
Contents lists available at ScienceDirect

Physics and Imaging in Radiation Oncology

journal homepage: www.elsevier.com/locate/phro

Original Research Article

Changes in apparent diffusion coefficient radiomics features during dose-
painted radiotherapy and high dose rate brachytherapy for prostate cancer
Sangjune Laurence Leea,b, Jenny Leea,b, Tim Craiga,b, Alejandro Berlina,b, Peter Chunga,b,
Cynthia Ménarda,b,c, Warren D. Foltza,b,⁎

a Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
b Department of Radiation Oncology, University of Toronto, Toronto, Canada
c Centre de Recherche du Centre Hospitalier de l Université de Montréal (CRCHUM), Montréal, Canada

A R T I C L E I N F O

Keywords:
Diffusion-weighted MRI
Apparent diffusion coefficient
Radiomics
Prostate cancer
Dose-painted radiotherapy
High dose rate brachytherapy

A B S T R A C T

Background and purpose: Dose escalation has improved cancer outcomes for patients with localized prostate
cancer. Targeting subprostatic tumor regions for dose intensification may further improve outcomes. Apparent
Diffusion Coefficient (ADC) maps may enable early radiation response assessment and dose adaptation. This
study was a proof-of-principle investigation of early changes in ADC radiomics features for patients undergoing
radiotherapy with dose escalation to the gross tumor volume (GTV).
Materials and methods: Fifty-nine patients were enrolled on a prospective tumor dose-escalation trial. Multi-
parametric MRI was performed at baseline and week six, corresponding to the time of peak ADC change. GTV
and prostate contours were deformably registered between baseline and week six T2-weighted images, and
applied to ADC maps, to account for diminished image contrast post-EBRT and possible differences in prostate
gland volume, shape, and orientation. A total of 101 radiomics features were tested for significant change post-
EBRT using two-tailed Student’s t-test. All ADC features of the prostate and GTV volumes were correlated using
Pearson’s coefficient (p < 0.00008, based on Bonferroni correction).
Results: ADC feature extraction was insensitive to b = 0 s/mm2 exclusion, and to gradient non-linearity bias.
GTV presented predominant changes in first-order features, particularly 10Percentile, and prostate volumes
presented predominant changes in second-order features. Changes in both first and second-order features of GTV
and prostate ROIs were strongly correlated.
Conclusions: Our data confirmed significant changes in numerous GTV and prostate features assessed from ADC
and T2-weighted images during radiotherapy; all of which may be potential biomarkers of early radiation re-
sponse.

1. Introduction

Despite technical improvements to external beam radiation therapy
(EBRT), 15–30% of patients with intermediate to high risk localized
prostate cancer develop disease recurrence [1]. Targeting subprostatic
regions of higher tumor burden for dose intensification to an imaging
defined gross tumor volume (GTV) could improve tumor control
probability and reduce dose to organs-at-risk [2].

PIRADS version-2 (v-2) criteria provide standardized diagnostic
guidelines for GTV identification and scoring from MR images [3],
primarily based on signal features in T2-weighted (T2w) images and
apparent diffusion coefficient (ADC) maps derived from diffusion-

weighted images (DWI). Compared to PIRADS v-2 criteria, radiomics
applied to multi-parametric MR images can improve the automated
detection, localization, and grading of prostate tumor [4–6]. Applied to
radiotherapy, radiomics analysis of pretreatment multi-parametric MR
images can predict for biochemical recurrence [7], and rectal wall
toxicity [8], and have been used to generate focal treatment plans when
combined with MRI-to-CT deformable co-registration [9].

Radiomics may also improve on current use of first-order ADC
metrics as early radiation response biomarkers which may then guide
dose adaptation [10,11]. Response assessment has historically tracked
changes in mean GTV ADC post-EBRT, based on a consensus position
that prostate tumor ADC is inversely related to tumor cellularity
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[12–14]. Our own data identified week six as the time of peak change in
prostate tumor ADC [11]. This study also noted a trend towards
homogenization of ADC across the tumor and zonal regions post-EBRT,
which may be reflected in textural features and variance metrics in
whole prostate regions-of-interest. Potentially, whole prostate radio-
mics metrics could provide a surrogate of GTV response, without need
for computationally-intensive deformable registration in post-EBRT
cases when the GTV is no longer apparent.

This study is a proof-of-principle investigation of early changes in
ADC radiomics features for patients undergoing radiotherapy.
Methodology is presented to assess prostate gland and gross tumor
volume (GTV) features in PIRADS v-2 compliant T2-weighted images
and ADC maps between baseline and week six. This methodology in-
cludes deformable registration between time-points of T2-weighted
image sets and GTVs applied to ADC maps, to account for image con-
trast homogenization post-EBRT. Features presenting significant dif-
ferences post-EBRT were extracted, plus prostate and GTV features
were correlated to test for inter-predictive value.

2. Materials and methods

Between November 2012 and August 2016, patients with localized
prostate cancer were enrolled on an institutionally-approved pro-
spective tumor dose-escalation trial, based on either simultaneous in-
tegrated boost (SIB) or high dose rate brachytherapy boost (HDRB) at
the discretion of the patient and their treating physician. All patients
received 76 Gy in 38 fractions delivered to the prostate gland using
volume modulated arc therapy (VMAT). SIB arm patients received an
additional 19 Gy to the GTV. HDRB arm patients received 10 Gy in a
single fraction to the GTV the week prior to EBRT initiation.

2.1. MRI protocol

Image-guided confirmatory biopsy and fiducial marker placement
was performed at baseline prior to EBRT, and follow-up scanning was
performed during week six of EBRT. MR images were acquired using a
3T Verio (Siemens Medical Systems, Erlangen, DE) with VQ gradients
(40 mT/m peak amplitude; 200 T/m/s peak slew rate), with a four-
channel phased-array surface coil placed anterior to the pelvis in
combination with a two channel endorectal coil (Hologic Inc. Bedford,
MA). Pulse sequence details are provided as Supplementary Material.

2.2. Gradient non-linearity bias

The superior/inferior (S/I) offset of the central slice through the
dominant lesion from MRI system isocenter was tracked at each time-
point, because ADC bias from gradient non-linearity approaches 5% at
9 cm S/I offsets from isocenter [15]. Across all patients, the absolute
offset of the central slice through the dominant tumor from magnet
isocenter was 35 ± 28 mm at baseline (136 mm max), and
31 ± 24 mm at week six (83 mm max). The mean and standard de-
viation difference in slice offset between time-points was 33 ± 23 mm
(93 mm max).

Three patients presented with absolute offsets of nine cm or greater
at baseline or week six, which is an offset consistent with 5% ADC bias.
The slice offset differences between time-points for these patients were
29, 52, and 68 mm. Exclusion of these three patients had minimal effect
on the sets of extracted radiomics features.

2.3. Image analysis

ADC maps with and without b = 0 s/mm2 DWI were analyzed be-
cause not all scanners and platforms can generate PIRADS v-2 com-
pliant ADC maps with lowest b-value of 50–100 s/mm2, and because
features which are consistently significant may be more robust response
metrics. The ADC maps including b = 0 s/mm2 were derived in-line,

and the PIRADS v-2 compliant ADC maps excluding b = 0 s/mm2 dif-
fusion-weighted images were derived using Matlab (Mathworks, Natick,
MA), via weighted least squares regression to: Log(S(b)/S
(bmin)) = −(b− bmin)* ADC + c, where bmin denotes the lowest b-value
used for the regression and c is an arbitrary baseline. Weightings were
proportional to the inverse of the signal variance. ADC accuracy and
signal-to-noise adequacy for this protocol at b = 1000 s/mm2 has been
confirmed [16].

2.4. Tumor identification

Tumors were identified according to PIRADS v-2 parameters on
treatment planning system (Pinnacle). Delineation was performed
manually by expert radiation oncologists (CM, PC) to encompass all
suspicious voxels on multiparametric MRI. In cases with multiple le-
sions, boost was applied to all lesions.

2.5. Deformable registration

Deformable registration between baseline and week six image sets
and segmented volumes was performed to increase robustness to pos-
sible intra-scan motion, variations in prostate gland volume, shape, and
orientation between imaging time-points [17,18], and loss of intra-
prostatic image contrast post-EBRT [11]. Prostate boundaries and at
least three common points were contoured on baseline and week six T2-
weighted images, using MIPAV software (NIH, Bethesda, MD). The
points provided an initial rigid alignment, and MORFEUS [19], a bio-
mechanical-based deformable registration technique, computed dis-
placement from baseline to the week six T2w GTV guided by the
prostate surface. The deformable registration accuracy was measured
by target registration signed error (TRE), calculated from the dis-
placements between the observed and the MORFEUS-predicted point
coordinates.

GTVs were drawn on baseline T2-weighted images, guided by
characteristic tumor hypointensity in pre-treatment ADC maps, and
then deformably registered to week six T2-weighted images. The
baseline and week six GTVs were then applied to their corresponding
ADC maps using MIPAV, and manually corrected as deemed necessary
between ADC and T2-weighted images, to account for routine ADC
distortion and inter-acquisition motion [13]. The extent of manual
correction was quantified by calculation of the shift in Centre-of-Mass
of each GTV using MIPAV.

Fig. 1 presents representative T2-weighted images, ADC maps, and
GTV at each time point. Across all sets, TRE was calculated from 185
points corresponding to fiducial markers and/or natural landmarks. The
average and standard deviation TRE was 0.7 ± 3.8 mm,
0.2 ± 2.9 mm, and 0.1 ± 6.9 mm in the LR, AP and SI directions re-
spectively. The average magnitude of error vector was 4 ± 7 mm.
Manual corrections of GTVs applied to ADC images from T2-weighted
images were performed in 35 GTVs at baseline, and in 35 GTVs at week
six. The mean and standard deviation vector shifts in GTV centres-of-
mass were 2.3 ± 1.6 mm. Twenty vector shifts were greater than
3 mm, and eleven vector shifts were greater than 4 mm. In some cases,
these GTV shifts were corrections from partially outside of the prostate
gland or between zonal regions.

2.6. Radiomics feature extraction

Radiomics analysis used the open-source pyradiomics package [20],
customized for feature extraction from GTV and prostate ROIs applied
to baseline and week six ADC maps, and corresponding T2-weighted
images. A total 101 radiomics features were extracted, which comprised
the available pyradiomics feature set, excluding general image-speci-
fying features which were not meaningful for signal characterization
(e.g. BoundingBox, EnabledImageTypes; GeneralSettings; ImageHash;
ImageSpacing; MaskHash; Version).
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2.7. Statistical analysis

Feature values were compared using two-tailed Student’s t-test in
Matlab, first between SIB and HDRB cohorts at baseline and week 6,
and then between baseline and week 6 time-points using the pooled SIB
and HDRB patient cohort. Correlations between the prostate and GTV
feature values at baseline, week six, and their difference, were in-
vestigated using Pearson’s correlation coefficient. These correlations
were performed as part of a hierarchical clustering analysis (cluster-
gram function, Matlab). In total, each feature was compared 603 times,
comprised of two t-tests between SIB versus HDRB cohort values at
baseline and at week 6; one t-test between baseline and week 6 for the
pooled cohort values changes; and 600 comparisons from the hier-
archical clustering analysis. For example, each baseline GTV ADC fea-
ture was correlated with 100 baseline, week six, and difference features
for both ADC and T2w image sets. The corresponding p-value for sig-
nificance is 0.00008 based on Bonferroni correction.

Prostate versus prostate, and GTV versus GTV feature correlations
were not calculated because of highly similar contoured volumes.
B = 0 s/mm2-excluded ADC maps were not considered for prostate
versus GTV feature comparison, because prostate ROIs copied from T2-
weighted images sometimes encompassed low signal-to-noise regions
within which ADC values were set to zero by the custom fitting algo-
rithm.

3. Results

Patient characteristics for each arm are summarized in Table 1.
Seventy-seven tumors were identified across the cohort of 59 patients.
Single tumors were identified in 45 patients, and 32 tumors were
identified in fourteen patients. A single patient was processed with four
GTVs, two patients were processed with three GTVs, and eleven

patients were processed with two GTVs.

3.1. Feature extraction from T2-weighted images

No significant differences in baseline or week six T2-weighted fea-
tures were noted between SIB and HDRB arms. No features changed for
GTVs applied to T2-weighted images, including tumor volumes (base-
line: 2.2 ± 3.7 cm3; week six: 1.9 ± 3.1 cm3; p = 0.23). Seven fea-
tures in T2-weighted images changed in whole prostate ROIs applied to
T2-weighted images, of which only a reduction in the sphericity feature
from 0.79 ± 0.05 to 0.72 ± 0.11 was highly significant.

Fig. 1. T2-weighted images and ADC maps from four
patients at baseline (left) and week six (right). These
images emphasize the need for deformable registra-
tion, because of loss of prostate-to-tumor contrast
post-EBRT and shifts in prostate orientation between
time-points. Routine distortion in diffusion-weighted
images compared to T2-weighted images motivates
additional correction of GTVs applied to ADC maps.

Table 1
Summary of patient characteristics. Age and tumor volume are presented as
mean ± 2 standard deviations.

SIB HDRB

No. of patients 29 30
Age (years) 70 ± 7 68 ± 6
Tumor vol. (cm3) 2.2 ± 2.0 2.1 ± 1.4

Gleason score
3 + 3 2 2
3 + 4 18 21
4 + 3 8 4
4 + 4 1 3

T Stage
1c 10 12
2a 15 11
2b 1 3
2c 0 3
3a 3 1
PSA (ng/ml)
≤10 24 20
> 10 5 10
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3.2. Feature extraction from GTV ADC

No significant differences in baseline or week six ADC features were
noted between SIB and HDRB arms. With SIB and HDRB arms pooled,
significant GTV ADC feature changes between baseline and week six are
presented in Table 2. GTV ROIs presented with significant changes in
32 and 17 features for ADC without and with b = 0 s/mm2 exclusion,
but the number of highly significant features (bold-face in Table 2)
reduced from 17 to four with b = 0 s/mm2 exclusion. The primary ef-
fect of b = 0 s/mm2 exclusion appeared to be a decrease in absolute
ADC metrics, and an increase in ADC variance metrics.

3.3. Feature extraction from prostate ADC

Prostate ROIs presented with changes in 40 and 19 features for ADC
without and with b = 0 s/mm2 exclusion. Eighteen of a maximum
nineteen significantly different ADC features were common between b-
value sets. The predominant prostate ADC feature changes between
baseline and week six are presented in Table 3.

3.4. Prostate/GTV feature correlations

A large number of correlations between GTV and prostate features
in T2-weighted images and ADC maps at baseline and week 6 time-
points are summarized in Table 4. The twenty strongest of the corre-
lations between ADC feature changes in GTV and prostate volumes
post-EBRT are summarized in Table 5, with dominant representation
from first-order statistics (e.g. median and 90Percentile for prostate;
10Percentile and Mean for GTV) and textural features from the Gray
Level Size Zone Matrix class (e.g. Zone Variance for Prostate; Low Gray
Level Zone Emphasis for GTV). The corresponding clustergram is pre-
sented in Supplementary Material.

4. Discussion

Methodology was presented for assessing early changes in GTV and
prostate radiomics features of ADC maps and T2w images for prostate

cancer patients treated with radical radiotherapy. Deformable regis-
tration enabled propagation of GTV and prostate volumes from baseline
and week six, when intra-prostatic image contrast is reduced and
prostate shape, orientation, and volume may differ. A manual correc-
tion of the GTVs applied to ADC maps was then applied as deemed
necessary to compensate for routine distortion in diffusion-weighted
single-shot echo-planar images [16], and inter-scan motion. Radiomics
analysis then identified a large set of GTV and prostate features which
demonstrated early changes that may inform outcomes.

Numerous changes in ADC features in prostate and GTV volumes
were presented. The prostate ADC histogram showed non-significant
changes to the percentile histogram features, but standard deviation
metrics reduced. Consistently, our prior results presented no significant
change in the prostate ADC mean [11]. The ADC histograms of the GTV
presented with a dominant increase in the 10Percentile feature, smaller
increase in ADC mean, and equivalent high-percentile features. These
results are consistent with consensus position that prostate tumor ADC
is related inversely to cellular density [12–14]. The GTV also presented
with reduced deviation/variances during treatment, as reported by
features including homogeneity, entropy, and contrast. Our prior data
also demonstrated that the effect of EBRT is a trend towards homo-
genization of zonal and tumor mean ADC values [11]. This finding is
fully consistent with the identification of predominant variance and
textural feature changes within the prostate gland post-EBRT (Tables 3
and 5).

Of interest is the value of zone-naïve prostate features instead of
GTV features for assessment of treatment response, because a prostate-
focused analysis would allow for stream-lined work-flow without need
for time- and computationally-intensive deformable registration.
Deformable registration may be required for a GTV-focused analysis
given poorly visible prostate in post-EBRT MR images, as per the ex-
amples in Fig. 1. Out of the numerous correlating features noted in
Table 4, of particular interest were the 61 correlations between ADC
feature changes in GTV and prostate volumes. ADC is a broadly ac-
cepted biomarker of tumor response post-EBRT, unlike T2 which
changes predominantly in the peripheral zone rather than in the central
gland or GTV [11]. A very large number of correlations were also noted

Table 2
Most significantly different radiomics features for GTV ADC (mean ± 2σ). Bold-face denotes p < 1e−07. The symbols * and ** denote units of 10−6 mm2/s and
(10−6 mm2/s)2. The remaining features are dimensionless.

b = 0 s/mm2 included b = 0 s/mm2 excluded

Feature Baseline Week Six Feature Baseline Week Six

10Percentile* 825 ± 360 1100 ± 323 10Percentile* 760 ± 459 1077 ± 392
DifferenceEntropy 3.99 ± 0.57 3.58 ± 0.63 SizeZoneNonUniformityNormalized 0.47 ± 0.14 0.39 ± 0.13
Mean* 1132 ± 387 1334 ± 265 SmallAreaEmphasis 0.71 ± 0.10 0.65 ± 0.12
DifferenceVariance 36 ± 38 18 ± 17 InterquartileRange 358 ± 223 253 ± 152
MeanAbsoluteDeviation* 202 ± 93 150 ± 78 Median* 1077 ± 542 1312 ± 359
Median* 1110 ± 426 1325 ± 271 Mean* 1096 ± 501 1316 ± 346
RobustMeanAbsoluteDeviation* 144 ± 75 104 ± 59 InverseVariance 0.17 ± 0.09 0.22 ± 0.09
DifferenceAverage 6.8 ± 3.6 5.0 ± 2.4 MeanAbsoluteDeviation* 213 ± 132 157 ± 88
Interquartile Range* 347 ± 190 248 ± 150 Difference Average 7.1 ± 4.7 5.2 ± 2.7
RootMeanSquared* 1161 ± 381 1349 ± 259 RobustMeanAbsoluteDeviation* 153 ± 128 106 ± 61
SmallAreaEmphasis 0.71 ± 0.10 0.65 ± 0.12 RootMeanSquared* 1131 ± 499 1333 ± 340
GrayLevelVariance 106 ± 91 63 ± 59 GrayLevelVariance 123 ± 93 83 ± 84
Variance** 66044 ± 57219 38861 ± 36831 GrayLevelVariance 122 ± 143 74 ± 85
Contrast 91 ± 102 47 ± 45 SmallDependenceEmphasis 0.45 ± 0.21 0.38 ± 0.15
GrayLevelVariance 106 ± 91 63 ± 59 GrayLevelNonUniformityNormalized 0.03 ± 0.02 0.04 ± 0.03
SizeZoneNonUniformityNormalized 100 ± 95 57 ± 55 DifferenceEntropy 3.9 ± 1.2 3.6 ± 0.7
SumSquares 3.9 ± 1.2 3.6 ± 0.7 RunEntropy 5.4 ± 0.8 5.1 ± 0.8
Entropy 5.2 ± 0.6 4.8 ± 0.8
ClusterTendency 5.2 ± 0.6 4.8 ± 0.8
Ld 0.26 ± 0.08 0.21 ± 0.09
InverseVariance 0.18 ± 0.07 0.22 ± 0.09
GrayLevelVariance 112 ± 86 75 ± 67
GrayLevelNonUniformityNormalized 0.03 ± 0.01 0.04 ± 0.03
RunEntropy 5.4 ± 0.6 5.1 ± 0.8
Uniformity 0.03 ± 0.02 0.04 ± 0.03
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between T2-weighted features and feature changes in the prostate and
GTV. This result is consistent with similar T2 reduction post-EBRT for
GTV and whole prostate [11].

Strengths of this study include implementation of standardizable
approaches for radiomics, deformable registration, and ADC analyses.
Feature extraction utilized the open-source Pyradiomics package and an
appropriate Bonferroni correction. ADC accuracy of the Siemens Verio
MRI system used in this study has already been validated, using the ice
water standardization phantom [16,21]. ADC map generation included
b = 0 s/mm2 exclusion for PIRADS-2 compliance [4], but strong con-
sistency was demonstrated between the extracted feature sets with and
without b = 0 s/mm2 exclusion for both GTV and prostate ROIs. The
potential for gradient non-linearity bias was assessed by tracking the
offset from isocenter of the dominant lesion [15]. Just three patients
were found to be susceptible to gradient non-linearity bias, and re-
peated analyses with these patients excluded found minimal impact on
the extracted feature sets.

The primary study limitation was the absence of analyses with re-
gards to clinical outcomes. Instead, methodology for prostate ADC
radiomics analysis was established, and promising early response fea-
tures were identified. When mature outcomes become available, ma-
chine learning and radiogenomics methods are envisaged to test the
predictive values of all features and their combinations [22,23]. A

predictive algorithm which is robust and less reliant on post-EBRT GTV
contours may be favored. It is hoped that a set of the dominant features
noted in Tables 2, 3, and 5 will prove to be clinically relevant pre-
dictors.

This study also did not investigate quantitative T2 mapping or DCE,
though DCE images were used for tumor detection. T2 shortening be-
tween malignant versus benign prostate and post-EBRT is known, but
clinical T2 mapping is superceded by T2-weighted imaging [11,24].
Quantitative DCE-MRI poses multiple standardization challenges [25],
and its inclusion with T2w and ADC may not be necessary for more
accurate radiomics-based prostate cancer diagnosis or staging [26].

Table 3
Most significantly different radiomics features for prostate ADC (mean ± 2σ). Bold-face denotes p < 1e−07. The symbol * denotes units of 10−6 mm2/s. The
remaining features are dimensionless.

b = 0 s/mm2 included b = 0 s/mm2 excluded

Feature Baseline Week Six Feature Baseline Week Six

RunLengthNonUniformityNormalized 0.89 ± 0.02 0.87 ± 0.02 DependenceNonUniformityNormalized 0.23 ± 0.04 0.20 ± 0.03
ShortRunEmphasis 0.96 ± 0.01 0.95 ± 0.01 SizeZoneNonUniformityNormalized 0.41 ± 0.05 0.38 ± 0.04
DifferenceAverage 6.4 ± 1.5 5.4 ± 1.2 DifferenceAverage 6.8 ± 2.0 5.7 ± 1.4
ZonePercentage 0.44 ± 0.08 0.38 ± 0.08 SmallAreaEmphasis 0.67 ± 0.04 0.64 ± 0.04
Ld 0.26 ± 0.03 0.29 ± 0.04 InverseVariance 0.17 ± 0.05 0.20 ± 0.04
RunPercentage 0.94 ± 0.01 0.93 ± 0.02 LargeAreaHighGrayLevelEmphasis 53208 ± 39878 94978 ± 105575
DifferenceEntropy 4.0 ± 0.3 3.8 ± 0.3 ZonePercentage 0.44 ± 0.12 0.39 ± 0.08
Ldm 0.17 ± 0.03 0.20 ± 0.04 SmallDependenceEmphasis 0.38 ± 0.10 0.33 ± 0.06
SmallDependenceEmphasis 0.37 ± 0.06 0.33 ± 0.07 Contrast 104 ± 90 71 ± 45
InverseVariance 0.18 ± 0.03 0.21 ± 0.04 SmallDependenceGrayLevelEmphasis 1390 ± 681 1106 ± 551
DependenceNonUniformityNormalized 0.22 ± 0.03 0.20 ± 0.03 RobustMeanAbsoluteDeviation* 171 ± 82 138 ± 62
LargeDependenceEmphasis 9.0 ± 2.4 10.9 ± 3.2 MeanAbsoluteDeviation* 258 ± 117 211 ± 94
LongRunEmphasis 1.22 ± 0.05 1.26 ± 0.07 GrayLevelNonUniformityNormalized 0.023 ± 0.009 0.03 ± 0.01
Contrast 79 ± 41 56 ± 26 DifferenceEntropy 4.1 ± 0.6 3.9 ± 0.3
RunVariance 0.08 ± 0.02 0.10 ± 0.03 RunEntropy 6.0 ± 0.5 5.8 ± 0.5
JointEnergy 0.0013 ± 0.0008 0.0018 ± 0.0009 GrayLevelVariance 188 ± 157 132 ± 120
SmallAreaEmphasis 0.66 ± 0.04 0.63 ± 0.04 InterquartileRange* 402 ± 224 328 ± 145
DependenceVariance 2.2 ± 0.7 2.7 ± 0.9 Maximum* 2986 ± 702 2733 ± 598
JointEntropy 10.3 ± 0.8 9.8 ± 0.8 SumSquares 183 ± 172 126 ± 123
LargeAreaEmphasis 18 ± 14 33 ± 31
SizeZoneNonUniformityNormalized 0.40 ± 0.04 0.37 ± 0.05
DifferenceVariance 34 ± 20 24 ± 12
MaximumProbability 0.003 ± 0.002 0.005 ± 0.003
ZoneVariance 13 ± 13 26 ± 29
Uniformity 0.025 ± 0.009 0.03 ± 0.01

Table 4
Numbers of correlated features within prostate and GTV volumes at baseline
(BL) and week 6 (Wk 6). Δ refers to the feature change between time-points.

Prostate, ADC Prostate, T2w

BL Wk 6 Δ BL Wk 6 Δ

GTV, ADC BL 81 0 11 0 2 0
Wk 6 14 9 8 0 0 0
Δ 4 3 61 7 0 1

GTV, T2w BL 0 0 26 1515 1 1
Wk 6 0 0 40 0 307 14
Δ 0 1 303 41 25 1762

Table 5
Twenty strongest correlations between GTV ADC and prostate ADC feature
changes between baseline and week six of radiotherapy. Pearson’s correlation
coefficient (rho) for a p-value threshold of 0.00008 is approximately 0.50 for
the cohort size of 59 patients. The rho value for these strongest correlations
ranges from 0.54 to 0.60.

Prostate feature GTV feature

ZoneVariance LowGrayLevelZoneEmphasis
Median 10Percentile
ZoneVariance ShortRunLowGrayLevelEmphasis
RootMeanSquared 10Percentile
ZoneVariance LowGrayLevelEmphasis
VoxelNum VoxelNum
Mean 10Percentile
ZoneVariance SmallAreaLowGrayLevelEmphasis
ZoneVariance SmallDependenceLowGrayLevelEmphasis
LargeDependenceEmphasis LowGrayLevelZoneEmphasis
ZoneVariance LowGrayLevelZoneEmphasis
90Percentile Mean
VoxelNum RunLengthNonUniformity
90Percentile RootMeanSquared
DependenceVariance LowGrayLevelZoneEmphasis
RootMeanSquared Mean
LargeDependenceEmphasis ShortRunLowGrayLevelEmphasis
DependenceVariance ShortRunLowGrayLevelEmphasis
LargeDependenceEmphasis LowGrayLevelRunEmphasis
DependenceVariance LowGrayLevelRunEmphasis
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To conclude, our preliminary data confirmed GTV and prostate
radiomic feature changes in ADC and T2-weighted images during
radiotherapy. These features warrant further investigation as potential
predictive biomarkers of clinical outcomes.
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