime incurred a significantly higher DSR than Test 1
at LT (1.65 vs. 4.67). The G × T interaction was further detected for DSR, indicating that
the overall performance of the RILs differed under HT and LT conditions (Table 1). The
broad-sense heritability estimate for DSR was 0.65 based on the combined ANOVA from
the two tests (Table 1), indicating that about two-thirds of the phenotypic variation was
determined by unknown genetic factors to be determined through the subsequent QTL
analysis in this RIL population. Therefore, genetic variation played a more important role
than environment variation in DSR among the RILs in this population.

Table 1. A combined analysis of variance of Fusarium wilt race 4 (FOV4) resistance in the recombinant
inbred line (RIL) cotton population of 163 lines from a cross of Pima S-7 × 89590 based on foliar
disease severity rating (DSR) at 30 days post inoculation.

Sources of Variation df Mean Squares

Genotype 162 0.85 **
Test 1 0.21 **

http://www.cottongen.org
https://www.integratedbreeding.net/
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Table 1. Cont.

Sources of Variation df Mean Squares

Genotype × Test 162 0.52 **
Error 324 0.38

CV (%) 31.2
h2 0.65

** p < 0.01.

3.2. Performance of the RILs for FOV4 Resistance

The FOV4 disease incidence (DI) ranged from 19.22 to 100.00% in Test 1 and from
59.82 to 100.00% in Test 2 (Table 2). The DI means were not statistically different between
the two tests (82.2% for Test 1 vs. 93.8% for Test 2), although Test 2 had a higher DI. Under
both HT and LT conditions, foliar symptoms due to FOV4 infections appeared in a few of
seedlings exhibiting one or two wilting cotyledons within a week of artificial inoculation.
However, very few seedlings died under the HT conditions with a mortality rate of 0.2%,
as compared to 83.7% under LT at 30 dpi (Table 2).

Table 2. Mean disease severity rating (DSR), disease incidence (DI), and mortality due to Fusarium
wilt race 4 (FOV4) infections in the recombinant inbred line (RIL) cotton population of 163 lines from
a cross of Pima S-6 × 89590 at 30 days post inoculation in Tests 1 and 2.

Test Mean DSR Mean DI (%) Mean Mortality (%)

1 1.65 a 82.18 a 0.20 a
2 4.67 b 93.81 a 83.65 b

Numbers followed by different letters indicate significant difference at p < 0.05.

The Pima S-6 parent showed a consistent level of FOV4 resistance than the susceptible
Pima line 89590 under both HT and LT conditions (Figure 1). Although the correlation
coefficient for DSR between the two tests was not significant (r = 0.101, p > 0.05 at n = 161),
the 10 most resistant lines had a DSR of 0.25–0.78 in Test 1 and 1.58–2.41 in Test 2, which were
consistently and significantly lower than that for the 10 most susceptible lines (2.25–2.63
in Test 1 and 3.95–5.00 in Test 2) at p < 0.05 (Table 3). The most resistant RILs provide
important improved lines for further studies and breeding efforts in Pima cotton.
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Figure 1. Disease severity rating (DSR) in the recombinant inbred line cotton (RIL) population of
163 lines from a cross of Pima S-7 × 89590 and the two parents at 30 days post inoculation in Test 1
under a high temperature regime (a) and Test 2 under a low temperature regime (b).
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Table 3. Ten most resistant and 10 most susceptible lines to Fusarium wilt race 4 (FOV4) in the
recombinant inbred line (RIL) cotton population of 163 lines from a cross of Pima S-7 × 89590 based
on disease severity rating (DSR) at 30 days post inoculation in Test 1 and Test 2.

Line Test 1 Test 2 Line Test 1 Test 2

10 most susceptible lines 10 most susceptible lines
NMPRIL21 0.25 1.58 NMPRIL6 2.63 3.95
NMPRIL20 0.38 2.06 NMRIL15 2.62 5.00
NMPRIL24 0.44 2.22 NMRIL140 2.50 4.67
NMPRIL135 0.46 2.34 NMRIL72 2.46 5.00
NMPRIL12 0.48 2.41 NMRIL67 2.41 5.00
NMPRIL7 0.50 2.05 NMRIL91 2.33 5.00

NMPRIL55 0.60 2.04 NMRIL82 2.29 4.86
NMPRIL65 0.67 2.01 NMRIL75 2.27 5.00
NMPRIL71 0.72 1.98 NMRIL101 2.25 4.83
NMPRIL100 0.78 2.01 NMRIL110 2.25 4.35

LSD (0.05) 1.12 1.18

3.3. QTL Analysis

The genetic linkage map for the Pima RIL population was reported previously by
Abdelraheem et al. [23]. Briefly, a total of 31 linkage groups with 403 polymorphic SSR
loci spanned a total genetic distance of 1,449 cM and were assigned to 26 chromosomes
at an average genetic distance of 3.6 cM between two adjacent marker loci. The number
of markers varied between chromosomes with a total of 201 and 193 loci in the A and D
subgenomes, respectively.

A total of five and four major QTL (all from the D-subgenome), each of which explained
15.12 to 29.01% of the phenotypic variation (PVE), were detected in Tests 1 and 2, respec-
tively (Figure 2). In Test 1, the five QTL were on five chromosomes (c14/D02, c17/D03,
c19/D05, c24/D08, and c25/D13), and each carried 16.5 to 29.01% of PVE. In Test 2, the
four QTL were on four chromosomes (c17/D03, c21/D11, c24/D08, and c25/D13), and
each carried 15.12 to 21.50% of the PVE. In both tests, all the DSR-reducing resistance
QTL alleles were from Pima S-6 (Table 4). Importantly, three QTL (on c17, c24, and c25)
were in common between the two tests, accounting for 60 and 75% of the QTL detected in
Tests 1 and 2, respectively (Figure 2). The major QTL identified on c17/D03 in both tests
was anchored by two SSR markers (BNL3408a-200 and CIR347-280) within a 180 kb region
(48.63–48.81 Mb). It carried 29.01% of the PVE for FOV4 resistance with a high LOD score
(21.54). This QTL is consistent with a major gene/QTL previously identified in the FOV4-
resistant Pima S-6 in another study using F2 populations [10]. A major resistance QTL for
FOV4 and FOV7 resistance on c17 was also reported in resistant Upland cotton [15,17,29].

The second common QTL identified on c24/D08 in Test 1 overlapped with that in
Test 2. Because both QTL in the two tests contained a common SSR marker BNL2961b-400
within a 200 kb region (56.77–56.97 Mb), they were considered a consistent QTL for FOV4
resistance. The QTL had a LOD score of 9.89–10.25 and explained 19.87% of the phenotypic
variation in DSR. The third common QTL detected on c25/D13 was flanked by two SSR
markers (MUSS122 and JESPR056) at the 52.85 Mb region in Tests 1 and 2, which carried
21.84% of the PVE with a LOD score of 13.54 in both tests (Table 3).

Three unique QTL were detected in Test 1 or 2 only. The QTL on c14/D02 was detected
in Test 1 only, and it was located in an extremely large region between 6.25 and 69.61 Mb.
The QTL on c19/D05 was also detected in Test 1, and it was also mapped to a large region
(10.63 Mb) of the chromosome between 10.56 and 21.19 Mb. The QTL on c21/D11 was
detected in Test 2 only, and it was located within an 8.72 Mb region (17.52–26.24 Mb) of the
chromosome. Because most of the QTL detected were within large chromosome regions
containing numerous putative genes, no further analysis on candidate genes was performed
in this study. To fine map consistent resistance QTL, more RILs and DNA markers should
be used for candidate gene identification and validation.
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Figure 2. Quantitative trait loci (QTL) identified in the recombinant inbred line (RIL) cotton popula-
tion of 163 lines from a cross of Pima S-7 × 89590 for Fusarium wilt race 4 (FOV4) resistance based on
disease severity rating (DSR) at 30 days post inoculation.

Table 4. Quantitative trait loci (QTL) for Fusarium wilt race 4 (FOV4) resistance in the recombinant
inbred line (RIL) cotton population of 163 lines from a cross of Pima S-7 × 89590 based on disease
severity rating (DSR) at 30 days post inoculation.

QTL Name Chr. Left Marker Right Marker Physical
Location (Mb) LOD PVE (%) Direction

qFOV.c14-1 c14 BNL3932-300 BNL1897B-300 6.25–69.61 22.54 16.54 Pima S-6
qFOV.c17-1 c17 BNL3408a-200 CIR347-280 48.63–48.81 21.54 29.01 Pima S-6
qFOV.c17-2 c17 BNL3408a-200 CIR347-280 48.63–48.81 21.54 29.01 Pima S-6
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Table 4. Cont.

QTL Name Chr. Left Marker Right Marker Physical
Location (Mb) LOD PVE (%) Direction

qFOV.c19-1 c19 BNL1611-430 DPL0071 10.56–21.19 11.58 18.57 Pima S-6
qFOV.c21-1 c21 BNL1053a-230 BNL3997-430 17.52–26.24 9.98 15.00 Pima S-6
qFOV.c24-1 c24 MUSS260a-300 BNL2961b-400 56.77–56.97 10.25 19.87 Pima S-6
qFOV.c24-2 c24 BNL2961b-400 BNL1521-400 56.77–56.97 11.89 19.87 Pima S-6
qFOV.c25-1 c25 MUSS122 JESPR056 52.85 13.54 21.84 Pima S-6
qFOV.c25-2 c25 MUSS122 JESPR056 52.85 13.54 21.84 Pima S-6

Chr, chromosome number; PVE, phenotypic variation explained by the QTL.

In addition to a major FOV4 resistance QTL/gene (named Fov4) detected in the
resistant Pima S-6, Mauricio et al. [10] reported several minor QTL on chromosomes c3, c6,
c8, c14, c17, and c25 using three intraspecific (G. hirsutum × G. hirsutum and G. barbadense ×
G. barbadense) F2 populations, five interspecific (G. hirsutum × G. barbadense) F2 populations,
and one RIL population derived from seven parents, including Pima S-6. This current
study identified FOV4-resistance QTL on c14 and c19 in Test 1, on c21 in Test 2, and on
c17, c24, and c25 in both tests. The major QTL/gene on c14 in Pima S-6 reported by
Mauricio et al. [10] was not detected in Test 2 in this present study. However, both Maurcio
et al. [14] and this study detected FOV4-resistance QTL on c17 and c25. To fine map these
QTL and discern differences between QTL reported by different studies, large genetic
populations of RILs should be developed for repeated evaluation for FOV4 resistance.
Based on a meta-QTL analysis [3,14], chromosomes c6, c17, c18, c19, c24, and c25 had
higher numbers of FOV (races 1, 4, and 7) resistance QTL in different Upland genetic
backgrounds tested in different environments. Thus, the three common QTL (on c17, c24,
and c25) detected in FOV4-resistant Pima S-6 in this study were consistent with these
reported previously. They will be useful for marker-assisted selection for FOV4 resistance
in cotton.
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