
Fylaktopoulos et al. SpringerPlus (2016) 5:38
DOI 10.1186/s40064-016-1688-5

REVIEW

An overview of platforms for cloud
based development
G. Fylaktopoulos1, G. Goumas2, M. Skolarikis1, A. Sotiropoulos3 and I. Maglogiannis4*

Abstract 

This paper provides an overview of the state of the art technologies for software development in cloud environments.
The surveyed systems cover the whole spectrum of cloud-based development including integrated programming
environments, code repositories, software modeling, composition and documentation tools, and application man-
agement and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide
number of characteristics like applicability (e.g. programming and database technologies supported), productiv-
ity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality,
version control) and post-development application hosting and we compare the surveyed systems. The conducted
survey proves that software engineering in the cloud era has made its initial steps showing potential to provide con-
crete implementation and execution environments for cloud-based applications. However, a number of important
challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a
conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.

Keywords:  Cloud computing, Integrated Development Environment (IDE), Code repositories, Software modeling,
Orchestration tools

© 2016 Fylaktopoulos et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

Background
Within the past few years, cloud computing has emerged
as a dominant computing model in IT infrastructures,
enabling flexible, ubiquitous, on-demand and cost-effec-
tive access to a wide pool of shared resources (Barroso
et al. 2013). Leveraging its various service types, large
and diverse user communities have adopted the cloud
paradigm enjoying the following two key offerings: (a)
low costs by releasing users from the burden to invest
on hardware infrastructures and software licenses, and
(b) reduced operational complexity, as organizations are
able to focus on the quality of their products and services
rather than on the management of complex IT systems
(Armbrust et al. 2010; Buyya et al. 2009). Economy of
scale enables additional decrease in total market costs,
as numerous small-scale and typically underutilized data
centers are replaced by larger infrastructures that target
higher resource efficiency (Beloglazov et al. 2012). On the

application side, large families of applications including
desktop, business, entertainment (Simmhan et al. 2010;
Schmidt 2012; Hobfeld et al. 2012) etc., have found their
way to the cloud creating a demanding and fast evolving
new ecosystem.

The proliferation of the cloud paradigm has created a
strong trend to transfer traditional services and applica-
tions to the cloud. This trend includes, among numer-
ous others, file hosting and gaming for home users,
office applications for home and professional users and
large, complex business applications for customer man-
agement, logistics and collaboration. Not surprisingly,
software development environments consist a criti-
cal application domain that has also gained significant
popularity through its “cloudified” versions. Transfer-
ring major services and applications to the cloud has cre-
ated new demands for productive software development.
Cloud concepts and technologies provide a valuable sub-
strate to support software development environments
“in the cloud, for the cloud” as they can easily provide an
ample pool of compute resources for code development
and testing, and code repositories to support developer

Open Access

*Correspondence: imaglo@unipi.gr; imaglo@gmail.com
4 Department of Digital Systems, University of Piraeus, Piraeus, Greece
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1688-5&domain=pdf

Page 2 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

collaboration, a key driving force to software productivity
(Anselmo and Ledgard 2003; Wu et al. 2009).

Traditional software development employs a toolchain
including a text editor, a compiler and possibly a debug-
ger, and performance analyzer. To accelerate software
development, this rather disjoint tool chain is incorpo-
rated in an Integrated Development Environment (IDE)
(Kats et al. 2012). In order to further reduce time to
market and development costs, software engineers heav-
ily encourage reuse of existing software components in
order to create new services. The adoption of software
development models, based on existing components
(Component-based application development) (Heineman
and Councill 2001), inherently supports high adaptabil-
ity and scalability and allows a faster way of construct-
ing applications, as developers focus on basic functional
components to create new, higher levels of services.
Especially for non-experienced and skilled developers,
the ability to develop new applications through compo-
nents’ synthesis is of paramount importance.

To build a successful cloud programming environ-
ment the advantages and functionality of traditional,
desktop-based IDEs need to be maintained and aug-
mented with additional features and strengths. Powerful
code editors with a rich set of functionalities (e.g. high-
lighting, autofill, etc.) are incorporated in web browsers.
Compilation (Ansari et al. 2011) and testing execution
are performed on cloud infrastructures and in several
cases deployment can be supported by cloud providers.
Clear advantages of cloud-based IDEs include: (a) the
access to a very wide pool of programming tools that
are maintained by the provider, thus relieving the devel-
oper from the burden to setup, configure and upgrade
their programming environments, (b) the ability to
develop software without the use of powerful local com-
puters, since the frequently compute-intensive tasks
of the compilation and testing are performed remotely
in the cloud, and (c) the straightforward way to reuse
code developed by other software engineers that share
the same cloud environment. However, a cloud applica-
tion development environment needs to go far beyond a
powerful toolchain to implement, debug and test code.
For large-scale software projects to be viable and profit-
able, significant attention needs to be paid to the pre-
implementation, design phase with the incorporation
of appropriate modeling tools, and to post-implemen-
tation tasks including documentation and maintenance.
Such features are rarely incorporated in cloud-based
application development environments in their entirety
a fact that makes them lag behind their desktop-based
counterparts. On the other hand, network latency can
also be a limiting factor (Piao and Yan 2010), especially
for small jobs, while security and privacy concerns are

certainly valid for valuable intellectual property as is the
case of software code (Zhu et al. 2010; Zissis and Lekkas
2012).

In this paper we perform a review on the current
technologies for software development in cloud envi-
ronments. We focus on a number of topics includ-
ing integrated programming environments, code
repositories, software modelling, composition and
documentation tools, and application management and
orchestration. Moreover, we evaluate the existing eco-
system based on a wide number of characteristics like
applicability (e.g. programming and database technolo-
gies supported), productivity enhancement (e.g. editor
capabilities, debugging tools), support for collaboration
(e.g. repository functionality, version control) and post-
development application hosting. Based on our review,
we draw a number of interesting conclusions regarding
the maturity of the state-of-the-art solutions and discuss
challenges and open issues that can guide future develop-
ments in this fast evolving technological field.

The rest of the paper is organized as follows: In
“Cloud architectural approaches and models” section,
we describe the various cloud models, while in “Exist-
ing platforms and cloud programming environments”
section, we review existing platforms and cloud pro-
gramming environments. In “Comparisons” section, we
provide a comparison of the most prominent systems and
in “Challenges and open issues” section we discuss the
remaining challenges and open issues. Finally, “Discus-
sion and conclusions” section concludes the paper.

Cloud architectural approaches and models
Generic models and architectures
There are three fundamental models according to which
cloud providers offer their services: Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS) and Soft-
ware-as-a-Service (SaaS) (Voorsluys et al. 2011). IaaS
is the model in which the cloud provider offers physical
infrastructure or more often virtual machines (VMs) to
the clients/consumers. Clients have to install their own
operating system, libraries and applications, while they
are responsible for managing the system. In the PaaS
model, cloud providers offer a computing platform, and
the client utilizes specialized tools offered by the cloud
provider for the specific platform, in order to build its
own framework or application on top of that platform.
The client is responsible only for the developed frame-
work/application, while the cloud provider maintains the
underlying platform. Finally, in the SaaS model, the pro-
vider offers remote access to a domain specific applica-
tion and/or database, already built by the provider. The
client is usually unaware of the underlying platform run-
ning the application and/or database.

Page 3 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

Service-Oriented Architecture (SOA) (Thomas 2004)
has been established as the de-facto standard architecture
for web applications. SOA enables the merging of distrib-
uted systems or the deployment of new business services
by utilizing existing services in a particular order, follow-
ing a business process. SOA essentially is a collection
of communicating services. This communication may
involve simple message passing between two services,
or the coordination of multiple services to implement
one new activity. SOA is independent of the program-
ming language used or the underlying operating system.
SOA is based on three basic technologies: a language for
the description of web services called WSDL (Web Ser-
vices Description Language), a protocol that enables the
exchange of messages XML called SOAP (SOAP 2007)
and a protocol that enables the publication and discovery
of services called UDDI (Universal Description, Discov-
ery and Integration). What makes SOA model extremely
useful is the capability of discovering services that match
the application’s needs, the capability of negotiating
terms of use and the accessibility from any location at any
time.

Web services constitute the modern way of developing
applications, especially when remote access to distrib-
uted functions is needed. A web service is a technology
that allows applications to communicate independently
of platform or programming language. A Web Service is
the software interface that describes a collection of func-
tions that can be accessed from the network using XML
messages. Web services utilize XML to describe both
data and operations on these data. A group of interacting
services define a new web service.

In the last years, considerable effort is taking place in
order to provide cloud software standardization that will
lead to high quality cloud software creation. This effort
has resulted in several prominent standards in the cloud
world. For example, Open Virtualization Format (OVF
2014) is a prototype design to tackle the portability and
installation issues on VMs in the Cloud. Cloud Infra-
structure Management Interface (CIMI 2014) is a pro-
totype that standardizes the interactions among Cloud
environments in order to achieve interoperable manage-
ment between cloud service providers and service con-
sumers/clients. Open Cloud Computing Interface (OCCI
2010) is a RESTful protocol that operates as a front-end
service for the Cloud provider internal management.
OCCI describes APIs that allow Cloud providers to pub-
lish the offered services. It enables the development,
monitoring and management of VMs and can be applied
to any interaction with a virtual cloud resource. IEEE-
P2301 (Guide for Cloud Portability and Interoperability
Profiles-CPIP) is a guide whose purpose is to assist cloud
computing vendors and users in developing, building,

and using standards-based cloud computing products
and services. Target is to increase the portability and the
interoperability of produces applications. IEEE-P2302
(Standard for Intercloud Interoperability and Federation-
SIIF) creates an economy amongst cloud providers that
is transparent to users and applications, which provides
for a dynamic infrastructure that can support evolving
business models. Open Authorization Protocol (OAUTH
2006) is an open standard for authorization. It enables
users to share their private resources (e.g. photos, videos,
etc.) without exposing their credentials (i.e. username,
password). OpenID (OID 2014) is an open standard and
decentralized protocol that allows users to be authenti-
cated by sites using a third party service, eliminating the
need for webmasters to provide their own ad hoc system.
This allows users to have one digital identity for many
different web sites/applications. Overall, development
environments for cloud-based applications constitute
a rather complex and dynamic ecosystem including a
diverse set of standards, tools, techniques and technolo-
gies that need to be properly integrated to provide a via-
ble approach for the development of quality software in
reduced time-to-market.

Specific approaches
There exist a number of research projects that are trying
to tackle the specific problems in the area of code devel-
opment in the Cloud. Below, we present a brief overview
of a few relevant ones: Cloud4SOA, ASCI, REMICS and
MONDO.

Cloud4SOA project (CLOUD4SOA 2010) targets the
semantic interoperability issues that exist in modern
cloud infrastructures. It introduces a new user-centric
approach for application development and deployment
in the Cloud. The proposed technologies combine three
basic computing paradigms: Cloud, Service-Oriented
Architecture and lightweight semantics. Cloud4SOA
resulting solution is a scalable approach for the inter-
connection of heterogeneous PaaS services from differ-
ent cloud providers that share the particular technology.
Design consists of cooperating models and software
components that provide developers with important
capabilities, like matchmaking, management, monitoring
and migration of applications.

Artifact-Centric Service Interoperation (ASCI 2010)
project’s objective is to reduce the effort and lead-time
of designing, deploying, maintaining, and joining into
environments that support service collaborations. This
is achieved by developing a rich framework based on the
notions of (a) interoperation hubs and (b) dynamic arti-
facts. Interoperation hubs enable flexible, scalable sup-
port for service collaborations in an open network, while
dynamic artifacts provide an approach to modeling and

Page 4 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

deploying business processes to simplify the manage-
ment of data and interaction between different services
and organizations. ACSI project develops improved pro-
cess mining research by generalizing it to handle data
along with process.

REuse and Migration of legacy applications to Interop-
erable Cloud Services (REMICS 2010) project has devel-
oped an advanced model driven methodology and the
corresponding tools for reuse and migration of legacy
applications to interoperable Cloud services. Service
Cloud paradigm stands for combination of cloud com-
puting and Service Oriented Architecture (SOA) for
development of Software as a Service (SaaS) systems.

MONDO: Scalable Modeling and Model Management
on the Cloud (MONDO 2007) project tackles the prob-
lem of scalability in Model Driven Engineering (MDE)
(Beydeda et al. 2005; Stahl et al. 2006; Kleppe et al. 2003)
by developing theoretical basis to advance the state of the
art in model querying and transformations tools. It also
provides an open-source cloud-based platform for scala-
ble modeling and efficient storage, indexing and retrieval
of large models having millions of model elements. MDE
is a software engineering methodology that tries to
reduce the complexity of software systems by advanc-
ing models that focus on the essential complexity of sys-
tems as first-class artefacts of the software development
process. In contrast to traditional software development
methodologies where models are mainly used for com-
munication and post-mortem documentation purposes,
models in MDE are the main living and evolving artifacts
from which concrete software development artifacts can
be produced in an automated fashion through model-to-
model and model-to-text transformation.

The aforementioned research projects designate a num-
ber of challenges that need to be addressed towards the

design and implementation of concrete cloud-based soft-
ware development infrastructures, including interoper-
ability, reusability, maintainability and scalability. Clearly,
the field is new and constantly evolving, and a number of
novel features and capabilities need to be incorporated in
existing platforms to adapt to the new cloud era.

Existing platforms and cloud programming
environments
As already mentioned in “Background” section, the
Cloud has quickly flourished and plenty platforms for
Cloud software development, as well as Cloud program-
ming environments are now available in the market.
Depending on their operations, these platforms can be
categorized as follows: (1) Programming Environments,
(2) Repositories, (3) Modeling, Composition, (4) Process-
ing, Documentation, Management and (5) Orchestra-
tion tools. A modern programming environment should
include tools, which help the team fulfill all phases in the
software development lifecycle. As described in Fig. 1,
these may include modeling tools in the Analysis stage,
IDEs for coding in the design/building phase, documen-
tation tools, orchestration and management modules for
the deployment and monitoring phase, and a repository
used for version control during all phases.

In the following subsections we describe the State
of the Art in each category. The surveyed tools operate
mostly as stand alone applications with occasional inter-
connections mentioned in each case.

Programming environments
Cloud programming environments are online web-based
applications designed to offer development capabilities
to developers. They usually consist of a source code edi-
tor, a number of compilers or interpreters depending on

Fig. 1  Application lifecycle and tools used in each phase

Page 5 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

the programming language, a debugger and a project/
solution viewer for managing the independent subcom-
ponents. Apart from the default features and due to high
competition, programming environments have evolved
to include: connections to code repositories, collabora-
tion features for code sharing, VMs for instant applica-
tion deployment and even monitoring tools.

In Cloud’s early stages, programming environments
offered only a web editor and a compiler. Developers
could access their code using any web browser, but there
were problems in terms of speed and reliability. Software
like JavaWIDE (Jam et al. 2010) intended to provide a col-
laborative online IDE (Goldman et al. 2011) for schools
and institutions with reduced availability of resources.
Students would be able to write and test their JAVA code
online, without losing time on platform installations.
However, JavaWIDE did not manage to evolve and it
slowly came to an end. This was also the result of Akshell
(AKSHELL 2011), a Javascript IDE which tried to fill the
gap of development and deployment in the cloud. Its fea-
tures—unique for that time—were the ability to connect
your code to your own PostgreSQL instance and its Git
connectivity. Another tool whose life-cycle came to an
end is Coderun (CODERUN). It supported Cloud devel-
opment of Microsoft programming languages C#, .NET,
ASP.NET, Silverlight and databases (SQL server). Its PHP,
HTML, JavaScript and CSS plugins gave little support to
the non-Microsoft development world.

Shortly, programming environments started to add
features in order to stay competitive and gain more
developers. Coderun managed to offer a huge variety
or pre-installed compilers for many programming lan-
guages (C, C#, C++, Fortran, HTML, Javascript, Java,
Objective C, Objective C++, Pascal, PHP, Python, Ruby,
Visual Basic, ×86 Assembly). As it is a Cloud service, the
programmer is able to access the source code from any-
where, using a mobile or desktop app. Though features
like code completion and code sharing cannot be per-
ceived as evolutionary, Compilr (COMPILR) success is
coming from people who want to learn coding and not
designing and deploying cloud applications. Its program-
ming courses and the ability to “try what you just learnt”
is the reason Lynda, a well-known online education
company, acquired it in 2015. With the increasing usage
of Javascript for web applications, jsFiddle (JSFIDDLE)
appeared as a JavaScript sandbox or web playground. It is
offered as a cloud service to developers who want to test
their JavaScript code or offer it as an example to the com-
munity, often as a link to third party coding forums (like
Stackoverflow). As it is a service specialized in JavaScript,
it offers a plethora of well-known libraries that can be
added directly in the tested code, as well as the ability to
include external resources. Some other default features

are the beautifier and pre-compiler, the HTML and CSS
rendering and finally the code sharing.

However, even with the new features programming
environments lacked deployment features in order to be
considered as a full development solution. As a result,
some of them started offering virtualization solutions
for their users’ projects. Koding (KODING) for example,
provided by Koding University, is offering a VM with SSH
access and full documentation on how teams will be able
to test, deploy and run their applications. It also provides
tutorials on popular CMS and Database installations, try-
ing to bridge the gap between the developer and the sys-
tem administrator. It should be mentioned though that it
is primarily used by students who want to start learning
a programming language, like its predecessors, taking
advantage of the Cloud SaaS architecture for educational
purposes (Mehta and Gupta 2013).

As far as production programming environments are
concerned, Cloud9 (CLOUD9) (Ciortea et al. 2010) has
become the most popular Cloud programming envi-
ronment, mostly because it expanded its service during
mid-2014 and started offering full development solution
for companies and not just tools for students or other
institutions. Apart from the default development options
(i.e. editors, compilers, and sharing tools), it offers spe-
cialized features for web development, like browser
compatibility testing and live preview. However, the key
point is that any application is placed under an Ubuntu
Docker container, so the developers can install all the
necessary software (i.e. web servers, CMS, mail servers
etc.) with which their application can be deployed. On
the other hand, this is a newly built technology, far from
stable, not to mention that the whole installation pro-
cess is not a “developer friendly” procedure and it needs
a system administrator. Codenvy (CODENVY) is the
main competitor of Cloud9. It has also changed its tar-
geting from developers to DevOps, simplifying the way
VMs are offered and installed through the Docker con-
tainers. The development kit contains a variety of pro-
gramming environments, editors, databases and plugins.
Codenvy is based on Eclipse Che cloud IDE (eclipse.org/
che), an open source IDE and SDK, which is can be eas-
ily extended. Projects are stored in workspaces that can
be managed by DevOps, in order to gain code parity
and security among teams and team members. DevOps
are also responsible for the configuration and deploy-
ment of the applications through the platform’s built in
tools. Codeanywhere (CA) has focused on providing a
collaboration platform to developers. Sharing code, pro-
jects, files, folders or even whole environments are some
of its collaborative features. Developers are able to view
in real time the changes being made in their shared code
by fellow developers and even lock parts of the code or

Page 6 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

manage the general access and change rights of parts of
their project. The solution offered for deployment and
installation is called DevBox, a private development envi-
ronment with certain storage and memory running on
OpenVZ (Docker will also be available soon as noted in
their website).

Finally, Orion (ORION) is an open source project
under Eclipse. It started as a Cloud IDE specifically
focused on web development using JavaScript, CSS and
HTML. Orionhub is the Cloud service using the Orion
IDE, much like Codenvy uses Eclipse Che. However, due
to awkward policy issues (e.g. no backup plan offered,
code/accounts deleted due to inactivity), it cannot be
considered as a viable solution for development teams
who want to migrate to the cloud.

Repositories
Cloud repositories are web-hosting facilities that lever-
age the strengths of well-known version control systems
such as Git (GIT) (Lawrance and Jung 2013), Subversion
(SUBVERSION) and Mercurial (MERCURIAL). In addi-
tion, they often support services and tools, including bug
tracking, release management, mailing lists, and wiki-
based documentation.

SourceForge (SF) was one of the first to offer a web-
based source code repository that brings collaborators
together and helps projects get developed, downloaded,
reviewed, and published. It was also one of the first to
offer this service for free to open source projects.

Apart from the version control system they are using,
cloud repositories are distinguished by their level of
integration with third party software, like collaboration,
project management or issue tracking. Bitbucket (BIT-
BUCKET) from Atlassian, for example offers integration
with JIRA, Jenkins and Bamboo Continuous Integration
servers as well as notification and chat services. Cloud-
Forge (CLOUDFORGE) by CollabNet integrates with
TeamForge for collaboration, JIRA and Basecamp for
project management. GitLab (GITLAB) offers, apart
from JIRA connectivity a fine-grained workflow manage-
ment integration.

GitLab and GitHub are the largest open source com-
munity and the industry-standard version control and
publishing platforms for web developers. GitHub is a
Git repository hosting service which offers integrated
issue tracking, wikis and tools to enable collaborative
code review and improvement. GitLab’s unique features
include LDAP and two-factor user authentication.

Other key players include Microsoft’s CodePlex
(CODEPLEX), with which users can create, share, col-
laborate and download from the project to the software
phase, and Google’s Project Hosting on Google Code
(GC), which provides a free collaborative development

environment for open source projects. CodePlex has a
source code control base on Mercurial, Team Founda-
tion Server, Subversion or Git, project discussions, wiki
pages, issue tracking and others. Project Hosting on the
other hand has announced that it is reaching end-of-life
on January 25th, 2016.

Another repository worth of mention is ProjectLocker’s
(PL) and LaunchPad (LP). ProjectLocker’s has focused
on safety and security features. It provides private enter-
prise-grade, Git or Subversion, source code repository
hosting, featuring among others fine-grained directory-
based permissions (Subversion), automatic backups of
your data, bug tracking and wiki pages. LaunchPad uses
the Bazaar version control system to host your project’s
source code and it is able to build Ubuntu packages by
using recipes directly from branches. It emphasizes
cross-project collaboration and aims to be a front-end to
all of open source. For that reason Launchpad is a cen-
tralized service rather than a product that users deploy
on their own servers.

Cloud SW modelling
Modelling tools refer to the applications used in order to
describe the functional and nonfunctional requirements
of a software development project. These tools usually
include a designer for presenting the architecture of an
information system, a process, an interface or a compo-
nent. The most well-known language used by these tools
is Unified Modelling Language (UML) (Fowler 2004).
Most of the desktop IDEs have plugins for UML diagrams
(like Rational Rose and BOUML), however there are open
source state of the art tools like Argo UML (ARGOUML)
and StarUML (STARUML), which have been widely used
for desktop apps. Nevertheless, in the Cloud era the abil-
ity to create UML diagrams has been expanded through
cloud modelling services, which are able to create any
kind of diagrams.

The complexity and the variety of diagrams offered by
the various tools differ. Simple UML, BPMN, Database
designs and Flowcharts can be created by tools like Dia-
gramo (DIAGRAMO), Gliffy (GLIFFY) or GenMyModel
(GENMYMODEL), whereas more complicated models
covering the phase of requirements gathering, process
modelling, user experience prototyping and document
production are offered by Visual Paradigm (VP). Cre-
ately (CREATELY) also offers a vast amount of diagram
types, which cover various industries. It includes a built
in mockup editor for UX design from desktop or mobile
interfaces.

In terms of integration, visual-paradigm supports code
engineering for a variety of platforms (Eclipse, Netbeans,
Intellij.Net) and programming languages (C++, JAVA,
C). It also offers a cloud repository called VPository, and

Page 7 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

enhances collaboration with some default tools like shar-
ing diagrams and posting comments). In GenMyModel
diagrams can be exported in multiple formats (jpg, xmi,
svg, pdf) and imported by other software. Creately, on
the other hand, has focused on integration, since it gives
plugins for other platforms like Jira, Confluence, Fog-
Bugz, Google apps and Google store. It can export dia-
grams in pdf or SVG but it can also import Microsoft
Visio files. Gliffy used to offer an REST API for develop-
ers who want to embed diagrams inside their own web
applications, using PHP and JAVA libraries. However,
since the beginning of 2015 the API is not updated and,
as stated by the company, will not be supported.

Some of the aforementioned tools offer collaboration
features among team members who are able to share
their diagrams, view changes in real time and even chat
with their colleagues with GenMyModel and Creately
being the top in the this category.

Finally, it should be mentioned that although, all of
these tools are offered as cloud services, Diagramo is an
open source solution under a GPL license and can be
installed on premises using a PHP web server and Cre-
ately can be downloaded as a desktop app.

Cloud SW composition tools
The term ‘composition tools’ refers to development
environments, which attempt to cover all phases of an
applications coding lifecycle. These phases include edit-
ing, compiling, debugging, linking, testing and maintain-
ing the application’s source code. These tools are often
referred to as Integrated Development Environments—
IDEs) and they have had a great acceptance in desktop
applications because of their user friendly interfaces and
intelligent code management (live syntax debugging,
code optimization, ready UI components and libraries).

Migrating to the cloud has been proven a difficult task
for most of these platforms. The basic reason is that their
architecture was not initially designed for cloud applica-
tions. This means that their interface was implemented in
a certain programming language (e.g. JAVA, C++ etc.)
and it cannot be easily converted to a web based pro-
gramming language, which is required by cloud appli-
cations. As a result, there is a new for new composition
tools dedicated to cloud application development. On
the other hand, we see that modern cloud programming
environments have not managed to provide a complete
solution on composition tools and they offer in many
cases integration with the already existing desktop IDEs,
using external plugins, which just upload the built project
to the cloud servers.

Some of the most commonly used desktop IDEs are:
Visual Studio, Eclipse and Netbeans.

Visual Studio (VS) is Microsoft’s IDE for developing
Window’s desktop applications, web services, web sites
and web applications, based on C, C++, C#, VB.NET,
F#, M. Python, Ruby, Javascript, HTML and CSS. Its edi-
tor offers code completion and code refactoring and its
debugger can be used both at source and machine level. It
also provides design tools for forms, web services, data-
base schemas and classes.

Eclipse (ECLIPSE) is an IDE mostly written in JAVA,
which supports a variety of programming languages like
Ada, ABAP, C, C++, COBOL Fortran, Haskell, JavaS-
cript, Lasso, Lua, Natural, Perl, PHP, Prolog, Python, R,
Ruby (including Ruby on Rails framework), Scala, Clo-
jure, Groovy, Scheme, and Erlang. It is an open source
platform, which offers its own SDK (Eclipse SDK) tar-
geted for java developers and its own license (Eclipse
Public license). Its architecture is based on a plug in
model, which lets the platform to be extended using any
programming language.

Netbeans (NETBEANS) follows the same philosophy
like Eclipse. It is also written on JAVA, basically target-
ing JAVA programmers, however it can be used for PHP,
C, C++, JavaScript and HTML projects. Apart from the
basic programming tools, it incorporates a framework for
developing Java Swing applications and an architecture
which lets the platform be updated dynamically using
modules stored in various repositories.

As reviewed in 3a, only Eclipse has managed to find
a way for online integration though the Orion project.
Most programming environments offer only certain parts
of an IDE (basic editors and compilers) or integrated with
existing desktop solutions.

Cloud SW processing and documentation tools
Processing and documentation software tools cover the
need of having an integrated hub of help and reference
information. The variety of software within organizations
make it difficult, if not impossible, to handle them effi-
ciently. These tools provide advanced search filters, offer
a single knowledge database pool and also enhance col-
laboration within teams.

The basic features offered by these tools include the
ability to use WYSIWYG editors, HTML5, CSS and
Javascript in order to create and publish help related
content (user manuals, FAQs, context help etc.) and the
ability to search inside the produced content in a user
friendly and efficient way. Robohelp (RH), a Help Author-
ing Tool (HAT) by Adobe, has managed to render the
information easily searchable and accessible with the
use of dynamic filters and conditional tags. On the other
hand, tools like ClickHelp (CLICKHELP) and HelpS-
erver (HS) emphasize team collaboration and simplicity

Page 8 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

in terms of document editing, through role-based per-
missions, template creation and versioning. In terms of
document formatting and integration with other systems,
Helpiq (HELPIQ) is a clear winner, offering plenty of
integrations with popular 3-party software (SnapEngage,
Salesforce Desk.com, Google Translate, Wufoo Forms,
etc.). Robohelp integrates with Dropbox and has CHM
import functionality, a feature also seen in ClickHelp. All
of them are cloud based and can be accessed by mobile
devices, using modern responsive designs, with Click-
Help also providing desktop applications for Windows,
Mac OS X and Linux.

Cloud SW management and orchestration tools
Elasticity (Herbst et al. 2013) and scalability (Wu et al.
2009) are two of the main advantages of the Cloud Tech-
nology. However, flexibility in resources depending on
live demand is an operation that requires constant moni-
toring of the executed Cloud apps. For this reason, the
Cloud management and orchestration tools have been
developed.

Big IaaS players, like Rackspace (RACKSPACE), offer
infrastructure management and monitoring of the VMs
inside their data centers. Some of the features include
remote monitoring tests connectivity from regional
zones deployed throughout Rackspace’s global data cent-
ers, and agent-based monitoring gathering information
from inside each resource. They provide real-time alerts
and notifications, and they are configurable and easy to
set-up.

On the other hand, VMware, a leader in virtualiza-
tion provides software monitoring with vRealize Hyperic
(HYPERIC) (Rahabok 2014). It monitors operating sys-
tems, middleware and applications running in physical,
virtual and cloud environments. It features monitoring
configuration templates, comprehensive events analysis
with predefined KPIs, custom UI, role-based notification
system and escalation workflows.

One of the biggest player in this sector is probably
Microsoft, who managed to integrate Azure (AZURE),
its open, flexible, enterprise-grade cloud computing plat-
form offering Iaas and PaaS, with monitoring solutions
for infrastructure and software through its Azure Pre-
view Portal. Event hubs, predictive analytics, schedulers,
automations, operational insights (machine data) and a
key vault are some of the portal’s main tools for monitor-
ing one’s Cloud in Azure.

Apart from monitoring, there are also Cloud Portofolio
Management tools, like Scalr (SCALR) (Aristotle 2012)
and RightScale (RS), which try to go one step further by
providing scalability among cloud platforms. They are
both WWW based and they target in reducing the appli-
cation delivery time and improve cost effectiveness. Scalr,

concentrates on infrastructure security with its Orches-
tration Engine, Reusable Roles, High Level UI API and
various integrations. It enforces infrastructure security
with its Governance Compliance and Network Policy
Enforcement. RightScale supports multi-clouds and
hybrid clouds, while Scalr is also available as an on prem-
ise solution.

Other popular platforms offer embedded monitoring
tools in their products i.e. IBM Bluemix Monitoring &
Analytics (BLUEMIX), SAP HANA Advanced Analyt-
ics (HANA) etc. Lastly, there are quite a few open source
cloud monitoring tools such as Ganglia (GANGLIA),
Nagios (NAGIOS) and Zabbix (ZABBIX).

Comparisons
Gradually, Cloud Programming Environments extended
their offered services and overlapped functionalities that
were initially provided by other categories. As such, we
will focus below on the comparison of Cloud Program-
ming Environments, as they are the most prominent
Cloud Software category. As it happens with any new
technology, businesses hesitate to move to the Cloud.
This inertness has led many Cloud software providers to
offer also On-Premise versions of their Cloud solutions
as well as hybrid implementation options. Therefore, the
comparison will also contain an extra criterion that of
implementation.

All reviewed cloud programming environments (see
comparison in Table 1) offer a code source code editor
with syntax highlighting and code suggestions, depend-
ing on the available programming languages. Cloud9 uses
a version of the well known ACE editor, available under
a New BSD license and offering a look and feel closer
to Microsoft Visual Studio. Orion, on the other hand,
has incorporated the style of Eclipse editor, but it sup-
ports a narrower range of web browsers. Codeanywhere
and Codenvy seem to have the most complete source
code editors, supporting various browsers and different
versions.

Debugging and runtime auditing features are yet in
early stages. Only Cloud9 and Codenvy have debugging
capabilities, the first one for server side javacript, using
Node.js and the second one using prebuilt docker files,
which must have been provided by third parties for the
given programming languages. JsFiddle also has debug-
ging functionalities since it is based on client executed
code (Javascript). Codenvy and Codeanywhere offer
some monitoring tools for real time auditing of the appli-
cations, such as a representation of the execution log or
instant preview of the developer’s code, however, in most
cases, developers have to write their own debugging and
auditing tools, which renders cloud programming less
efficient.

Page 9 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

Ta
bl

e 
1 

Co
m

pa
ri

so
n

of
 c

lo
ud

 p
ro

gr
am

m
in

g
en

vi
ro

nm
en

ts

A
st

er
is

ks
 d

en
ot

e
th

e
pa

rt
ia

l i
m

pl
em

en
ta

tio
n

of
 a

 fe
at

ur
e.

 C
lo

ud
 9

 o
ffe

rs
 d

eb
ug

gi
ng

 o
nl

y
fo

r N
od

e.
js

 p
ro

gr
am

m
in

g,
 w

hi
le

 C
od

en
vy

 h
as

 it
 o

nl
y

us
in

g
D

oc
ke

r fi
le

s.
In

 te
rm

s
of

 D
at

ab
as

e,
 C

od
en

vy
 a

nd
 K

od
in

g
le

t t
he

de

ve
lo

pe
rs

 in
st

al
l w

ha
te

ve
r t

he
y

w
an

t o
n

th
e

VM
s,

so
 in

di
re

ct
ly

 th
ey

 o
ffe

r t
hi

s
fe

at
ur

e.
 F

in
al

ly
, E

cl
ip

se
 O

rio
n,

 is
 a

 c
lo

ud
 v

er
si

on
 o

f E
cl

ip
se

 p
la

tf
or

m
, w

hi
ch

 c
an

 b
e

se
en

 a
s

its
 o

n
pr

em
is

e
eq

ui
va

le
nt

PP
la

tf
or

m
M

od
el

lin
g

ID
Es

D
oc

um
en

ta
-

tio
n

Re
po

si
to

ry
M

ob
ili

ty
Im

pl
em

en
ta

tio
n

M
od

el
lin

g
Ed

ito
r

D
eb

ug
gi

ng
Ru

nt
im

e
au

di
tin

g
Pr

oj
ec

t
up

lo
ad

D
at

ab
as

e
D

oc
um

en
ta

-
tio

n
So

ur
ce

ve

rs
io

n
co

nt
ro

l
Ex

te
rn

al

re
po

si
to

ry
M

ob
ili

ty
Cl

ou
d

O
n-

pr
em

is
e

Co
m

pi
lr

–
V

–
–

V
–

–
–

V
(G

itH
ub

)
–

V
–

js
Fi

dd
le

–
V

–
–

–
–

–
–

–
–

V
–

C
lo

ud
9

–
V

V
(*

no
de

.js
)

–
V

V
(M

yS
Q

L,

M
on

go
D

B)
–

–
V

(G
itH

ub
)

–
V

–

Co
de

nv
y

–
V

V
(*

do
ck

er

fil
es

)
V

V
V

(*
)

–
–

V
(G

it,
 G

itH
ub

,
Bi

tB
uc

ke
t)

–
V

V

Ec
lip

se
 O

rio
n

–
V

–
–

–
–

–
–

V
(G

it)
–

V
V

(*
Ec

lip
se

)

Ko
di

ng
–

V
–

–
V

V
(*

)
–

–
V

(G
it)

–
V

–

Co
de

an
y-

w
he

re
–

V
–

V
V

(D
ro

pB
ox

,
FT

P)
V

(M
yS

Q
L)

–
–

V
(S

VN
, G

itH
ub

,
G

it)
–

V
–

Page 10 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

None of them provide an internal source code version
control system, but rely on external repositories, with
GIT and GitHub being the most widely used. Codeany-
where, Codenvy and Cloud9 seem to offer more solu-
tions, including Bitbucket and SVN. As the competition
grows, all programming environments try to adapt to
new players in the repository market and new features
like code comparison between different code versions.

As cloud IDEs all of them are offered as a service,
whereas only Codenvy has an on-premise plan. Eclipse
Orion can also be used on-premises but it is mostly based
on the existing Eclipse IDE for desktop applications.
Cloud9 and Codeanywhere have tried to give access to
their developers through mobile devices apart from web
browsers. This effort does not seems to have a wide sup-
port from the community, mostly because it is very dif-
ficult to incorporate coding functions in a limited screen
of a mobile or tablet.

In terms of internal database support and installation,
Cloud9 and Codeanywhere let the developers configure
their MySQL or mongo databases, offering detailed man-
uals. Codenvy relies on docker files for database support
and has a well designed wizard which helps the develop-
ers setup their data sources or connect to external ones.
It also provides a simple SQL editor to test the connec-
tion and the SQL queries. Finally, Koding provides a VM,
so the developer can use SSH to download and install
MySQL manually.

Most of these IDEs have project-file upload function-
alities, with the most complete solution offered by Code-
anywhere. Apart from ftp client upload, connectivity with
Dropbox and Google drive, which makes code synchro-
nization among devices relatively easy, it offers the ability
to share certain parts of the project with external con-
tributors just by sending them a link. Cloud9 has focused
on real time collaboration, using collaborative editing
features with a feeling of Google docs.

Finally, current Cloud IDEs do not seem to offer solu-
tion for the design phase of a development project, which
would require modeling tools for class or process design-
ing. A productive programming environment should
include UML editors, a wide range of diagrams, database
designers or even documentation extractors, in order to
facilitate the development as a whole process and not as a
separate coding phase.

Challenges and open issues
Software engineering in the cloud era has made its ini-
tial steps showing potential to provide concrete imple-
mentation and execution environments for cloud-based
applications. However, a number of important challenges
need to be addressed for this approach to be viable. We
enumerate a few of them:

Software engineering aspects
As it was made evident from the analysis of the previ-
ous chapters, although current solutions for cloud-based
IDEs provide important new features and capabilities,
they employ a subset of the features present in industrial-
level desktop based environments. In this way they are
able to address a large number of development needs,
focusing on specific languages and application demands,
but the integration of the full set of capabilities and flex-
ibility existing in their desktop counterparts needs to be
gradually incorporated. Debugging and runtime audit-
ing needs to be further supported while a full set of lan-
guages and components (e.g. databases) need to be made
available to the developer. This requires a substantial
effort to incorporate functionality that is available to the
developers for more than a decade. Moreover, increased
and unpredicted latencies in the development process
that cannot be easily managed by the environment itself
as they depend on the network capabilities (Jackson et al.
2010) can cause significant problems in the development
process. Critically, although cloud based environments
are able to deliver extreme throughput for the compila-
tion and testing of large-scale projects by employing large
farms of compute nodes, small scale, infant projects may
suffer from large latencies, a fact that can frustrate devel-
opers and discourage them from migrating their working
environment to the cloud. Hybrid solutions, where local
environments cooperate with cloud IDEs could provide
an initial starting point to tackle the severe issues of
latency.

Moreover, current solutions have partially taken advan-
tage of the cloud capabilities to leverage collaboration
(Graham 2011) and thus software productivity. Code
sharing and versioning are absolute prerequisites, but
they do not progress productivity beyond what is cur-
rently supported in traditional environments, nor do they
make use of the advantages provided by cloud environ-
ments. Collaboration among development teams can be
dramatically enhanced by multilayer programming, i.e.
by developing components in different layers at the same
time on the same project.

Furthermore, current cloud-based software engineer-
ing environments follow the traditional trends in appli-
cation development. However, with object-oriented
techniques having reached a point of exhaustion, Model-
Driven Engineering (MDE) constitutes the latest para-
digm shift in software engineering, as it raises the level of
abstraction beyond that provided by 3rd generation pro-
gramming languages. MDE decomposes system design
and operational logic from implementation details by uti-
lizing appropriate abstractions expressed as models. This
decomposition greatly simplifies software development
and is able to automate substantial parts of the process.

Page 11 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

Cloud development has transformed in a competition
of integrations with other languages and software, leav-
ing outside the basic essence of the cloud idea, which is
the ability to design, implement, test and deploy an appli-
cation directly to the cloud. Until now there is a tendency
to either create an environment with an editor and many
embedded compilers/interpreters, or an environment
where the development team can upload their desktop
made code. Though this maybe a quite simple solution,
one can easily understand that the first choice is not effi-
cient and the second one is just not cloud implementa-
tion. A programming environment able to use multi-layer
programming and MDE would offer the required levels of
abstraction and would only need a simple programming
language to glue things together. This may seem as a radi-
cal change, but we have seen it working in other domains.

Interoperability
The existing landscape in cloud-based software devel-
opment platforms has provided sufficient solutions for
transferring a large number of applications to cloud infra-
structures in a productive way. However, they are heavily
based on ad-hoc solutions, which in several cases closely
attach the developed applications to specific develop-
ment environments and hosting infrastructures. Migrat-
ing projects from one platform to another or reusing
components between platforms is by no means straight-
forward, as in several cases a number of the incorpo-
rated components are proprietary. The same holds for
components that need to cooperate in order to deliver a
higher level product. The situations becomes even more
challenging in MDE based approaches that addition-
ally incorporate higher level of concepts and tools like
models, domain specific languages, and tools for auto-
mated model management (transformation, validation,
comparison, merging, refactoring etc.). The use of open
standards can provide a solid base for the development of
interoperable modules, while basing the development on
open-source components can minimize re-engineering
efforts.

Security
Data security is one of the most critical issues in cloud-
based applications (Kaufman 2009; Sangroya et al. 2010;
Jensen et al. 2009). The majority of users and enterprises
are reluctant to trust sensitive data to cloud environ-
ments, and this is the main reason for the development
of private clouds. Software is by no means an exception
in this rule. Software projects are realized by large invest-
ments and constitute a critical capital of software engi-
neering companies. Clearly, uploading source code to
external environments is not an easy decision, even if this

concerns code that will be finally released as open source,
yet protected by one of the available licenses.

Resource management
One of the key advantages of cloud computing is its abil-
ity to utilize centralized resources in order to deliver high
quality services in a “pay as you go” fashion. In this way, it
lowers costs by releasing users from the burden to invest
on local infrastructure, while economy of scale enables
additional benefits, as numerous small-scale and typically
underutilized data centers are replaced by larger infra-
structures that target higher resource efficiency. How-
ever, this creates a new challenge to manage resources in
these large scale environments that host services with dif-
ferent characteristics, application demands and metrics
for quality of service (Beloglazov and Buyya 2010; Delim-
itrou and Kozyrakis 2014; Younge et al. 2010). To get an
idea on the challenges on the challenges involved, we may
take a look at the power consumption relevant to data
center operation hosting cloud infrastructures: Cloud
operation is fast evolving as one of the most power-hun-
gry human activities absorbing enormous and steadily
increasing amounts of energy, with significant impact
on the environment and the greenhouse emissions (Ara-
vanis et al. 2015). In 2011, data center’s total energy con-
sumption was around 271 billion kWh: enough to power
up all residential households in industrialized countries
such as UK or France, comparable to the total amount of
energy consumed by Italy (Data Centre Dynamics 2011),
or approximately 7 % of the US total energy consumption
(Index Mundi 2011).

Based on this reality, advanced resource management
engines need to be incorporated at all levels of a cloud
ecosystem, from hardware, to cloud management soft-
ware and up to the cloud applications themselves. Ide-
ally, all these layers should collaborate in an efficient way
to minimize resource consumption (a concern for cloud
providers), without violating QoS as expressed in the rel-
evant Service Level Agreements—SLAs (a concern for
cloud customers). Thus, all cloud components includ-
ing applications and application development environ-
ments would greatly benefit from intelligent management
engines that are able to monitor resource consumption,
analyze the current status, predict future demands,
decide on more resource-efficient configurations and
enforce/request those new configurations within the
hosting cloud environment.

Discussion and conclusions
In this paper we presented an overview of the state of the
art platforms for cloud-based development. We reviewed
the historical transformation of cloud development tools

Page 12 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

from simple code editors to modern programming envi-
ronments, which are able to cover more than one stage
in the development cycle. Most of these platforms focus
on the programming stage, offering tools for a variety of
languages, on the file version control, utilizing external
repositories. On the other hand, the deployment of the
produced applications seems to be in very early stages,
based on the latest virtualization techniques and tech-
nologies. These technologies require specialized cloud
system administration skills, which are not possessed
by most development teams. Auditing and debugging
are very difficult to control from a generalized plat-
form, since each programming language offers different,
cloud-unaware tools. Furthermore, the modeling tools
required in the analysis stage are not included as part of
the programming environments, not even as a part of
integration with third party cloud modeling tools. The
documentation stage suffers from similar problems.

The results of our review about cloud development are
far from encouraging, since a compact, reliable solution
does not yet exist. At the moment, only educational insti-
tutions are able to benefit from cloud development plat-
forms, in order to facilitate students learn and adapt to
programming languages and new technologies. Trying to
explain this inability for cloud production development,
we could say that till now the efforts have been focused
on migrating the already existing desktop development
technologies and methodologies to the cloud. The obvi-
ous advantage of this process is that developers would be
able to write their code from anywhere in their favorite
programming language directly on the cloud. However,
it does not seem that this is the problem of develop-
ment teams nowadays. Developers are used to write their
code from a desktop or laptop and in reality it is much
faster for them. Thus, a cloud programming environment
should focus on the real problems, which are the inability
to deploy the code in a production environment, to offer
real time updates with zero shutdown time and to moni-
tor the resources used. Furthermore, it is essential to pro-
vide features concerning the debugging and auditing of
the application in a language and platform independent
way and to have a consistent and reliable solution which
will cover the development process as a whole and not
only in one stage.

This re-targeting may mean that a programming envi-
ronment should offer a totally new programming model,
a new language, a new script, to which developers should
adapt. It should be also taking into account that develop-
ers focus on results and they are not resistant to changes
if the gains exceed expectations.

Authors’ contributions
All authors contributed in the writing of this paper. In addition, GF is responsi-
ble for the survey and comparisons. GG is responsible for result interpretation.

MS is responsible for parts of the survey. AS is responsible for result interpreta-
tion. IM is responsible for result interpretation, made discussion and conclu-
sion. All authors read and approved the final manuscript.

Author details
1 B-Open S.A., Laskaratou 11A, Pylaia, 54250 Thessaloniki, Greece. 2 Computing
Systems Laboratory, National Technical University of Athens, Athens, Greece.
3 GRNET S.A., Av. Mesogion 56, 11527 Athens, Greece. 4 Department of Digital
Systems, University of Piraeus, Piraeus, Greece.

Acknowledgements
The work reported here has been carried out in the framework of national
project Cloud IDE for JPlaton Open Multi-layered Applications (CiRANO),
led by B-Open S.A., conducted in the context of the Programme for the
Development of Industrial Research and Technology (PAVET) 2013–2015 (code
364-BET-2013) funded by the General Secretariat for Research and Technology
(GSRT) and co-funded by the European Commission.

Competing interest
The authors declare that they have no competing interests.

Received: 29 September 2015 Accepted: 7 January 2016

References
AKSHELL (2011) Akshell. https://github.com/akshell
Ansari AN, Patil S, Navada A, Peshave A, Borole V (2011) Online C/C++

compiler using cloud computing. In: IEEE international conference on
multimedia technology

Anselmo D, Ledgard H (2003) Measuring productivity in the software industry.
Commun ACM 46(11):121–125

ARGOUML. Argo UML http://argouml.tigris.org/
Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Zaharia M (2010)

A view of cloud computing. Commun ACM 53(4):50–58
Aravanis AI, Velivassaki TH, Voulkidis AC, Zahariadis T, Cottis P (2015) Federated

data centers as smart city stabilizing factors. In: 3rd international work-
shop on smart city and ubiquitous computing applications

Aristotle J (2012) Scalr. Secut Press. ISBN:6139396824 9786139396825
ASCI (2010) Artifact-centric service interoperation. www.acsi-project.eu
AZURE. Microsoft Azure https://azure.microsoft.com
Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an intro-

duction to the design of warehouse-scale machines. Synt Lect Comput
Archit 8(3):1–154. doi:10.2200/S00516ED2V01Y201306CAC024

Beloglazov A, Buyya R (2010) Energy efficient resource management in
virtualized cloud data centers. In: Proceedings of the 10th IEEE/ACM
international conference on cluster, cloud and grid computing. IEEE
Computer Society

Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing.
Future Gener Comput Syst 28(5):755–768

Beydeda S, Book M, Gruhn V (2005) Model-driven software development, vol
15. Springer, Heidelberg

BITBUCKET. Bitbucket https://bitbucket.org/
BLUEMIX. IBM Bluemix Monitoring & Analytics https://developer.ibm.com/

bluemix/docs/category/monitoring-analytics
Buyya R et al (2009) Cloud computing and emerging IT platforms: vision, hype,

and reality for delivering computing as the 5th utility. Future Generation
computer systems 25(6):599–616

CA. Codeanywhere https://codeanywhere.net/
CIMI (2014) Cloud infrastructure management interface. http://dmtf.org/

standards/cmwg
Ciortea L, Zamfir C, Bucur S, Chipounov V, Candea G (2010) Cloud9: a software

testing service. ACM SIGOPS Oper Syst Rev Arch 43(4):5–10
CLICKHELP. ClickHelp clickhelp.co
CLOUD4SOA (2010) Cloud4SOA project. http://www.cloud4soa.eu
CLOUD9. Cloud9 https://c9.io
CLOUDFORGE. CloudForge http://cloudforge.com
CODENVY. Codenvy https://codenvy.com

https://github.com/akshell
http://argouml.tigris.org/
http://www.acsi-project.eu
https://azure.microsoft.com
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://bitbucket.org/
https://developer.ibm.com/bluemix/docs/category/monitoring-analytics
https://developer.ibm.com/bluemix/docs/category/monitoring-analytics
https://codeanywhere.net/
http://dmtf.org/standards/cmwg
http://dmtf.org/standards/cmwg
http://www.cloud4soa.eu
https://c9.io
http://cloudforge.com
https://codenvy.com

Page 13 of 13Fylaktopoulos et al. SpringerPlus (2016) 5:38

CODEPLEX. CodePlex https://www.codeplex.com/
CODERUN. Coderun http://www.coderun.com
COMPILR. Compilr http://compilr.com
CREATELY. Creately http://creately.com
Data Centre Dynamics (2011) Global industry census 2011. http://www.

dataCentredynamics.com/research/market-growth-2011-2012. Accessed
21 Sep 2015

Delimitrou C, Kozyrakis C (2014) Quasar: resource-efficient and qos-aware
cluster management. ACM SIGPLAN Not 49(4):127–144

DIAGRAMO. Diagramo http://diagramo.com
ECLIPSE. Eclipse https://eclipse.org/ide
Fowler M (2004) UML distilled: a brief guide to the standard object modeling

language. Addison-Wesley Professional, Boston
GANGLIA. Ganglia scalable distributed monitoring system for high-perfor-

mance computing systems http://ganglia.sourceforge.net
GC. Google Code https://code.google.com/
GENMYMODEL. GenMyModel https://www.genmymodel.com/
GIT. Git https://git-scm.com
GITLAB. GitLab https://about.gitlab.com
GLIFFY. Gliffy https://www.gliffy.com
Goldman M, Little G, Miller RC (2011) Real-time collaborative coding in a web

IDE. In: Proceedings of the 24th annual ACM symposium on user inter-
face software and technology, ACM, pp 155–164

Graham M (2011) Cloud collaboration: peer-production and the engineering
of the internet. Engineering earth. Springer, Netherlands, pp 67–83

HANA. SAP HANA http://hana.sap.com
Heineman GT, Councill WT (2001) Component-based software engineering.

Putting the pieces together. Addison-Westley, Boston
HELPIQ. Helpiq http://www.helpiq.com/
Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it

is, and what it is not. In: International conference on automatic comput-
ing, San Jose, CA. 26–28 June 2013

Hobfeld T, Schatz R, Varela M, Timmerer C (2012) Challenges of QoE manage-
ment for cloud applications. IEEE Commun Mag 50(4):28–36

HS. HelpServer http://www.helpserver.eu
HYPERIC. vRealize Hyperic http://www.vmware.com/products/vrealize-hyperic
Index Mundi (2011) Historical data graphs per year http://www.indexmundi.

com/g/g.aspx?v=81&c=us&l=en. Accessed 21 Sep 2015
Jackson KR et al (2010) Performance analysis of high performance computing

applications on the amazon web services cloud. In: IEEE second interna-
tional conference on cloud computing technology and science

Jam J, Brannock E, Dekhane S (2010) JavaWIDE: innovation in an online IDE:
tutorial presentation. J Comput Sci Coll 25(5):102–104

Jensen M, Schwenk J, Gruschka N, Iacono LL (2009) On technical security
issues in cloud computing. In: IEEE international conference on cloud
computing

JSFIDDLE. jsFiddle https://jsfiddle.net
Kats LCL et al (2012) Software development environments on the web: a

research agenda. In: Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming and
software. ACM

Kaufman LM (2009) Data security in the world of cloud computing. IEEE Secur
Priv 7(4):61–64

Kleppe AG et al (2003) MDA explained: the model driven architecture: practice
and promise. Addison-Wesley Professional, Boston

KODING. Koding https://koding.com
Lawrance J, Jung S (2013) Git on the cloud. J Comput Sci Coll 28(6):14–15
LP. LaunchPad https://launchpad.net/
Mehta N, Gupta VK (2013) A survey on use of SaaS of cloud in education. In:

International conference on cloud, big data and trust, Nov 13–15
MERCURIAL. Mercurial https://mercurial.selenic.com/
MONDO (2007) MONDO: scalable modeling and model management on the

cloud. http://www.mondo-project.org
NAGIOS. Nagios Monitoring System https://www.nagios.org

NETBEANS. Netbeans https://netbeans.org
OAUTH (2006) OAuth 2.0. http://oauth.net/2/
OCCI (2010) Open Cloud Computing Interface. http://occi-wg.org/
OID (2014) OpenID. http://openid.net/
OVF (2014) Open Virtualization Format. http://www.dmtf.org/standards/ovf
Piao JT, Yan J (2010) A network-aware virtual machine placement and migra-

tion approach in cloud computing. In: 9th IEEE international conference
on grid and cooperative computing

PL. ProjectLocker http://projectlocker.com/
RACKSPACE. Rackspace Cloud Monitoring http://www.rackspace.com/cloud/

monitoring
Rahabok I (2014) VMware vRealize operations performance and capacity man-

agement, Packt Publishing, ISBN: 1783551682 9781783551682
REMICS (2010) REuse and Migration of legacy applications to Interoperable

Cloud Services. http://www.remics.eu
RH. Robohelp http://www.adobe.com/RoboHelp‎
RS. RightScale http://www.rightscale.com
Sangroya A, Kumar S, Dhok J, Varma V (2010) Towards analyzing data security

risks in cloud computing environments. Information Systems, Technology
and Management. Springer, Berlin, Heidelberg, pp 255–265

SCALR. Scalr Cloud Management Solves http://www.scalr.com
Schmidt R (2012) Scalable business process enactment in cloud environments.

Enterprise, business-process and information systems modeling. Springer,
Berlin Heidelberg, pp 1–15

SF. SourceForge https://sourceforge.net
Simmhan Y, VanIngen C, Subramanian G, Li J (2010) Bridging the gap between

desktop and the cloud for escience applications. In: IEEE 3rd international
conference on cloud computing

SOAP (2007) Simple Object Access Protocol. http://www.w3.org/TR/soap/
Stahl T, Voelter M, Czarnecki K (2006) Model-driven software development:

technology, engineering, management. Wiley, Newyork
STARUML. StarUML http://staruml.io/
SUBVERSION. Subversion https://subversion.apache.org/
Thomas E (2004) Service-oriented architecture: a field guide to integrating

XML and web services. Prentice Hall PTR, Englewood Cliffs
Voorsluys W, Broberg J, Buyya R (2011) Introduction to cloud computing. In:

Buyya R, Broberg J, Goscinski A (eds) Cloud computing: principles and
paradigms. Wiley Press, New York

VP. Visual Paradigm http://www.visual-paradigm.com
VS. Microsoft Visual Studio https://www.visualstudio.com
Wu J, Liang Q, Bertino E (2009) Improving scalability of software cloud for

composite web services. In: IEEE Conference on Cloud Computing, 2009.
CLOUD ’09. IEEE, Bangalore, pp 143–146

Younge AJ et al (2010) Efficient resource management for cloud computing
environments. In: IEEE international green computing conference

ZABBIX. Zabbix http://www.zabbix.com
Zhu Y, Wang H, Hu Z, Ahn GJ, Hu H, Yau SS (2010) Efficient provable data pos-

session for hybrid clouds. Proceedings of the 17th ACM Conference on
Computer and Communications Security. ACM, New York, pp 756–758

Zissis D, Lekkas D (2012) Addressing cloud computing security issues. Future
Gener Comput Syst 28(3):583–592

https://www.codeplex.com/
http://www.coderun.com
http://compilr.com
http://creately.com
http://www.dataCentredynamics.com/research/market-growth-2011-2012
http://www.dataCentredynamics.com/research/market-growth-2011-2012
http://diagramo.com
https://eclipse.org/ide
http://ganglia.sourceforge.net
https://code.google.com/
https://www.genmymodel.com/
https://git-scm.com
https://about.gitlab.com
https://www.gliffy.com
http://hana.sap.com
http://www.helpiq.com/
http://www.helpserver.eu
http://www.vmware.com/products/vrealize-hyperic
http://www.indexmundi.com/g/g.aspx?v=81&c=us&l=en
http://www.indexmundi.com/g/g.aspx?v=81&c=us&l=en
https://jsfiddle.net
https://koding.com
https://launchpad.net/
https://mercurial.selenic.com/
http://www.mondo-project.org
https://www.nagios.org
https://netbeans.org
http://oauth.net/2/
http://occi-wg.org/
http://openid.net/
http://www.dmtf.org/standards/ovf
http://projectlocker.com/
http://www.rackspace.com/cloud/monitoring
http://www.rackspace.com/cloud/monitoring
http://www.remics.eu
http://www.adobe.com/RoboHelp
http://www.rightscale.com
http://www.scalr.com
https://sourceforge.net
http://www.w3.org/TR/soap/
http://staruml.io/
https://subversion.apache.org/
http://www.visual-paradigm.com
https://www.visualstudio.com
http://www.zabbix.com

	An overview of platforms for cloud based development
	Abstract
	Background
	Cloud architectural approaches and models
	Generic models and architectures
	Specific approaches

	Existing platforms and cloud programming environments
	Programming environments
	Repositories
	Cloud SW modelling
	Cloud SW composition tools
	Cloud SW processing and documentation tools
	Cloud SW management and orchestration tools

	Comparisons
	Challenges and open issues
	Software engineering aspects
	Interoperability
	Security
	Resource management

	Discussion and conclusions
	Authors’ contributions
	References

