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ABSTRACT

Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing 
and understanding brain function, especially in the context of cognitive impairment (CI) 
and Alzheimer’s disease (AD). This study used voice data to distinguish between normal 
cognition and CI or Alzheimer’s disease dementia (ADD).
Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive 
decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were 
extracted using Mel-frequency cepstral coefficients and Chroma.
Results: A deep neural network (DNN) model showed promising performance, with an 
accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of 
about 82.0%±1.6% when evaluated against unseen test dataset.
Conclusions: Although results did not demonstrate the level of accuracy necessary for a 
definitive clinical tool, they provided a compelling proof-of-concept for the potential use 
of voice data in cognitive status assessment. DNN algorithms using voice offer a promising 
approach to early detection of AD. They could improve the accuracy and accessibility of 
diagnosis, ultimately leading to better outcomes for patients.

Keywords: Voice; Machine Learning; Artificial Intelligence; Alzheimer Disease; Phonetics

INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative disorder, is the leading cause of dementia 
worldwide.1 It impacts cognitive abilities, memory, and functional status, progressively 
eroding an individual’s quality of life. The World Health Organization estimated that over 50 
million people were living with dementia globally in 2020. As our global population ages, this 
number is projected to triple by 2050.2

Despite the high prevalence and severe impact of AD on individuals and society at large, 
definitive diagnosis often occurs late in disease progression when therapeutic interventions 
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are less effective. Traditional diagnostic methods for AD primarily include history taking, 
neurological examination, cognitive testing, and neuroimaging techniques such as magnetic 
resonance imaging or positron emission tomography scans.3,4 However, these methods have 
significant limitations: 1) they can be expensive and time-consuming; 2) some procedures 
such as lumbar puncture are invasive; 3) they often require specialized equipment not readily 
available in all healthcare settings; 4) these approaches might not be practical for early-stage 
or prodromal AD detection within communities.

In AD diagnostics, various biomarkers, including those derived from plasma, cerebrospinal 
fluid (CSF), and neuroimaging, have received significant attention. While plasma, CSF 
biomarkers, and neuroimaging provide direct insights into biological changes occurring in 
the brain, voice analysis offers a unique window into functional impacts of these changes. 
Together, these methods can provide a more comprehensive and multidimensional 
understanding of AD progression. Additionally, voice-based screening, as employed in our 
study, offers several distinct advantages in the context of AD diagnosis. Especially, voice 
analysis can be performed remotely, making it a viable option for widespread screening, 
particularly in underserved or remote areas.

However, voice features captured through advanced computational techniques may reveal 
subtle changes associated with cognitive decline that are not easily detectable through other 
biomarkers. These challenges underscore the need for innovative diagnostic approaches 
that can provide early detection of AD with higher accuracy but lower cost and complexity. 
Artificial intelligence (AI) offers one such promising avenue. AI algorithms have demonstrated 
significant potential across various medical fields by transforming raw data into valuable 
diagnostic insights. Among various biomarkers used for AI-based diagnosis of AD, including 
imaging data and genetic markers, recent research has suggested that changes in speech 
patterns might serve as an early sign of cognitive decline linked to AD.5,6 Speech is a complex 
task requiring various cognitive processes such as memory retrieval, attention control, and 
feedback mechanisms, all of which are affected by neurological conditions such as AD.

Alterations in speech patterns include changes in vocabulary usage complexity, semantic 
density, syntactic simplicity, speech tempo, and pronunciation clarity among others. 
Such changes can be captured through voice recordings.7 Harnessing vocal biomarkers 
offers potential benefits beyond clinical settings alone. Regular voice monitoring within 
communities could potentially increase awareness about AD risk earlier than before.8

Characteristics of voice regulated by cerebral control are hypothesized to differ 
between individuals with AD and healthy controls. These differences may arise due 
to neurodegenerative changes that AD imparts on brain structures involved in speech 
production, such as the cerebral cortex, cerebellum, thalamus, and basal ganglia.9-11 As these 
structures are compromised in AD patients,12 their impairment could manifest as observable 
changes in voice characteristics. Leveraging machine learning techniques to identify these 
subtle alterations in voice could enable early screening of AD.

This study aimed to develop a predictive AI algorithm capable of diagnosing AD using vocal 
biomarkers, an approach less invasive yet potentially more accessible than current diagnostic 
practices. The goal is to provide a screening tool for communities and clinicians to enable 
earlier detection, leading to improved patient outcomes through timely intervention.
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METHODS

Subjects and dataset
This study was approved by the Institutional Review Board of Chung-Ang University Hospital 
(registration No. 2022-015-447). The voice dataset contained 221 wav formatted recordings 
acquired at Chung-Ang University Hospital from February 24th, 2021 to March 18th, 2022. 
Voice data were obtained from recorded conversations between patients and examiners during 
a Clinical Dementia Rating (CDR) process. CDR assessments were conducted by 2 trained 
examiners. Recognizing that the CDR test could vary depending on the administrator and 
the method used, we took careful measures to standardize the assessment procedure. Audio 
files were not lossy or compressed, with a Linear 16 sample, a sample rate of 16,000 Hz, and a 
mono channel. Voices of subjects were manually extracted from the examiner for analysis.

In the dataset, the labeling decision for dementia conformed to probable dementia criteria 
suggested by the National Institute of Neurological and Communicative Disorders and 
Stroke and Alzheimer’s Disease and Related Disorders Association13 and the Diagnostic 
and Statistical Manual of Mental Disorders (DSM)-IV.14 Subjects were considered to have 
a mild cognitive impairment (MCI) if they met the following criteria: 1) intact function in 
activities of daily living, 2) presence of memory complaints, 3) objective cognitive impairment 
(CI; standard deviation [SD] below education- and age-adjusted norms) in more than one 
cognitive domain including memory on a comprehensive neuropsychological battery,15 4) a 
CDR of 0.5, and 5) a non-demented case according to the Diagnostic and DSM-IV criteria. 
Inclusion criteria for normal cognitions were as follows: 1) intact activities of daily living, and 
2) no abnormality (within 1.0 SD of education- and age-adjusted norms) on a comprehensive 
neuropsychological battery.15

This study enrolled 3 groups of subjects: 1) 52 subjects having subjective cognitive decline 
(SCD) with an average age of 72.5 years and an Mini-Mental State Examination (MMSE) score 
of 25.8; 2) 110 subjects having MCI with an average of 75.9 years and an MMSE score of 24.2; 
and 3) 59 subjects having Alzheimer’s disease dementia (ADD) with an average age of 78.3 
years and an MMSE score of 18.2 (Table 1). All voice data were anonymized. We obtained voice 
recordings from each participant through structured conversational tasks involving both the 
examiner and the participant. During these tasks, the conversation between the examiner 
and the participant was recorded and subsequently processed for speaker separation. Each 
conversational recording was split into multiple audio files, where voices of the examiner 
and the participant were separated. This process allowed us to obtain several distinct voice 
recordings from each participant. Voice recordings from different participants were not 
intermixed in training or test dataset. No part of any individual’s voice recordings used in the 
training dataset was included in the testing dataset.

The dataset shown in Table 2 was divided for predicting 2 main conditions: CI and ADD. 
The CI encompassed both MCI and ADD. For each condition, there were training and 
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Table 1. Characteristics of subjects
Variables No. of subjects Age MMSE
NC 52 72.51±9.23 25.75±2.80
MCI 110 75.86±7.05 24.15±3.07
ADD 59 78.34±6.95 18.18±3.29
MMSE: Mini-Mental State Examination, NC: normal cognition, MCI: mild cognitive impairment, ADD: Alzheimer’s 
disease dementia.



test datasets for both the condition itself and SCD. For CI prediction, the training dataset 
included 712 data and the test dataset included 128 data. The SCD group for this condition 
included 360 training data and 118 test data. For ADD prediction, the training dataset 
included 360 data and the test dataset included 73 data. The SCD group for this condition 
included 332 training data and 91 test data.

Deep neural networks (DNNs) for diagnostic classification
The study utilized Python programming language with several libraries including scikit-learn, 
librosa, numpy, scipy, and tensorflow for data processing and model building. The dataset 
comprised of audio files in .wav format classified into 2 categories: 1) those with CI including 
MCI and ADD (labelled as ‘abnl’); and 2) those with normal cognition (labelled as ‘nc’).

Firstly, we defined a function named ‘extract_features’ to extract Mel-frequency cepstral 
coefficients (MFCCs) and Chroma features from audio files using librosa library (librosa.
feature.mfcc() and librosa.feature.chroma_stft()). MFCCs were employed to capture spectral 
characteristics and provide a compact representation of the audio signal, while chroma features 
were used to capture tonal characteristics invariant to changes in timbre or articulation.

Data were loaded from 2 directories: one containing files of individuals with CI (‘abnl_
directory’) and another containing files of normal cognition (‘nl_directory’). Labels were 
assigned based on the directory from which each file was loaded.

Feature vectors were extracted for all audio files using the ‘extract_features’ function. The 
feature set (‘X’) and labels (‘y’) were split into a training set (70%) and a validation set (30%) 
using the train_test_split method from a scikit-learn library ensuring that the distribution 
of classes remained similar across both sets. A feed-forward neural network model was built 
using TensorFlow’s Keras API consisting of 4 layers: 1) 3 Dense layers with ‘ReLU’ activation 
function followed by ‘Dropout’ layers for regularization; and 2) and output layer using 
‘Softmax’ activation function suitable for multi-class classification problems. The model 
was compiled with ‘Adam’ optimizer with sparse categorical crossentropy loss function since 
our labels were integers rather than a one-hot encoded, accuracy metric used to evaluate 
performance during training. Model fitting involved 300 epochs with a batch size of 16 on 
training data while validating on validation set concurrently.

Performance evaluation included calculating loss & accuracy metrics on validation data after 
model fitting. These metrics provided an indication about how well our model generalized 
beyond training data. Predicted class labels were derived by choosing class having the highest 
probability in the ‘Softmax’ output for each instance in the validation set. We also evaluated 
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Table 2. Dataset of voice for deep neural network analysis
Variables Condition Dataset No. of data No. of subjects
Prediction of CI CI Training 712 149

Test 128 20
NC Training 360 42

Test 118 10
Prediction of ADD ADD Training 360 48

Test 73 11
NC Training 332 41

Test 91 11
CI: cognitive impairment (including mild cognitive impairment and Alzheimer’s disease dementia), ADD: 
Alzheimer’s disease dementia, NC: normal cognition.



our model against a separate test dataset following similar preprocessing steps as described 
above but without any involvement in the training process to ensure an unbiased assessment 
of the final trained model’s performance in terms of confusion matrix along with sensitivity 
& specificity calculations. In addition to its application in predicting CI, the same algorithm 
was employed to distinguish between individuals with normal cognition and those diagnosed 
with ADD.

RESULTS

Our AI algorithm aimed to predict CI and ADD using voice data. Performance metrics were 
computed for 2 distinct binary classification tasks: 1) differentiating between CI and normal 
cognition, and 2) distinguishing between ADD and normal cognition. These mean values 
were obtained through 10 trials to ensure robustness of results (Table 3).

The DNN showed a high level of accuracy in both training and test datasets for both 
conditions. It showed a slightly higher accuracy for ADD prediction than for CI prediction 
in the test dataset. The sensitivity, or true positive rate, was also comparable between the 
2 conditions, indicating that the model was able to correctly identify a high proportion of 
true cases for both CI and ADD. The specificity, or true negative rate, was higher for ADD 
prediction, suggesting that the model was particularly effective in correctly identifying non-
ADD cases.

The area under the curve, a comprehensive metric considering both sensitivity and specificity, 
was slightly higher for ADD prediction (0.78) than for CI prediction (0.71). This indicates that 
overall, the model performed slightly better for predicting ADD than for predicting CI. Fig. 1 
shows receiver operating characteristics of 5 trials of the 2 binary classifications.

DISCUSSION

Results of this study demonstrate the potential of using voice data and DNN analysis for 
predicting CI and ADD. Although our results did not demonstrate the level of accuracy 
necessary for a definitive clinical tool, they nevertheless provided a compelling proof-of-
concept for the potential use of voice data in cognitive status assessment. The DNN model, in 
particular, showed promising performance when distinguishing between SCD and CI or ADD.

One key advantage of using voice data is its non-invasive nature. If further refined and 
validated, this approach could enable regular monitoring of individuals at risk without 
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Table 3. Prediction of CI and ADD
Variables CI ADD
Training dataset

Accuracy 86.21±1.32 80.87±4.90
Test dataset

Accuracy 69.92±1.68 82.012±1.58
Sensitivity 72.89±5.29 73.01±8.02
Specificity 66.70±5.58 89.23±5.45
AUC 0.71±0.02 0.78±0.04

Values are presented as mean ± standard deviation.
CI: cognitive impairment, ADD: Alzheimer’s disease dementia, AUC: area under the curve.



requiring physical visits to healthcare facilities, a development that would be especially 
beneficial for those with limited access to healthcare resources.

Nevertheless, several challenges need to be addressed before such an application can become 
viable. First, incorporating the A/T/(N) classification could have provided additional insights, 
particularly for strengthening biomarker-based characterization of study groups. This aspect 
indeed represents a limitation in our research methodology. In future studies, we aim to 
integrate such biomarker-based classifications to enhance the comprehensiveness and 
applicability of our findings in the context of AD diagnostics. In addition, the accuracy of our 
model needs significant improvement before it can reliably distinguish between different 
cognitive statuses. This might involve incorporating more complex features into the model or 
fine-tuning the architecture of our DNN.

The training phase involved optimizing model parameters using various machine learning 
algorithms such as support vector machines, random forests, and DNNs. Each of these 
algorithms was evaluated for its performance in differentiating between SCD and CI or 
ADD (Appendix 1). Among these tested algorithms, the DNN demonstrated a superior 
performance in terms of accuracy, sensitivity, and specificity metrics across both tasks. This 
indicates that complex pattern recognition capabilities inherent to deep learning models are 
particularly effective in identifying subtle differences in voice data associated with cognitive 
status. Consequently, our final model was built using a DNN architecture optimized for this 
specific task.

Similar to our study, the Framingham Heart Study was previously conducted for detecting 
dementia using voice recordings with deep learning.16 However, our methodologies and 
classification approaches showed notable differences. In the Framingham Heart Study, there 
was a lack of separation between voices of participant and the examiner in recordings. That 
study acknowledged that each recording involved 2 speakers. However, that study did not 
isolate speaker-specific audio. In addition, models of that study processed the entire audio 
recording at once without performing detailed feature engineering to separate the speaker’s 
voices. Based on our experience with our model, it appears that not implementing speaker 
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Fig. 1. Receiver operating characteristic curve of deep neural network algorithm using voice data in predicting subjects with cognitive impairment (A) or 
Alzheimer’s disease dementia (B).



separation could pose significant challenges for AI training and result in a low predictive 
accuracy. This is a critical observation as it highlights the importance of speaker separation 
in voice analysis for dementia detection. This suggests that while speaker separation could be 
a valuable feature in future research, it was not a focus in the Framingham study. In contrast, 
our research concentrated on extracting and analyzing features from voice recordings using 
a deep learning model. The Framingham study, meanwhile, employed Long Short-Term 
Memory for time-series data analysis. It also used image-based (spectrogram) analysis with 
convolutional neural network, providing a distinct approach to data processing and analysis. 
Regarding classification, the Framingham study divided participants into 2 categories: 
normal cognition vs. dementia and non-demented vs. dementia. Our study, however, aimed 
to differentiate not just between normal cognition and dementia, but also included early 
stages of CI such as MCI. This distinction in classification targets enabled us to focus more 
on the spectrum of all CI, including early stages represented by MCI.

The control of voice characteristics such as pitch, formant frequency, and changes in fricative 
sounds relies on a combination of sensory feedback and feedforward mechanisms.17,18 This 
is particularly important considering the complexity of speech production and the need 
for real-time adjustments to maintain clarity and intelligibility. Sensory feedback involves 
monitoring the output of speech and making necessary adjustments based on what is heard. 
For example, if a speaker notices that his/her pitch is too high or low, he/she can adjust it 
in real time using sensory feedback. Similarly, changes in formant frequency—which affect 
the timbre or the quality of voice—can also be regulated through this process.19 On the 
other hand, feedforward control can predict outcomes of motor commands before sensory 
feedback is available.20,21 This predictive mechanism allows speakers to anticipate potential 
errors in speech production and make proactive corrections.

It is important to note that these processes involve various brain structures including cerebral 
cortex known to play a critical role in language comprehension and production. For example, 
the cerebellum is known for its role in motor coordination. The thalamus is involved in 
relaying sensory signals and basal ganglia are crucial for voluntary movements including 
speech articulation.9,10

Understanding these mechanisms not only provides insights into normal speech production, 
but also helps us comprehend how neurological conditions like AD might disrupt these 
processes and lead to observed alterations in voice characteristics.

However, traditional analysis methods for voice data are inherently limited by factors such as 
the need for standardization and the potential influence of confounding factors. The lack of 
standardization in voice data due to natural variations in speech across different individuals 
and influence of variables such as age, gender, and linguistic background is a significant 
issue.22 Furthermore, confounding factors such as background noise and recording quality can 
complicate the analysis process. However, these challenges may be mitigated by using DNN 
algorithms. Deep learning models are known for their ability to handle high-dimensional 
data and learn complex patterns from large datasets.23 By training on diverse examples under 
various conditions (e.g., different speakers or levels of noise), these models can learn to identify 
relevant features while disregarding irrelevant variations. Moreover, DNNs excel at automatically 
extracting useful features from raw data without explicit manual feature engineering, a process 
known as automatic feature learning or representation learning. This ability can be especially 
beneficial when dealing with complex and high-dimensional data such as voice recordings.
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Therefore, by employing DNN algorithms in our study, we aimed to overcome some limitations 
associated with traditional analysis methods. Our goal was to develop a more robust model capable 
of effectively distinguishing between SCD and CI or ADD using voice data despite potential 
confounding factors. Future research should continue exploring this approach with an aim to 
improve our diagnostic models using advanced machine learning techniques such as DNNs.

In this study, we extracted voice features using MFCCs and Chroma, both of which are 
widely used in speech and audio processing. MFCCs provide a compact representation of the 
spectral shape of an audio signal, making them particularly useful for tasks such as speech 
recognition and speaker identification.24 Derived from the Fourier transform of an audio 
signal mapped to the Mel scale, a perceptual scale that closely approximates human auditory 
system’s response, MFCCs can effectively capture important characteristics of a speech. The 
computation process involves several steps: calculating the power spectrum of an audio 
signal, warping this spectrum onto the Mel scale using triangular overlapping windows or 
filters, taking logarithms, and finally applying discrete cosine transform. This results in a 
set of coefficients that form a robust representation of the original audio signal. As changes 
in cerebral control due to AD may affect spectral characteristics captured by MFCCs,9 these 
features can potentially contribute to early detection.

Chroma features are another crucial class of audio features extensively used in music 
information retrieval and speech processing. They can capture tonal characteristics providing 
a representation invariant to changes in timbre and articulation.25 Originating from the 
music theory where ‘chroma’ refers to twelve different pitch classes within an octave, chroma 
features can map each frequency bin in an audio spectrogram onto one of twelve chroma 
bins corresponding to these pitch classes. This results in a compact representation capturing 
harmonic and melodic characteristics. Similar to the computation process for MFCCs, Chroma 
involves several steps: computing a spectrogram, mapping each frequency bin into one out 
twelve chroma bins representing pitch classes, and finally averaging or summing these bins over 
time to produce a single chroma vector for each frame.26 In our study, given that changes due AD 
may affect tonal aspects captured by Chroma,9 including Chroma as part our feature set could 
potentially improve our model’s performance. Given limitations in understanding the internal 
mechanisms of our algorithm, it was challenging to precisely identify which voice features, 
including MFCC or chroma, were frequently selected or given more weight in discriminating 
CIs from controls. Although these features are known to be valuable in voice analysis, the exact 
contribution of each feature and the mechanisms through which they enable the differentiation 
of dementia in our model remain unclear due to the opaque nature of deep learning algorithms. 
Future research and advancements in model interpretability might provide deeper insights into 
how these features contribute to the detection of CIs through voice analysis.

In conclusion, while our study did not achieve sufficient accuracy to propose an immediate 
clinical implementation, it provided an intriguing demonstration of how AI techniques applied 
to voice data might improve detection and monitoring capabilities in the field of cognitive health.

AVAILABILITY OF DATA AND MATERIAL

All data supporting this study are available from the corresponding author upon reasonable 
request.
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Appendix 1. Prediction of CI and ADD in the test dataset using random forest and support vector machine
Variables  Random forest Support vector machine

CI ADD CI ADD 
Accuracy 59.36±1.06 65.41±2.31 58.43±1.53 63.13±2.50
Sensitivity 67.81±2.49 60.32±2.97 62.82±4.73 59.22±8.34
Specificity 51.07±0.56 70.68±1.93 54.14±4.26 67.04±5.26

Values are presented as mean ± standard deviation. 
CI: cognitive impairment, ADD: Alzheimer’s disease dementia.

 26. Müller M, Ewert S. Chroma toolbox: Matlab implementations for extracting variants of Chroma-based 
audio features. In: Proceedings of the International Society for Music Information Retrieval Conference; 
2011 October 24–28; Miami. [place unknown]: International Society for Music Information Retrieval, 2011.
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