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Summary

Antibiotic resistant bacterial infections are a global
public health challenge that has been increasing in
severity and scope for the last few decades. Without
creative solutions to this problem, treatment of inju-
ries and infections will become progressively more
challenging. A better understanding of the human
microbiome has led to a new appreciation for the
role commensal microbes play in protecting us from
pathogens, especially in the gut. Antibiotics lead to
disruption of the gut microbial ecosystem, enabling
colonization by antibiotic resistant bacterial patho-
gens. Many different lines of research have identified
specific bacterial taxa and mechanisms that play a
role in colonization resistance, and these lines of
research may one day lead to microbial therapeutics
targeting antibiotic resistant bacteria. Here, we dis-
cuss a few of these strategies and the challenges
they will need to overcome in order to become an
effective therapeutic.

Antibiotic-resistant bacteria pose a threat to public
health

A major threat to Sustainable Development Goal 3 (en-
suring healthy lives and promoting well-being for all at all
ages) is the rise of antibiotic-resistant bacteria (ARB).
Without new therapeutic strategies, the World Health
Organization has stated that we could be headed for a
‘post-antibiotic era’, in which previously treatable infec-
tions are once again deadly (WHO Media Cent, 2014).
In the USA alone, the CDC estimates that more than 2

million people contract antibiotic-resistant infections
every year, resulting in more than 23 000 deaths (US
Department of Health and Human Services, Centers for
Disease Control and Prevention, 2013). This results in
more than $20 billion in healthcare costs per year, with
an additional $35 billion in lost economic output (Roberts
et al., 2009; US Department of Health and Human Ser-
vices, Centers for Disease Control and Prevention,
2013). On an individual patient level, this translates to
increased costs, longer hospital stays and a higher likeli-
hood of adverse events and death (Roberts et al., 2009;
US Department of Health and Human Services, Centers
for Disease Control and Prevention, 2013; Gandra et al.,
2014).

Microbial strategies for decreasing antibiotic
resistance are promising and sustainable

The human microbiome, which consists of all the bacte-
rial, fungal and viral microorganisms that colonize epithe-
lial surfaces of the human body, may hold the key to
fighting ARB. Members of the human microbiome play
roles in many aspects of human development (Vaish-
nava et al., 2008; Dinan and Cryan, 2012; Sommer and
B€ackhed, 2013; Peterson and Artis, 2014; De Santis
et al., 2015; Chung et al., 2016). Generally, these organ-
isms are commensal, but under certain conditions, some
of these bacteria have been associated with chronic and
acute disorders (Becattini et al., 2016; Nagao-Kitamoto
et al., 2016; Fung et al., 2017; Sommer et al., 2017;
Wen and Duffy, 2017).
Antibiotic-resistant bacterial infections are often a

direct result of a disruption of the gut microbiome (Carlet,
2012; Sassone-Corsi and Raffatellu, 2015; Pamer,
2016). A healthy intestinal microbiome consists of a
highly diverse population. When this diversity is
decreased by antibiotic treatment, niches become avail-
able for pathogen colonization. Domination of the gut
microbiome by a pathogen places patients at high risk
for developing infection by that pathogen as the gut bar-
rier integrity weakens, enabling pathogen translocation
across the epithelial barrier (Taur et al., 2012). Further-
more, ARB-colonized patients can serve as vectors of
ARB transmission.
There are two major microbial strategies that are being

pursued for combatting ARB. These include the follow-
ing: (i) bacteriophage-based strategies can target
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specific strains that colonize patients and cause chronic
infections, and (ii) microbial remediation of the gastroin-
testinal tract relies on commensal bacteria for inhibition
of ARB growth and transmission. In this review, we will
discuss some exciting examples for each of these
promising lines of research (Fig. 1).

Bacteriophage precisely target ARB pathogens

Bacteriophage-based therapies focus on using phage or
its component proteins to target highly specific strains of
bacteria. The approach of using bacteriophage (phage)
isolates to treat bacterial infections has traditionally been
pursued in the former Soviet Union and Eastern Europe
(Sulakvelidze et al., 2001). These reports speak to the
safety profile of this therapy (Weber-Dabrowska et al.,
2000; Bruttin and Br€ussow, 2005). In addition, phage are
readily modifiable to combat emergence of newly arising
bacterial threats (Samson et al., 2013). However, current
research into whole phage therapies lacks rigorous proof
of efficacy, namely properly conducted randomized pla-
cebo-controlled studies. There are concerns over
immunogenicity of phage therapy, as well as develop-
ment of bacterial resistance to bacteriophages (Lu and
Koeris, 2011; Pires et al., 2016). Furthermore, require-
ment of regulatory approval in the United States, among
other obstacles, prevents widespread use of phage
therapy.
Issues of using whole phage therapy may be miti-

gated by using bacteriophage lysins: phage-encoded
peptidoglycan hydrolases that induce rapid lytic death
(Young, 1992; Young and Bl€asi, 1995; Wang et al.,
2000; Borysowski et al., 2006). Exogenous recombi-
nant lysins effectively target Gram-positive bacteria, as
there is no outer membrane to prevent access to the
cell wall (Loeffler et al., 2001; Fenton et al., 2010).
Lysins are also reported to have narrow host range,
which theoretically spares the surrounding commensal
microflora (Fenton et al., 2010). However, lysins face
similar therapeutic challenges as phage therapy: like

all other foreign agents, the host will develop neutraliz-
ing antibodies, which will reduce the levels of enzyme
during treatment. Furthermore, this therapeutic is lar-
gely ineffective in Gram-negative bacteria. While this
may be circumvented using outer membrane permeabi-
lizers, there may be cytotoxic effects associated with
this approach that limit its safety (Amaral et al., 2007;
Walmagh et al., 2013).
Advances in genetic engineering technology have

allowed researchers to manipulate phage to enhance
antibacterial activity, targeting and delivery. Engineered
phages can deliver genes conferring increased sensitiv-
ity to antibiotics (Lu and Collins, 2009; Edgar et al.,
2012), disrupt biofilm matrices through delivery of bio-
film-degrading enzymes (Lu and Collins, 2007) and deli-
ver lethal-agent phagemid particles (Westwater et al.,
2003). Using the CRISPR-Cas system, RNA-guided
nucleases are delivered via phagemids into bacterial
cells, where they target specific genetic sequences and
induce a double-strand break, leading to plasmid loss or
cell death (Citorik et al., 2014). While engineered phage
therapy is promising, more research is required for opti-
mizing vector delivery and minimizing immunogenicity.

Microbiome restoration inhibits ARB growth and
transmission

Commensal bacteria can provide resistance to ARB by
interacting with the host. For example, some Gram-nega-
tive obligate anaerobes are known to induce the produc-
tion of host antimicrobial peptides (Sonnenburg et al.,
2006; Brandl et al., 2008; Kinnebrew et al., 2010; Ubeda
et al., 2013). In addition, short-chain fatty acid (SCFA)
production is intimately involved in pathogen defence.
SCFAs are the main source of energy for colonocytes,
induce IgA production, reduce inflammation and may be
involved in increasing the thickness of the mucus layer
(Zimmerman et al., 2012; Earle et al., 2015; Desai et al.,
2016; Jones, 2016; Wu et al., 2016; Goverse et al.,
2017; Olsan et al., 2017; Rowland et al., 2017). These

Fig. 1. Microbial therapeutics target antibiotic-resistant bacteria through many different mechanisms.
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strains are vital for preventing bacterial translocation by
reinforcing the gut barrier.
Other commensal bacteria can directly attack or inhibit

pathogen growth. In fact, co-culture of some commensal
and pathogenic strains results in the direct killing of the
pathogen through the production of secreted molecules
like bacteriocins (Gilmore et al., 2015; Gaca and Gil-
more, 2016; Sassone-Corsi et al., 2016). Strains produc-
ing these molecules could be used therapeutically to
eliminate populations of ARB from the gut.
Predatory bacteria have the potential to play a role in

the management of antibiotic-resistant infections.
Bdellovibrio spp. and Micavibrio spp. are proteobacteria
whose life cycle contains an attack phase where they
attach to, or invade and kill other bacteria. These preda-
tors can kill many Gram-negative pathogens, including
those resistant to antibiotics of last resort (Markelova,
2010; Kadouri et al., 2013). In vivo experiments with
predatory bacteria have established their safety and effi-
cacy at decreasing pathogen burden in mammalian mod-
els (Westergaard and Kramer, 1977; Shatzkes et al.,
2015, 2016; Boileau et al., 2016; Zurawski et al., 2017).
However, one concern is that the observed efficacy is
not a result of direct pathogen inhibition, but rather

indirect activation of the immune system in surrounding
tissues. Future studies assessing safety to the human
host and microbiome will shed light on the utility of this
approach.
Commensal organisms may be able to combat antibi-

otic resistance through inhibition of horizontal gene
transfer (HGT). Antibiotic resistance genes are often
found on mobile genetic elements like plasmids and
transposons, which travel to other bacteria through HGT.
Commensal microbes may be able to prevent this pro-
cess; a consortium of four anaerobic bacterial strains
can suppress mobilization of KPC, a common beta-lacta-
mase gene, from E. cloacae to K. pneumoniae in a
germ-free mouse model (Nudel et al., 2017).
These mechanisms, among others, may contribute to

the success seen using faecal microbiota transplants
(FMTs) for decolonization of ARB. FMT has been used
extensively for treatment of recurrent Clostridium difficile
infections with a remarkably high efficacy rate (85%;
Drekonja et al., 2015). FMT is thought to act by deliver-
ing commensals that (i) directly compete for niches with
C. difficile, (ii) convert primary bile acids, which are
required for C. difficile spore germination, into secondary
bile acids, and (iii) activate the immune system and help

Table 1. FMT decolonizes antibiotic-resistant bacteria from the human gut.

Report # Patients VRE CRE ESBL-E Others Results

Freedman, 2014 1 X 1/1 decolonized for at least 8 months
Singh, 2014 1 X 1/1 decolonized at 2 weeks
Stripling, 2015 1 X 1/1 reduced relative abundance and

no further VRE infections for 1 year
Crum-Cianflone, 2015 1 X X X 1/1 reduced MDRO colonization and no

episodes of sepsis for 2 years
Jang, 2014 1 X 0/1 decolonized at 3 months
Lombardo, 2015 (SER-109) 8 X 8/8 titers decreased > 2 fold at 4 weeks
Bilinski, 2016 1 X X 1/1 decolonized at 10 days
Lagier, 2015 1 X 1/1 decolonized at 7 days
Wei, 2015 5 X 5/5 decolonized of MRSA for 3 months
Eysenbach, 2016 9 X 9/9 decolonized at first time point

measured post-FMT
Dubberke, 2016 11 X 8/11 decolonized at last available

follow-up
Jouhten, 2016 8 X X X X 8/8 reduction in number and diversity

of antibiotic resistance genes
Millan, 2016 20 X X X 20/20 reduction in number and diversity

of antibiotic resistance genes
Garcia-Fernandez, 2016 1 X X 1/1 decolonized at 6 weeks
Sohn, 2016 3 X 0/3 decolonized for 3 months
Davido, 2017 8 X X 2/6 CRE decolonized at 1 month,

1/2 VRE decolonized at 3 months
Ponte, 2017 1 X 1/1 CRE decolonized at 15, 45,

and 100 days
Bilinski, 2017 20 X X X X 15/20 decolonized at 1 month
Total: 101 38/46 (83%) 45/57 (79%) 50/54 (93%) 39/39 (100%) 83/101 (82%) decolonized or

decreased in antibiotic resistance
genes at primary endpoint

VRE, Vancomycin Resistant Enterococeus; CRE, Carbapenem Resistant Enterobacteriaceae; ESBL-E, Extended Spectrum Beta Lactamase
Producing Enterobacteriaceae; FMT, fecal microbiota transplant.
Unless otherwise noted, patients were treated with fecal microbiota transplant. Some patients were co-colonized with multiple pathogens.
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maintain the gut barrier, reducing bacterial translocation
across the epithelial layer and preventing pseudomem-
branous colitis (Khoruts and Sadowsky, 2016).
Faecal microbiota transplant success in the context of

C. difficile has led to the reporting of many small case
studies assessing the efficacy of FMT for decolonization
of other ARB. To date, 18 studies with a total of 101
patients have been published that use FMT to decolo-
nize some of the most concerning ARB (Freedman,
2014; Jang et al., 2014; Singh et al., 2014; Lagier et al.,
2015; Lombardo, 2015; Nancy et al., 2015; Stripling
et al., 2015; Wei et al., 2015; Bili�nski et al., 2016; Dub-
berke et al., 2016; Garc�ıa-Fern�andez et al., 2016; Jouh-
ten et al., 2016; Millan et al., 2016; Smith, 2016; Sohn
et al., 2016; Bilinski et al., 2017; Davido et al., 2017;
Ponte et al., 2017). A pooled analysis of these data
shows that 82% of patients were found to be decolo-
nized or have a significantly reduced ARB load after
FMT (Table 1). Unfortunately, while patients with C. diffi-
cile infection are willing to accept FMT treatment,
patients who are simply colonized with ARB are asymp-
tomatic and therefore may be less willing to be treated
with FMT. Furthermore, scaling up of FMT manufacture
to treat the millions of people around the world colonized
with ARB would be incredibly challenging. In the future,
we expect that microbial therapeutics for ARB will more
closely resemble over-the-counter probiotics, but to bring
these to the clinic, we will need more detailed mechanis-
tic information on how FMT exerts its effect against
ARB. Fortunately, recent work has shed some light on
specific consortia that are able to decolonize ARB
(Caballero et al., 2017).

Future outlook: Microbial technology will likely
support traditional therapeutic approaches

Microbiome-based strategies for decreasing antibiotic
resistance are appealing for three reasons. First, unlike
antibiotic treatment, they do not disrupt the microbial
ecosystem, decreasing the risk of side-effects and devel-
opment of chronic issues associated with a disrupted
microbiome. Second, microbial approaches do not select
for additional antibiotic resistance genes, increasing the
life of available antibiotics. Finally, ARB decolonization
decreases transmission rates, preventing infection in
both the decolonized patient and the surrounding com-
munity.
However, there are a few obstacles to bringing micro-

bial approaches to the clinic. Although methods for fer-
mentation of large bacterial cultures for manufacturing
probiotics exist, culturing anaerobic bacteria at large
scales is likely to be significantly more challenging. Sec-
ond, the microbiome field is still quite young, and there
is still uncertainty about which mechanisms of ARB

elimination and which bacterial strains themselves will
be the safest and most effective. Therefore, the first
microbial therapeutics targeting ARB will likely be com-
plex communities derived from whole stool, such as
RBX2660 from Rebiotix, SER109 from Seres and FIN-
403 from Finch Therapeutics.
For now, it seems unlikely that microbial approaches

will be able to outcompete traditional small-molecule
antibiotic approaches for treating infections. Small-mole-
cule antibiotics are very inexpensive and, although resis-
tance is rising, are still remarkably efficacious. However,
as resistance becomes more prevalent, novel strategies
will be needed to increase the life of available antibiotics.
Along with other creative solutions, microbial approaches
that can treat infections and/or eradicate ARB pathogens
from the gut are likely to be valuable additions to our anti-
infective arsenal. While there are still many questions that
need to be answered before microbial products targeting
antibiotic resistance reach the clinic, we are excited for the
future of this very promising field of technology.
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