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Summary

Rheumatoid arthritis (RA) is a systemic inflammatory
autoimmune disease, characterized by chronic, ero-
sive polyarthritis and by the presence of various
autoantibodies in serum and synovial fluid. Since
rheumatoid factor (RF) was first described, a
number of other autoantibodies have been dis-
covered in RA patients. The autoantigens recog-
nized by these autoantibodies include cartilage
components, chaperones, enzymes, nuclear proteins

and citrullinated proteins. However, the clinical sig-
nificances and pathogenic roles of these antibodies
are largely unknown except for RF and anticitrulli-
nated protein antibodies (ACPAs), whose clinical
usefulness has been acknowledged due to their
acceptable sensitivities and specificities, and prog-
nostic values. This review presents and discusses
the current state of the art regarding RF and ACPA
in RA.

Introduction

Rheumatoid arthritis (RA) is the most common sys-

temic inflammatory autoimmune disease in which

joint synovium is primarily affected by a dysregu-

lated immune system. RA is typically associated

with serological evidence of systemic autoimmunity
as indicated by the presence of autoantibodies in

serum and synovial fluid. The first autoantibody in

RA, rheumatoid factor (RF), was described by

Waaler in 1940,1 and it was later found to be direc-

ted to the Fc region of IgG. Autoantigens targeted by

a number of autoantibodies subsequently found in

RA display a wide spectrum of cartilage compo-

nents, stress proteins, enzymes, nuclear proteins

and citrullinated proteins (Table 1), which demon-

strates that RA is not characterized by only one

autoreactivity to a single autoantigen but by

accumulated autoreactivities in both B and T

cells.2 The spectrum of these self-antigens and

immunologically relevant epitopes probably varies

during the disease course, and the set of autoanti-

gens in one individual may differ from that in

another.2 In 1993, Serre et al.3 identified filaggrin

as the target antigen of RA-specific anti-keratin

antibodies (AKAs). Subsequently, it has been

demonstrated that AKAs and other RA-specific auto-

antibodies known as anti-perinuclear factors (APFs)

and anti-Sa antibodies all recognize citrulline-con-

taining peptides/proteins as common antigenic

entity,4–6 and they are collectively termed as anti-

citrullinated protein antibodies (ACPAs). Currently,

only RF and ACPA are utilized in clinical practice

because of their diagnostic and prognostic values;

the latter, in particular, is highly specific for RA.7
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However, other antibodies may contribute to the

pathological processes of RA by immune complex

formation and complement fixation. The importance

of immune complex formation in the arthritogenic

potentials of autoantibodies has been shown in a

K/BxN mouse model, in which autoantibodies

against glucose-6-phosphate isomerase are key

molecular players in disease development.8 Thus,

the capacity of RF to enhance immune complex for-

mation by self-association9 or with other autoanti-

bodies10 may not only grant arthritogenicity to RF

itself but also potentiate the arthritogenicities of

other autoantibodies including ACPA. In this

review, we discuss RF and ACPA, the two most

remarkable autoantibodies in RA.

Rheumatoid factors

RFs are a family of autoantibodies directed to the Fc

portion of IgG. They are locally produced in RA by B

cells present in lymphoid follicles and germinal

center-like structures that develop in inflamed syno-

vium.11,12 IgM RFs are the major RF species in RA

and are detected in 60–80% of RA patients.13 RF has

been observed in many other autoimmune diseases,

such as, in systemic lupus erythematosus, mixed

connective tissue disease and primary Sjögren syn-

drome, as well as in non-autoimmune conditions,

such as in chronic infections and old age.13

However, RFs in RA patients are distinguished

from RFs in healthy individuals in that they exhibit

affinity maturation, whereas those in healthy individ-

uals are polyreactive and are of low affinity.14 These

observations support the concept that RFs are under

strict control to prevent the emergence of high-

affinity RF in normal subjects. RF specificity to RA

is increased at high titers (e.g. IgM RF> 50 IU/ml)

and with IgA isotypes.13,15,16 High titer RF and IgA

isotypes are also associated with radiologic erosion,

extra-articular manifestations and thus, poorer out-

comes.13,16–18 The association between high titer RF

status and a poor prognosis indicates that RF may

have a role in the pathogenesis of RA. Furthermore,

RF has proven to be the most useful disease marker

of RA, as included in the American College of
Rheumatology classification criteria for RA.19

Normally, transient production of low-affinity IgM
RF is regularly induced by immune complexes20

and polyclonal B-cell activators, such as bacterial
lipopolysaccharides and Epstein-Barr virus.21,22

The physiological roles of RFs under normal condi-
tions have been shown (i) to enhance immune com-
plex clearance by increasing its avidity and size,
(ii) to help B cells uptake immune complex, and
thereby, efficiently present antigens to T cells and
(iii) to facilitate complement fixation by binding to

IgG containing immune complexes.23–25 High-
affinity and high-titer RFs in RA synovial fluid are
believed to exert such functions in a pathogenic
manner and thus to potentiate inflammation and
antigen trapping in joints. However, there has
been no clear evidence that RFs are involved in
the initial events triggering the disease process of
RA rather than they themselves are triggered by RA.

Accumulated somatic mutations and the presence
of isotype switching indicate that RF production is
T-cell driven in RA. Although T cells infiltrate RA
synovium26 and contain autoreactive clones,27

they have been shown to be polyclonal and lack
specificity for any particular autoantigen.27,28 To
date, the T-cell clones reactive with autologous
IgG have not been detected in RA patients. The abil-
ity of RF expressing B cells to take up immune com-
plexes and to present trapped antigens to T cells
may enable these cells to bypass the need for spe-
cific T cell help and ultimately lead to emergence of
autoreactive T cells that can trigger RF synthesis in
the absence of an external antigen.29

Antibodies to citrullinated protein

The ACPAs are a group of new autoantibodies,
which are found in 70–90% of RA patients and
have high disease specificity (90–95%).7,30

Accordingly, they are rarely found in other diseases
or in healthy individuals. In general, ACPA has
better diagnostic value than RF in terms of sensitivity
and specificity. As with RF, they are associated with
more erosive RA.31–33 Although ACPAs are also

Table 1 Well-characterized autoantigens recognized in RA

Cartilage components Type-II collagen (native and denatured),

Stress proteins Microbial Hsp65, Bip

Enzymes a-enolase, glucose-6-phosphate isomerase, calpastatin

Nuclear proteins RA33/hnRNP A2

Citrullinated proteins Filaggrin, fibrin, fibrinogen, vimentin, types I and II collagens, a-enolase, synthetic cyclic

citrullinated peptides
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referred to as antiperinuclear factor, antikeratin,
antifilaggrin and anticyclic citrullinated peptide anti-
bodies depending on the antigens used for their
detection, citrulline is a common critical constituent
of the antigenic determinant of these antibodies, as
its absence leads to a lack of recognition by
antibodies.5,6

Citrulline is a non-standard amino acid generated
by the posttranslational modification of arginine by
peptidylarginine deiminase (PADI) enzymes during
a variety of biologic processes, which include
inflammation. Because PADI mediates citrullination
of arginine in the presence of sufficient concentra-
tions of Ca2+, apoptotic granulocytes create an
environment for PADI activation, in which cytosolic
Ca2+ level rises due to caspase-mediated plasma
membrane Ca2+ pump cleavage.34 Therefore,
when the apoptotic cells are not cleared efficiently
as in an inflammatory environment, intracellular
citrullinated proteins and/or PADI are released into
the extracellular space, where the former are taken
up by antigen-presenting cells and the latter induces
the citrullination of synovial proteins. ACPAs are
locally produced in RA joints, where proteins are
citrullinated during the inflammatory process.35

The major citrullinated protein in the joint was
found to be fibrin.36 Additionally, various other
synovial and non-synovial proteins (type II collagen,
vimentin, nuclear proteins and stress proteins) have
been shown to be targets of citrullination in vivo.37–40

Immune complex formation between ACPAs and
citrullinated proteins and subsequent complement
fixation were recently demonstrated to occur in RA
synovium and are thought to perpetuate RA synovial
inflammation, causing a vicious cycle.41

Although protein citrullination is a prerequisite to
ACPA production, it does not always induce APCA
production. For example, in collagen-induced
arthritis model, ACPA production was not observed
despite abundant citrullinated proteins in the
inflamed joints.42 Therefore, APCA production is
thought to be limited to subjects with certain genetic
backgrounds, among which RA-shared epitope (SE)
located in the HLA-DRB1 gene is the most dominant
genetic factor.43–45 SE, a common region with
highly similar sequences among certain HLA-DR
class II alleles, is the genetic factor best known to
be associated with RA.46 MHC class II molecules
expressing SE can bind and present citrullinated
peptides to T cells. Furthermore, it has been
shown that conversion of arginine to citrulline in
the position that interacts with SE increases
peptide–MHC binding affinity.47 The Dutch obser-
vation that SE-encoding HLA alleles are only
associated with ACPA-positive RA but not with
ACPA-negative RA indicates that these HLA alleles

predispose for ACPA positivity rather than for RA.48

The same relationship between SE alleles and ACPA
with respect to RA susceptibility has been confirmed
in RA cohorts of North American and Swedish
ancestries.49,50 A subsequent finding that shows a
gene–dose effect between SE and ACPA positivity
among RA patients further supports that SE predis-
poses for ACPA production.49,51

However, the relationship between SE alleles and
ACPA should be interpreted in the context of genetic
background, because RA susceptibility and/or dis-
ease severity conferred by SE might be modified
by the presence of other alleles that are influenced
by ethnicity; for example, lack of the association
between SE status and ACPA has been reported in
Chinese RA patients.52 Overall, the SE effect on RA
must be complex due to several reasons: (i) it exerts
indirect effect via ACPA production, (ii) the alleles
involve both disease susceptibility and severity,
(iii) ethnicity and/or environmental factors are criti-
cal determinants for these alleles to manifest as a risk
factor for RA susceptibility, RA severity and/or ACPA
positivity.33,48–54 Studies utilizing RA patients of
North American and several European ancestries
have found that SE alleles are not associated with
RA in ACPA negative patients, indicating that these
alleles are risk factors for ACPA rather than RA.48–50

However, the greatly increased odds ratio for RA
susceptibility and radiological progression in
individuals with the combination of SE gene carriage
and ACPA than individuals with either of them sug-
gests a synergistic interaction of SE and ACPA.43,45

Thus, it remains to be determined, particularly in
conjunction with certain ethnic backgrounds,
whether SE alleles have any additional roles in RA
development and radiological progression rather
than simply a risk factor for ACPA positivity.

Smoking has been found to be a risk factor for
ACPA positive RA only in SE-positive subjects in
European studies that employed Swedish and
Dutch RA cohorts.50,54 Supported by its biological
function that generates antigenic stimuli for autoan-
tibody production by inducing PADI4 expression in
bronchial macrophages to citrullinate lung pro-
teins,50,55 smoking is considered to be an important
environmental risk factor for ACPA production in
susceptible individuals. However, in a more recent
study with three large North American RA cohorts,
they observed only a weak gene–environmental
interaction between SE and smoking in one of the
three cohorts,51 suggesting that other environmental
factors are associated with ACPA and RA in these
populations.

Although SE alleles are the most well-known
genetic risk factor for ACPA positivity, recent genetic
analyses have found non-SE-HLA and non-HLA

Autoantibodies in rheumatoid arthritis 141



alleles to predispose for the presence of ACPA, for
example 1858C/T allele polymorphism of PTPN22,
several single nucleotide polymorphisms of PADI4,
158V/F polymorphism of Fc gamma receptor IIIA
gene and others.52–62 In the meantime, there are
not only predisposing factors for ACPA production
but also anti-predisposing factors as well, most nota-
bly HLA-DR3.63,64 Interestingly, HLA-DR3 is also
known to be a RA susceptibility gene and predis-
poses for ACPA negative RA.63,64 The net result of
complex interactions between predisposing vs. anti-
predisposing genes is thought to determine the final
consequence. Studies based on genome-wide scans
to uncover other unknown genetic factors are
underway.

As with RF, the onset of ACPA positivity and the
onset of RA do not always coincide; in some
patients, ACPA begins to rise far earlier than the
RA symptom onset whereas in others, ACPA sero-
conversion occurs after RA onset.60 Histologic stud-
ies have demonstrated extensive synovitis in
clinically uninflamed joints,65 suggesting that a pre-
clinical or asymptomatic phase of RA exists. It is
unknown whether ACPA and RF precede even the
preclinical stage or vice versa. However, the finding
that ACPA precedes up to 9 years prior to RA
onset66,67 suggests that the production of these anti-
bodies may be the earliest events in the disease pro-
cess. Since ACPAs appear early during the course of
RA, or even during the preclinical stage,66–68 their
detection is of major interest regarding the identifi-
cation of RA among recent arthritides. Furthermore,
their prognostic values may lead to early aggressive
treatment to prevent irreversible joint damage.

Relations between RF and ACPA
in RA

Both RF and ACPAs are present during
the preclinical stage

It has been demonstrated in studies that retrospec-
tively utilized pre-clinical serum samples that RF
and ACPAs are present in the sera of RA patients
months to years prior to disease onset.66,67 These
studies showed that the risk of RA development is
highest when RFs and ACPAs are present in con-
junction. The titers of autoantibodies increased as
disease onset was approached and most of the neg-
ative to positive sero-conversions occur within
3 years prior to the symptoms onset.67 However,
in certain patients, sero-conversion for either one
of the two antibodies continues to occur after RA
onset,60,67 most likely within the first few years
after disease onset60 and the sensitivity and

specificity of assays reach a plateau for established
RA patients. Because the assays for the autoantibo-
dies were performed on blood samples of only those
who developed RA, prospective studies are
required to assess the estimated risk of these
antibodies.

RF and ACPAs are associated with
different clinical features of RA

It is well-known that the extra-articular manifesta-
tions of RA are associated with the presence of RF,
but this is not the case for ACPA69,70 although both
ACPAs and RFs are associated with more destructive
joint pathology. It was demonstrated recently that
citrullination occurs in the lung tissues of RA
patients with interstitial lung disease (ILD) and in
those of idiopathic ILD patients.71 However, ACPA
response was observed in only RA patients.
Interestingly, citrullination was found to be mainly
localized in intracellular spaces, particularly in
macrophages in both groups. These observations
raise fundamental questions regarding: (i) whether
pulmonary or extra-articular citrullination contri-
butes to ACPA response in RA patients, (ii) whether
ACPA is involved in the lung pathology of RA-
associated ILD and (iii) whether ACPAs produced
against synovial proteins have the same immunolog-
ical response against citrullinated proteins in the
lungs as in joints.

RFs and ACPAs are independently
associated with joint erosion

RF, ACPA and shared epitope alleles have been sug-
gested to be associated with aggressive RA pheno-
types in prospective studies. RF is an established
severity factor for RA, and recent studies have con-
sistently shown an association between ACPA and
radiological erosion.31–33 Several studies have
shown that RF and ACPA are independent risk fac-
tors of joint erosion.69,72 To address whether the
associations between these factors and radiological
erosion are independent of one another, Mewar
et al.73 evaluated associations between radiological
outcomes and RF, ACPA and SE status simulta-
neously in longstanding UK RA patients. They
found independent associations of both ACPA and
RF with erosion, an association between SE alleles
and erosion in the RF negative patients, and an asso-
ciation between ACPA status and SE alleles with a
gene–dose effect. These observations indicate that
the effect of SE may be due to an association with
ACPA. However, as mentioned above, this result
should be interpreted in the context of a genetic
background.
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RF decreases more than ACPA during
RA treatment

Studies that have evaluated RF titers before and after
infliximab therapy have reported a significant
decrease in RF levels.74–76 However, ACPA results
during anti-TNF-a therapy are inconsistent. After
rituximab therapy, ACPA and RF were found to
decrease significantly in treatment responsive
patients only, and titers were found to return to pre-
vious levels with relapse.77

Conclusions

RF and ACPA are two most remarkable autoantibo-
dies in RA and provide different clinical and patho-
physiological information. In general, ACPAs are a
better diagnostic guide than RF due to their higher
sensitivity and specificity for RA. Both RF and ACPA
are poor prognostic factors of joint destruction,
while RF is also associated with extra-articular man-
ifestations. RFs in RA patients are of high affinity and
high titer, which indicates that RF may contribute to
disease perpetuation by potentiating immune com-
plex formation and complement fixation. During
inflammation, intracellular citrullinated proteins
and PADI are released into the extracellular space
to provoke ACPA response or further citrullinate
synovial proteins. Smoking is thought to be one of
such environmental factors that led to inflammation
and protein citrullination in vivo. The current
hypothesis is that genetically susceptible individ-
uals, most notably SE carriers, produce ACPAs
against citrullinated proteins, form immune complex
in joints with the help of RF and ultimately develop
RA. Furthermore, the responses of these two antibo-
dies to treatment vary, which reflects their different
mechanisms of involvement in the pathogenesis
of RA.
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