
Academic Editor: Ilya Nifant′ev

Received: 16 April 2025

Revised: 19 May 2025

Accepted: 20 May 2025

Published: 26 May 2025

Citation: Polyakov, I.V.; Meteleshko,

Y.I.; Mulashkina, T.I.; Varentsov, M.I.;

Krinitskiy, M.A.; Khrenova, M.G.

Substrate Activation Efficiency in

Active Sites of Hydrolases Determined

by QM/MM Molecular Dynamics and

Neural Networks. Int. J. Mol. Sci. 2025,

26, 5097. https://doi.org/10.3390/

ijms26115097

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Substrate Activation Efficiency in Active Sites of Hydrolases
Determined by QM/MM Molecular Dynamics and
Neural Networks
Igor V. Polyakov 1, Yulia I. Meteleshko 1, Tatiana I. Mulashkina 1, Mikhail I. Varentsov 2 , Mikhail A. Krinitskiy 2,3

and Maria G. Khrenova 1,*

1 Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
2 Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia
3 Research Computing Center, Lomonosov Moscow State University, 119991 Moscow, Russia
* Correspondence: khrenovamg@my.msu.ru

Abstract: The active sites of enzymes are able to activate substrates and perform chemical
reactions that cannot occur in solutions. We focus on the hydrolysis reactions catalyzed
by enzymes and initiated by the nucleophilic attack of the substrate’s carbonyl carbon
atom. From an electronic structure standpoint, substrate activation can be characterized in
terms of the Laplacian of the electron density. This is a simple and easily visible imaging
technique that allows one to “visualize” the electrophilic site on the carbonyl carbon
atom, which occurs only in the activated species. The efficiency of substrate activation by
the enzymes can be quantified from the ratio of reactive and nonreactive states derived
from the molecular dynamics trajectories executed with quantum mechanics/molecular
mechanics potentials. We propose a neural network that assigns the species to reactive
and nonreactive ones using the Laplacian of electron density maps. The neural network is
trained on the cysteine protease enzyme-substrate complexes, and successfully validated
on the zinc-containing hydrolase, thus showing a wide range of applications using the
proposed approach.

Keywords: neural network; AI; hydrolases; QM/MM MD; substrate activation; Laplacian
of electron density

1. Introduction
Substrate activation takes place in the active sites of enzymes. These biocatalytic

systems perform chemical reactions that cannot occur in solutions or in the gas phase [1,2].
Among them, numerous reactions are initiated by the nucleophilic attack of the carbonyl
carbon atom of a substrate by a catalytic moiety. These reactions take place in hydrolases
(EC 3) and result in the cleavage of ester bonds (EC 3.1), peptide bonds (EC 3.4), and
other C-N (EC 3.5) or C-C bonds (EC 3.7). These enzymes have two common structural
features: an oxyanion hole, and a nucleophilic moiety that initiates reactions (Figure 1A).
The oxyanion hole carries amino acid residues that form hydrogen bonds with the oxygen
atom of the carbonyl group of the substrate, or a metal cation that forms a coordination
bond with the substrate. The oxyanion hole is responsible for lowering the energy barrier of
the nucleophilic attack and stabilization of the tetrahedral intermediate with the negatively
charged oxygen atom [3–5]. Figure 1B clarifies the formulation of the problem as described
below using the hydrolysis reaction by the imipenem substrate by the bacterial enzyme
metallo-β-lactamase, NDM-1.
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Figure 1. (A) The first step of the reaction initiated by the nucleophilic attack of the carbonyl carbon
atom of the substrate by the catalytic moiety Nu: X = O,C,N. Dashed violet lines depict hydrogen
bonds. ES stands for the enzyme-substrate complex, and TI for the tetrahedral intermediate. (B) Gibbs
energy profile of the imipenem hydrolysis in the active site of the metallo-β-lactamase NDM−1 (the
upper panel) [6]; heterogeneity of the reactant states of the NDM-1-imipenem complex with respect
to the distance of the nucleophilic attack [7] (the lower panel).

There is an urgent need to suggest criteria to discriminate between the reactive and non-
reactive species in these enzyme-catalyzed reactions, to avoid brute-force quantum-based
calculations of entire Gibbs energy reaction profiles in every application. If a proportion
of such calculations can be reduced to evaluate the dynamic features of enzyme-substrate
complexes within local areas of a configuration space, then a large reduction of effort would
be achieved. This requires the formulation of easily visible criteria based on either geometry
parameters, or on electronic structure features. To solve this task, it is required to carry
out molecular dynamics calculations with quantum-based potentials, as described, for
instance, in Refs [8,9]. However, the use of modern computational approaches based on AI
ideas allows one to progress towards facilitating a theoretical analysis. The present work is
probably the first approach toward this goal, as described below.

It has been shown for isolated molecules that the reactivity of unsaturated carbon
atoms can be quantified by an electron density analysis [10,11]. Recent theoretical studies
have expanded this approach for recognition of substrate activation in the active sites of
enzymes [8,9]. The Laplacian of electron density maps demonstrates an electron density
depletion area close to the carbonyl carbon atom in the direction of the nucleophilic attack
for the reactive (or activated) species (Figure 2). For the non-reactive species, the carbon
atom is enveloped by an electron density concentration area. This criterion is already
utilized for the binary classification of the species into different hydrolases [8,9]. This
electron density feature has been found to be a useful tool for quantifying the substrate
activation in related systems [8]. In particular, the substrate specificity of the SARS-CoV-2
main protease (Mpro) has been explained using this approach [8]. It was shown that
substrates with preferable amino acid residues at the P2 position are characterized by a
larger proportion of enzyme-substrate (ES) complexes, in which the carbonyl carbon atom
of the substrate is in an activated state. To perform this analysis, molecular dynamic (MD)
trajectories were calculated with the quantum mechanics/molecular mechanics potentials
(QM/MM MD). Then, the maps of the Laplacian of electron density were calculated in the
plane of a carbonyl group and a nucleophilic atom at certain MD frames. Geometry-based
criteria that allows one to discriminate reactive from non-reactive species were proposed
based on the analysis of the structures at these MD frames. Specifically, hydrogen bond
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distances within the oxyanion hole and the nucleophilic attack distance were identified as
practically useful criteria. As a result, a reduction of dimensionality of the entire system to
just three geometry parameters was achieved.

Figure 2. The workflow. QM/MM molecular dynamic trajectories are simulated. Laplacian of
electron density maps are calculated in the plane of the carbonyl group and a nucleophilic atom. The
inset shows the Laplacian of electron density map with zero (green bold lines), positive (blue dashed
lines), and negative (red solid lines) isovalues. Maps are reduced to only zero value contour lines.
CNN analyzes only a part of the images comprising a carbonyl group (highlighted green for reactive,
and red for non-reactive species) to make a binary classification: reactive or nonreactive.

Further evidence of the importance of the dynamic features of ES complexes is pro-
vided by consideration of the metallo-β-lactamases, NDM-1 and L1, carrying Zn2+ cations
within the oxyanion hole, and OH− as a nucleophile [7]. The flexibility of the ES complex
affects the efficiency of the imipenem substrate activation, and therefore, the energy profile
of the subsequent nucleophilic attack. Figure 1B summarizes the related findings of this
study for a more flexible system with NDM-1. The Gibbs energy profile of the first reaction
step was calculated using QM/MM MD umbrella sampling simulations, with the distance
of the nucleophilic attack as a reaction coordinate. Its value at the ES complex equals
2.85 Å. The unconstrained MD simulations in the reactant region demonstrates a broad
distribution of the nucleophilic attack distances, which can be described by using at least
three normal distributions. One population is characterized by an average value of 2.71 Å,
which is smaller than the reaction coordinate at the ES minimum. The most populated
proportion (42%) is centered at 2.88 Å, which is the same value as the ES minimum on the
Gibbs energy profile. The third proportion is quantified by the mean value of 3.05 Å; this
accumulates 29% of the states that correspond to considerably looser ES complexes. In
contrast, for a more rigid system with the L1 metallo-β-lactamase, the minimum on the
Gibbs energy profile is located at 2.75 Å, and the unconstrained dynamics of the reactant
complex demonstrates a narrow distribution of nucleophilic attack distances centered at
2.68 Å. Here, the dimensionality is reduced to only one geometry parameter, which helps to
observe differences between two systems with different metallo-β-lactamases. An analysis
of the Laplacian of electron density maps also demonstrates notable differences. In the
L1-ES, 100% of the considered set of 500 frames shows the activated or reactive carbonyl
carbon atom, whereas for the NDM-1-ES this figure is 90%. This is in line with the narrow
distribution of distances of the nucleophilic attack in the L1-containing system, and the
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presence of a proportion of loose conformations in the NDM-1-ES. Also, the importance of
activation is pronounced in all of the Gibbs energy profiles of the nucleophilic attack. For
tighter L1-containing reactant complexes with a higher degree of activation, the subsequent
nucleophilic attack occurs with a lower energy barrier and larger tetrahedral intermediate
stabilization, relative to the ES.

Until now, Laplacian electron density maps have been calculated and manually classi-
fied for sets of frames extracted from QM/MM MD trajectories, not exceeding 500 frames.
In these QM/MM MD simulations, the energies and forces are calculated within the QM
subsystem at each trajectory step and then transferred to the MD block. Therefore, the
molecular orbitals, and consequently, the electron densities, can also be calculated at each
MD step, allowing the Laplacian of electron density analysis to be performed simultane-
ously at each step. The typical length of the QM/MM MD trajectory is tens of picoseconds,
calculated with a 1 fs time step. Utilizing GPUs allows the calculation of around 2 ps per
day on a single GPU card, producing 2000 Laplacian electron density maps. It is hard to
classify this number of images manually.

Recent advances in the in silico development of novel proteins, including enzymes
with desired functions [12–19], brings further applications to the suggested methodology
for estimating enzymatic activity. Once the 3D structure of a novel hydrolytic enzyme is
generated, substrates of interest can be inserted into the active site of the molecular model
and the activation efficiency can be evaluated.

Herein, we propose an on-the-fly method for estimating reactivity using artificial
intelligence algorithms based on image recognition (Figure 2). We propose a convolutional
neural network (CNN) that can discriminate reactive from non-reactive species. The
model was trained on the enzyme-substrate complexes of the main protease Mpro from
the SARS-CoV-2 and 6 substrates and then checked on similar systems with three other
substrates. For additional evaluation, we utilized a set of the Laplacian electron density
maps obtained from two very different hydrolase, each carrying two zinc cations in the
active site and a different nucleophile.

2. Results and Discussion
We obtained datasets of different sizes for training and validation composed of the

Laplacian of electron density maps including only the carbonyl groups. All images were
initially divided into two groups: reactive and nonreactive. The size of the initial images
that carried three atoms was set to 960 × 720. The images were cropped to a size of
550 × 720 and included only the carbonyl group (Figure 2). The datasets for the CNN
fitting included 1000, 1500, 2000, 2500, and 3000 images. All the datasets were divided
into training and validation subsets in the ratio of 4:1. For all these datasets, the neural
network models were built; it was found that a size of 2500 images is optimal for the
model fitting. Therefore, the following results only include data obtained using the neural
network trained and validated on the dataset of 2500 images. The details of the convolution
neural network are presented on Figure 3A; Tensorflow and Keras were utilized within
the Python framework. The neural network in Keras format, Python 3.6 scripts, and all
the datasets can be found at the ZENODO. To avoid overfitting the CNN, we utilized an
early stopping callback function. Our model monitors a validation loss during the fitting
procedure and allows recover of optimal weights if the validation loss starts growing from
the minimal value. The accuracy of the CNN was found to be higher than 0.98 with respect
to the validation set (Figure 3B) and 1.00 for the training set. The next step was application
of the CNN to the other model systems.
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Figure 3. (A) The scheme of the CNN for discrimination of reactive and nonreactive states in the
active sites of hydrolases. (B) The CNN fitting procedure; weights obtained in epoch 10 were utilized.

The CNN model was trained using images obtained from the structures from the
QM/MM MD simulations of the enzyme-substrate complexes, with the substrates con-
taining one of the following residues at P2: Ala, Phe, Ile, Gln, Tyr, or Trp. We performed
additional simulations with other substrates containing Ser, Thr, or Pro at P2 to test the
CNN. For each system, we manually selected 100 images corresponding to the reactive
species, and 100 images with the nonreactive states. These images were classified using
the CNN model. For systems containing Ser or Thr at P2, all the images were classified
correctly. For the Pro containing systems, there were both false positive and false negative
results. Six reactive species were classified as nonreactive and eight non-reactive species
as reactive. Figure 4A demonstrates the violin plots of the confidence of prediction of the
reactive/non-reactive species. All average confidence values are larger than 0.96. The two
highest values correspond to the datasets with the non-reactive species with either a Ser or
Thr residue at P2; these exceeded 0.99. We analyzed the images that corresponded to the
lowest confidence of reactivity prediction; these were two reactive ones for the systems with
a serine-containing substrate (Figure 4B), and two nonreactive with the system containing a
proline residue at P2 (Figure 4C). For the reactive species, it seems that the difficulties for the
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CNN were due to the small area of electron density depletion. However, the non-reactive
species looked similar to the other images of the same type making this result non-evident.

Figure 4. Analysis of images obtained from the frames of QM/MM MD trajectories of enzyme
substrate complexes of the Mpro and substrates with Pro, Ser, or Thr at P2. (A) Confidence of
reactivity determination for the reactive (marked with R, green circles) and non-reactive (marked
with N, red circles) species. Arrows demonstrate the points corresponding to the images from panels
(B,C) with the lowest values of confidence. (B) Images with the lowest confidence of determination
among the reactive species. (C) Images with the lowest confidence of determination among the
non-reactive species. (D) Alternation of reactive (with 1 value at y-axis) and non-reactive (with
0 value at y-axis) species along the QM/MM MD trajectory of the reactant complex of the Mpro and a
substrate containing an Ile residue at P2.

We analyzed whether the transitions between reactive and non-reactive species are
periodic processes or stochastic. Figure 4D demonstrates an example of such transitions
in a reactant complex of the Mpro and a substrate containing an Ile residue at P2, with the
proportion of reactive species around 1/2. The sequence of transitions is random with the
duration of either of the two states being shorter and longer without any regularity.
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To study transferability of results, we obtained another computational experiment
and utilized a set of 100 random frames from the QM/MM MD trajectory of the enzyme-
substrate complex of the bacterial enzyme metallo-β-lactamase NDM-1 and imipenem
antibiotic. This complex differs in both respects from the Mpro-oligopeptide complexes
(Figure 5B,C). In NDM-1, the nucleophilic moiety is the hydroxide anion. The oxygen
atom performs a nucleophilic attack instead of the sulfur atom of the cysteine residue in
the Mpro. The oxyanion hole is formed only by the Zn2+ cation instead of two hydrogen
bonds, with the main chains of Cys145 and Gly143 in the Mpro. Among 100 images, only
two were classified incorrectly (two non-reactive species were recognized as reactive by
the CNN). For those classified correctly (Figure 5A), we obtained a distribution of the
confidence of determination. The average confidence value is 0.99 and only two images are
determined with a confidence lower than 0.9. The outlier is the image with the confidence
of determination being 0.59, and it is depicted in Figure 5A. This can be explained as the
electron density concentration area in the region of the nucleophilic attack being narrow,
similar to the reactive species.

Figure 5. (A) Confidence of reactivity determination for the dataset from the NDM-1-imipenem
complex containing both reactive (green circles) and non-reactive (red circles) species. A nucleophile
(yellow) and an oxyanion hole (lavender) in the cysteine protease Mpro (B) and metallo-β-lactamase
NDM-1 (C).

3. Models and Methods
We utilized a model system composed of the SARS-CoV-2 Mpro and the chromogenic

oligopeptide substrate from ref [8]. The source of coordinates of heavy atoms of the Mpro

was a crystal structure (PDB ID: 6LU7) [20]. We considered a set of enzyme-substrate
complexes studied in ref [8] and those obtained in this study. These included oligopeptides
containing Ile, Phe, Ala, Gln, Tyr, Thr, Ser, Pro, and Trp residues at P2 position on the
substrate. The sequence of the entire fluorogenic substrate is as follows: ACE–P4 (Val)–P3
(D-Tyr)–P2 (X)–P1 (Gln)-ACC, where ACE means that the N-terminal amino acid residue
is acetylated, and ACC is a fluorescent tag 7-amino-4-carbamoylmethylcoumarin. The
systems that were not considered in ref [8] were manually prepared by substitution of
Ile at P2 on the substrate in the enzyme-substrate complex. Thus, the prepared systems
were preliminary equilibrated similarly to ref [8]. During the preliminary steps, classical
MD simulations were performed using the NAMD 2.13 [21] program. We utilized the
CHARMM36 [22,23] force field parameters for protein atoms, the CGenFF [24] parameters
for ACC, and the TIP3P [25] parameters for water molecules. The 1000 steps minimization
followed by the 1 ns run was utilized to equilibrate the system. Harmonic potentials
were added for two noncovalent interactions along classical MD trajectories. Namely,
we constrained a distance between the C atom of the substrate and the S atom of the
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Cys145 (centered at 2.9 Å with a force constant of 80 kcal·mol−1·Å−2) and a hydrogen bond
between the hydrogen atom of the side chain of Cys145, and the side chain nitrogen atom
of His41 (centered at 1.9 Å with a force constant of 20 kcal·mol−1·Å−2). These constraints
were applied only in the classical MD simulations.

The last frames of the corresponding classical MD trajectories were utilized to create
a starting set of coordinates for the MD simulations with the QM/MM potentials. The
MM subsystems were described with the same force field parameters as in the preliminary
classical MD simulations. The QM subsystems were described at the Kohn-Sham DFT
level with the PBE0 [26] functional, with the 6–31 G** basis set and an empirical dispersion
correction D3 [27]. It included the fragment of the substrate (a carbonyl fragment of P2
(X) and all the atoms from P1 (Gln) and ACC), the side chain of His41, Cys145 (catalytic
dyad) and Gly143, and the CONH groups of the backbone connecting Asn142 with Gly143,
and Ser144 with Cys145 (oxyanion hole) giving 73 atoms in total. Hydrogen link atoms
were added to the covalent bonds between the QM and MM subsystems. The TeraChem
program [28] was used to compute energies and forces in the QM subsystem. The QM/MM
MD simulations were performed within the TeraChem-NAMD interface [29] using an elec-
trostatic embedding scheme, i.e., the electron density of the QM subsystem was polarized
by point charges of the MM subsystem due to the contributions of the MM atomic charges
to the one-electron part of the QM Hamiltonian. The 10 ps MD trajectories were calculated
for each enzyme-substrate complex.

Both classical and QM/MM MD calculations were performed with a 1 fs integration
time step in the NPT ensemble at p = 1 atm and T = 300 K. The cutoff distances were 12 Å
for both the electrostatic and van der Waals interactions, with switching to the smoothing
function at 10 Å. The VMD software [30] was used for preparation of the model systems
and subsequent analysis of the molecular dynamics (MD) trajectories.

Also, a set of 100 MD frames were extracted from the MD trajectory of the NDM-1
complex with the imipenem from ref [6]. The details of the calculations can be found in the
original paper [6]. The QM/MM protocol was the same as for the systems with the Mpro,
as discussed above.

The Laplacian of the electron density, ∇2ρ(r), [8,31–34] was calculated at certain MD
frames in the plane containing the carbonyl group of the substrate, and an atom of the
nucleophilic species that can attack a carbonyl carbon (a sulfur atom of the Cys145 in the
Mpro or an oxygen atom of the hydroxide anion in the NDM-1). In these maps (Figure 2),
we can observe electron density concentration regions with ∇2ρ(r) < 0 (electrophilic sites)
and electronic density depletion areas with ∇2ρ(r) > 0 (nucleophilic sites). An electron
density analysis was performed in the Multiwfn program package [35]. Usually, a set of
contour lines with different isovalues are put to the Laplacian of electron density contour
maps (Figure 2). In our case we were only interested in the contour line ∇2ρ(r) = 0 and its
behavior in the carbonyl carbon atom region. Therefore, we drew a minimalistic plot with
the only contour line with the Laplacian of electron density equal to zero and cropped the
image remaining with only a carbonyl group in each image (color-filled parts of images
on Figure 2). We were not interested in the structure of the nucleophile; moreover, both S
and O atom can act as nucleophiles and the differences in their electronic structures can be
recognized by the CNN incorrectly. The sample input files for the Laplacian of electron
density calculations using the Multiwfn and Python scripts for visualization can be found
at the ZENODO. The suggested way of data analysis is transferable and can be applied to
any model system of hydrolytic enzymes that initiate reactions with the nucleophilic attack
of the carbon atom. The images of ∇2ρ(r) maps obtained by the Multiwfn are similar for
different systems; therefore, the designed algorithm can be easily applied for systems of
such type.
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4. Conclusions
We obtained a convolutional neural network that can automatically recognize whether

a substrate is reactive (or activated) in the active site of a hydrolase, or not. This model
was trained on the enzyme-substrate complexes of the Mpro with different substrates and
examined using similar models with other substrates of this enzyme. Another dataset
was prepared from the molecular dynamic trajectory of the enzyme substrate complex
of the metallo-β-lactamase, NDM-1, and imipenem (an antibiotic). The neural network
recognized both reactive and non-reactive species in all the datasets, with a low percentage
of errors, that is the substrates under consideration can be, at least, semi quantitatively
divided into reactive, non-reactive and intermediate types. This technique can be utilized
for the on-the-fly determination of substrate activation in the active site of hydrolytic
enzymes of different types, along with the molecular dynamic trajectories calculated with
the combined quantum mechanics/molecular mechanics potentials. The growing interest
in the suggested methodology is due to the development of AI-based methods to design
novel enzymes. It can be utilized to perform quick scan of substrates and to determine
their activation efficiency using the developed enzyme.
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