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Abstract
There is an increased interest in using social robots to assist older adults during their daily life activities. As social robots are
designed to interact with older users, it becomes relevant to study these interactions under the lens of social cognition. Gaze
following, the social ability to infer where other people are looking at, deteriorates with older age. Therefore, the referential
gaze from robots might not be an effective social cue to indicate spatial locations to older users. In this study, we explored the
performance of older adults, middle-aged adults, and younger controls in a task assisted by the referential gaze of a Pepper
robot. We examined age-related differences in task performance, and in self-reported social perception of the robot. Our main
findings show that referential gaze from a robot benefited task performance, although the magnitude of this facilitation was
lower for older participants.Moreover, perceived anthropomorphism of the robot varied less as a result of its referential gaze in
older adults. This research supports that social robots, even if limited in their gazing capabilities, can be effectively perceived
as social entities. Additionally, this research suggests that robotic social cues, usually validated with young participants, might
be less optimal signs for older adults.
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1 Introduction

Social robots have the potential to assist different populations
to perform everyday activities, including patients [1–3], stu-
dents and instructors [4,5], and older adults [6–8]. Indeed,
the current number of people over 65 years old will double
by 2050 [9], and thus, older adults will represent one of the
most important potential beneficiaries of social and assistive
robots.
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In contrast to non-embodied agents, an important advan-
tage of embodied robots is their ability to produce social cues
through body gestures. Therefore, it is interesting to study the
role of these social cues in human-robot interaction (HRI),
and in particular with older users. However, and despite the
prevalence of research exploring the positive effects of social
cues from robots [10,11], few of these studies compare the
effect of these cues between older participants and younger
controls [8]. For instance, research in social cognition has
shown impairments in gaze following with older age [12].
Gaze following consists of the ability humans have to identify
where the others are looking at, to engage in joint attention
[13]. This ability is directly linked to referential gaze, a social
cue of paramount importance that consists of a combination
of head and eye movements to point to a location in space
to another person [13–15]. Referential gaze has successfully
been used in robots that lack the ability to move the eyes
[11,16]. Some of those robots, like Pepper1 [17], are widely
used in research on socially assistive robots [18] for older
adults. Thus, there is a need to study the influence of robotic
referential gaze on older users.

1 https://www.softbankrobotics.com.
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The benefits of studying referential gaze in socially assis-
tive robots with older adults are twofold. First, it makes it
possible to learn about the social responses that referential
gaze from a social robot can evoke in this population, and
thus, to gain more insight into human cognition [19,20].
Given the expected decline in social cognition with older
age, research on the impact of robotic referential gaze in
older adults can reveal new insights about the perceived social
nature of this cue in robots and see if this decline extends to
non-human faces. Second, research on referential gaze froma
widely available robot, like Pepper, serves to assess its com-
munication capabilities in scenarios with older users. This
research can inform the future design of social robots [21].
For instance, if the age-related decline of referential gaze
extends to human-robot interactions, designers could create
other cues that might prove more effective for older users.
In summary, this research can have practical implications for
the design of robotic assistance.

The work presented in this paper explores potential age-
related differences in the perception of referential gaze from
a social robot during a collaboration inspired by a daily life
activity. To do so, we created an online task consisting of
making a sandwichwith the guidance of a robot. The task fea-
tured a video recording of a Pepper robot that remained static
while looking towards the camera at all times, or moved its
head towards an ingredient to initiate referential gaze (Fig. 1).
Wecompared three agegroups, namely youngadults,middle-
aged adults, and older adults, in task performance as well as
self-reported social perception of the robot.We hypothesized
that there would be differences in these measures among
the groups of age. A final sample of 377 participants was

Fig. 1 Snapshot of the online task consisting on preparing a sandwich.
Verbal instructions were provided by a Pepper robot, either accompa-
nied by referential gaze or static positioning towards the camera. This
frame is part of a trial inwhich the robotmimics referential gaze towards
the cheese, ingredient that the participant must click on

included in the analyses. The remote nature of the study was
an imposition stemming from the effects of the COVID-19
pandemic and the impossibility of performing face-to-face
studies.

This paper extends our previous preliminary study [22] by
the analysis of an extended data set of more than one hundred
new participants. Crucially, the new data altered the data set
qualitatively, as it permitted the creation of three age-groups
similar in size and age distribution that led to new analyses.
Finally, this new division provided essentially new insights in
age-related differences in the perception of referential gaze.

2 RelatedWork

There is extensive researchon referential gaze inHRI (for two
reviews on this, Ruhland et al. [23] andAdmoni & Scasellatti
[24]), as well as research on gaze following in older adults
(for a review, see Zafrani et al. [8]). Nevertheless, to the best
of our knowledge there is not published work involving both,
with the notable exception of Pavic et al [25]. In this section,
we will introduce these topics separately, as well as the use
of online studies in HRI.

Robotic eye gaze is a well-established topic in HRI.
Appropriate artificial gaze cues from robots have repeatedly
shown a positive impact on the human partner. For instance,
listeners’ recall of the content of a story told by a robot can
be improved if accompanied by the corresponding gaze from
the robot towards the listeners [26]. Similarly, robotic gaze
has been shown to regulate participants’ roles during conver-
sations [10]. Gaze aversion can also be effectively performed
by a robot bymoving its head away from the human, eliciting
a perception of thoughtfulness on the latter [27].

In scenarios where a robot provides assistance, its referen-
tial gaze towards objects can help users to find those objects
[24], although the benefits vary among studies. The work of
Kontogiorgos et al. [28] explored the influence of eye gaze
during a situated human-agent collaboration. They found that
interaction times with an embodied agent were higher when
this used non-verbal cues such as referential gaze, leading to
a higher engagement with the agent in contrast to conditions
not involving these cues. Nonetheless, Mwangi et al. [16] did
not find that referential gaze from a robot moving its head
affected the completion time of the task, although it did help
to reduce the error rate. This result aligns with the research
of Admoni et al. [11], who found robotic referential gaze to
be a useful social cue during challenging tasks in contrast to
simple ones.

The mixed results from previous research suggests
context-dependent outputs fromrobotic referential gaze, sim-
ilarly to human gaze [15,29]. Although there seems to be a
clear benefit in equipping robotswith referential gaze, regard-
less of their degrees of freedom, the role of robot gaze as a
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social stimulus is not yet fully understood. Recent research
has shown that making eye-contact with a robot engages dif-
ferent brain areas as compared to making eye-contact with
humans, namely the right temporal parietal junction and
the dorsolateral prefrontal cortex [30]. Nevertheless, making
eye-contact with a robot can also evoke similar physiolog-
ical responses as eye-contact between humans [31]. There
is also behavioral evidence of social perception evoked by
robots during a non-predictive cueing procedure. Participants
showed faster reaction times towards the location gazed at
by the robot if eye-contact was made immediately before
[32]. Finally, although infants are sensitive to human features
embedded in a robot, such as eyes and face, they do not react
to referential gaze from robots, suggesting that the reflexive
following of robotic gaze would be generalized from human
gaze at a later stage in life [33].

As highlighted in the introduction, social robots will be
at the service of an ageing population. However, research
in human cognition has shown that social cognition dete-
riorates naturally as people age, independently of broader
cognitive or perceptual decline [12,34,35]. There is evidence
of age-related changes in the way social stimuli are perceived
[12,34,36]. These range from a decline in emotion recogni-
tion [37–39] to difficulties in the identification of intentions
and thoughts from others [13,40] in normal ageing. Gaze
following, required to initiate joint attention [13], deterio-
rates with age [12,36]. To the best of our knowledge, there is
just one published study addressing the relationship between
age and the perception of the gaze of an embodied conver-
sational agent [25]. Their results suggest that this decline is
also present with virtual entities that resemble a human.

Exploring the age-related decline in gaze following with
the use of robotic social cues would allow us to understand
more about the true nature of social robots from the lens
of social cognition. Additionally, it would inform about the
effectivity of certain robotic cues for different user profiles.
While the former approach is not new [19], it frequently
used a more sophisticated robot, the iCub [41], capable of
more complex behaviors given its degrees of freedom. Our
research employs aPepper robot [17], lacking eyemovement,
to comply with the last approach by learning more about a
system available for the general public.

In this study, we designed an online task aimed at mimick-
ing a real interaction between a human and a Pepper robot.
This remote approach permitted to control the influence of
some extraneous variables on the main outcome variables.
One example is the effect of social presence caused by the
robot looking at the user, which may lead the users to start a
conversation with the robot and translated to higher comple-
tion times as in Kontogiorgos et al. [28]. Other HRI studies
have also used online tasks [42,43], and remote researchmea-

suring reaction times have demonstrated to be reliable when
clear instructions are provided [44,45]. An online, remote
research approach is not surprising given the growing reach
of the internet access worldwide, even among older adults.
In particular, this approach offers the opportunity to partici-
pate from home to those older people with reduced mobility,
difficulties to travel freely, or both, as those living in retire-
ment homes. Finally, online researchmakes it easier to collect
more data in less time, enabling a higher statistical power
[46]. This is important, as small samples in HRI research
have often led to underpowered studies [47].

3 Aim of the Study

During the current task, a Pepper robot [17] guided par-
ticipants of different age groups in preparing a sandwich
by searching and clicking on the ingredients. There were
two variations of the task corresponding to variations of
the robot’s behavior: A verbal only robot, who gave verbal
instructions and always looked to the camera during the task,
and a gaze robot, who in addition to verbal instructions also
moved its head towards the instructed ingredient. Referential
gaze was elicited by making all head movements correspond
to the verbalized ingredients, although participants were not
informed about this.

We applied a 2x3 quasi-experimental mixed design with
two robot conditions, gaze and verbal only (within-subject),
and the age groups, young adults (YA), middle-aged adults
(MA) and older adults (OA) (between-subjects). The age
groups were formed based on Levinson’s stages of adult
development [48] and the average working retirement age
of 65. The age ranges were 18-44 years for young adults, 45-
64 years for middle-aged adults, and 65-88 years for older
adults.

In our previous study [22], we discussed that the age dis-
tribution of the group under 65 years was too broad and
could have occluded the appearance of an age-related effect
of gaze following (18-64 vs. +65). In this study, we expected
an age (YA,MA, OA) x robot condition (gaze vs verbal only)
interaction based on previous research [12]. A different time
facilitation, both in reaction times and task-completion times,
between age groups caused by the use of robotic referential
gaze would suggest the use of social cognition mechanisms
to process this cue. Moreover, these mechanisms would be
activated in the absence of eye movement. Finally, this result
would suggest that simulating human cues in robots is not
necessarily an efficient design strategy if aimed for older
adults. We performed additional analyses to explore the per-
ception of the robot in self-reported questionnaires.
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Table 1 Final sample
description (I), N=377

Group Age (years) Gender Comfort w/ computers Familiar w/ Pepper

Min Max Mean SD M W Other No Not Sure Yes No Not Sure Yes

OA 65 88 69.4 3.8 74 65 0 1 5 133 96 26 17

MA 45 64 58.2 4.8 36 66 1 3 9 91 65 20 18

YA 18 44 25.1 6.1 67 64 4 3 4 128 47 35 53

Table 2 Final sample description (II)

Group Completed education

High School Bachelor’s Master PhD

OA 35 72 17 7

MA 26 61 8 6

YA 63 39 24 6

4 Methods

4.1 Participants

A total of 422 participants completed the study. 10.7% of
the participants were excluded from the analyses either due
to incomplete data in age (n = 8); self-reported technical
problems (n = 3); and unreliability of their mean delays
between the onset of the trial and the appearance of the stim-
uli (n = 34, see Sect. 4.5). Participants were recruited from
Spanish universities attending adult and regular education
programs. We distributed the call through their designated
mailing lists. Participation was voluntary and approval for
distribution was obtained from the corresponding coordina-
tors at each university. Inclusion criteria were having normal
or corrected-to-normal vision, being fluent in Spanish, and
being cognitively healthy.

Tables 1 and 2 summarize the characteristics of the par-
ticipants included in the analysis. We performed a G*Power
analysis [49] with the final sample to calculate the statis-
tical power of our experiment [within-between interaction;
N = 377; partial η 2 = 0.06]. The analysis returned a power
of 1 − b = 0.99, indicating a high probability of finding a
significant interaction if it existed.

Abbreviations for Tables 1 and 2:

Young adults [YA]
Middle-aged adults [MA]
Older adults [OA]
Standard Deviation [SD]
Men [M]
Women [W]

4.2 Stimuli

The task featured a central video of Pepper surrounded
by sixteen ingredients. For the gaze robot condition, five
head movements from Pepper were created as a baseline
and were video recorded. These were designed using the
pitch and yaw degrees of freedom of Pepper’s head2. In the
task, position one corresponded to the top ingredient (just
pitch movement). Position five was located on the robot’s
left (clockwise, just yaw movement). Positions two to five
were combinations of these two movements. Head move-
ment towards these were tuned by varying pitch and yaw
until they allowed discrimination between near ingredients.
The rest of the positions (six to sixteen) and head movements
are mirrored versions of the original ones in the imaginary
horizontal and vertical axes that cross the center of the cir-
cle (See Fig. 2 for locations). The ingredient was mentioned
last in every sentence to ensure that the end of the head
movement towards the ingredient and the last syllable of
the ingredient co-occured (See Supplementary Information
to see the sentences and the corresponding yaw and pitch
angles).

4.3 Procedure

For each variation of the task (i.e. for each condition),
participants had to prepare two sandwiches following instruc-
tions from the robot, who named each ingredient one at
a time before the user clicked on it. Within the task, the
selection of an ingredient constituted a trial. For each con-
dition, we measured task-completion and reaction times,
among other questionnaires. The order of the sandwiches
for each condition and order of the ingredients in each sand-
wich were fixed. The presented order of the blocks (task
and questionnaire for each condition) was counter-balanced
and participants were randomly assigned to one of the two
possible orders (50.4% started with the verbal only con-
dition). The main structure of the experiment is shown in
Fig. 3.

Participants were first asked to wear headphones to min-
imize possible external noise and to calibrate the volume of
the robot instructions until they heard them clearly. They also

2 http://doc.aldebaran.com/2-4/family/robots/joints_robot.html.

123

http://doc.aldebaran.com/2-4/family/robots/joints_robot.html


International Journal of Social Robotics

Fig. 2 Numerical representation of each ingredient during the task

filled a brief test to ensure they could see the screen accu-
rately and were requested to exit the study if they failed for
this reason. All participants were encouraged to avoid dis-
tractions, to be rested before starting, to use a mouse device,
and to refrain from talking about the study with other poten-
tial users. They were informed about the content, aim and
procedure of the study, and the possibility of ending partici-
pation at any time. They gave written consent to participate
in accordance with the declaration of Helsinki. After filling
a demographic survey, they performed three trials in which
instructions appeared in the middle as text, instead of the
robot. All the ingredients and their names were shown to
them to exclude the possibility of a participant not recogniz-
ing certain ingredients. Finally, participants were told that
the study would last about 15 minutes and were encouraged
to perform the tasks as well as they could. No personal data
that allowed for their identification were obtained during the
study.

4.4 Materials

The task program, including the self-report questionnaires,
was built using Labvanced [50], an online platform to design
and distribute online experiments. All responses were regis-
tered in Labvanced.

Prior to the beginning of the task, participants filled a
demographic survey in which they reported their national-
ity, age, gender (man, woman, other), completed education
(school, high school, bachelor’s, master, PhD, other), com-
fort with computers, and familiarity with Pepper. After
completing a task, participants completed the following set
of self-report measures:

• The mental demand subscale of the NASA-Task Load
Index (NASA-TLX) [51], a computerized 21-point slider
[1=Low; 21=High] for assessing the mental demand of
the task.

• A modified version of the anthropomorphism seman-
tic differential subscale [5-points] from the Godspeed
Questionnaire Series [52], to measure the perceived
anthropomorphism of the robot. The scale was modi-
fied due to the irrelevance of an item within this study,
(moving rigidly-elegantly). Moreover, we added the item
mechanical-organic, as in [53]. The subscale was com-
posed of five items in total.

• The Robotic Social Attributes Scale (RoSAS) [53], a 5-
point likert scale [1=Totally disagree; 5=Totally agree],
to measure the perception of warmth, competence, and
discomfort caused by a robot. Each dimension was com-
posed of six items.

• Q1: Did you notice any difference between the robots in
the tasks? to check whether the person was aware of the
difference between robot conditions. Participants could
choose between yes and no, and were given some space

Fig. 3 Structure of an experimental session: The letter ‘B’ stands for ‘Bread’, the number in ‘In. X’ represents the order of an ingredient, ‘Q’ refers
to the questionnaire, ‘RT’ to ‘Reaction Time’ and ‘TCT’ to ‘Task-Completion Time’
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to write what they thought the differences were. This
question was made at the end of the study.

• Q2: Which robot did you prefer from the ones you inter-
acted with? to check their preferred robot condition (gaze
or verbal only). They were presented with two simulta-
neous videos of each condition and were asked to choose
between robot a (corresponding to verbal only), robot b
(corresponding to gaze), and no preference. This question
was made at the end of the study.

4.5 Behavioral Measures

We defined task-completion time as the sum of correct trial
times per condition. A trial was correct when the ingredi-
ent mentioned by the robot was clicked. Reaction time was
defined as the time span between the onset of the video frame
when the robot starts naming an ingredient and the moment a
participant clicked on that ingredient. Because of the remote
nature of the study, therewas a certain delay (inmilliseconds)
between the onset of the trial and the moment the stimuli
appeared in the screen of a participant. This delay could
somewhat differ between participants, for instance based on
the computer capabilities or its operating system. For this
reason, we corrected all reaction and trial times by subtract-
ing the mean delay that each participant experienced during
the study. Participants with mean delays that were not reli-
able, as indicated by their extreme standard deviations, were
excluded from the analysis.

Because the selection of the ingredient bread was pre-
dictable, always first/last ingredient, we removed the corre-
sponding trials from the analysis. Additionally, participants
had to repeat incorrect trials for the same ingredient until it
was correct or until they reached three incorrect attempts.
In incorrect and consecutive trials with the same ingredient,
reaction time was excluded from the analysis. The maximum
number of correct trials per task was ten, corresponding to
five ingredients for each of the two sandwiches.

5 Results

The data was analyzed with the R software [54]. Due to
violations of assumptions for the mixed ANOVA test, we
analyzed the times and questionnaires using Mixed Robust
ANOVA tests with the WRS2 package [55,56], using 20%
trimmed means and 2000 bootstrapped samples. We used ξ̂

as a measurement of the effect size to report the importance
of significant results for the robust analyses [57,58]. This
measure is equivalent to Cohen’s d for t-tests or Partial Eta-
squared (η2p) in ANOVA. Values of 0.10, 0.30, and 0.50 were
taken to correspond to small, medium and large effect sizes
respectively [56,57]. All Post Hoc analyses had Bonferroni
corrected adjusted p-values .

5.1 Reaction Times and Task-Completion Times

Wepresent the reaction times (RT) and task-completion times
(TCT) for the two robot conditions: gaze (GR) or verbal only
(VR); per age groups: young adults (YA),middle-aged adults
(MA), and older adults (OA). To analyze the RT data, we
used the median RT of the correct trials within each task per
participant (Fig. 3). Incorrect trials, 2% of all, were excluded
from the analysis.

Themean RT for the different age groups and robot condi-
tions are shown in Fig. 4A (left). Means, standard deviations
and p-values for RT are also reported in Table 3. There was a
significant difference between the robot conditions, showing
faster reaction times for the GR condition as compared to the
VR condition (ξ̂ = 0.47). We also found a main effect of age
(ξ̂ = 0.81). A Post Hoc analysis showed significant differ-
ences in RT between each age group pair, indicating slower
RT with older age (all p < .001). We found an interaction
effect between robot condition and age group, suggesting
that the difference between the robot conditions was espe-
cially large in the YA (mean difference between VR and GR
is 702 ms). We explored this interaction by performing a
paired robust t-test to compare the robot conditions for each
age group. All groups showed significantly faster reaction
times for the GR condition compared to the VR condition (all
p < .001), although the effect size was particularly large for
YA (ξ̂ = 0.9; ξ̂ = 0.45 forMAand ξ̂ = 0.4 for OA). In order
to take into account age-related differences in overall RT, we
calculated the strength of the facilitation as a proportional
difference score (RTV R − RTGR)/RTGR , following previ-
ous research in spatial attention [12,59]. A one-way Robust
ANOVA showed a significant difference between age groups
in the strength of the facilitation effect (ξ̂ = 0.58). A Post
Hoc analysis indicated a significant difference in facilita-
tion effect for RT between YA & MA and YA & OA (both
p < .001), but not betweenMA&OA . In summary, reaction
times were faster with the gaze robot than with the verbal
only robot, especially in young adults (Fig. 4B and Table 3).

Themean TCT for the different age groups and conditions
are shown in Fig. 4A (right). Means, standard deviations and
p-values for TCT are also reported in Table 3. Completion
timeswere significantly faster for theGRcondition compared
to the VR condition (ξ̂ = 0.33). We also found a main effect
of age (ξ̂ = 0.79). A Post Hoc analysis showed significant
differences in TCT between each age group pair, showing
slower completion times with older age (all p < .001).
We also found an interaction effect between robot condi-
tion and age group, suggesting that the difference between
the robot conditions was especially large in the YA. We
explored this interaction by performing a paired robust t-test
to compare the robot conditions for each age group. The YA
and MA groups showed significantly faster task-completion
times for the GR condition compared to the VR condition
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Fig. 4 A)MeanReaction Time (left) andTask-Completion Time (right)
for each age group: younger adults (YA), middle-aged adults (MA), and
older adults (OA). B) Violin plots with means in red of the proportional
differences between robots. Six extreme values above 1.5were removed

to constrain the proportions of the RT graph, five from YA (1.54, 1.79,
2.34, 2.53 and 2.58) and one from OA (1.58). Error bars show 95%
bootstrapped confidence intervals in all graphs

Table 3 Main/interaction
effects on the times and mean
time ± standard deviation for
every level of the variables

RT (ms) TCT (s) % Faci. (RT) % Faci. (TCT)

Age group p < .001 (***) p < .001 (***) p < .001 (***) p < .001 (***)

YA 1621± 560 33.1± 5.94 65± 48 25.6± 20.3

MA 2201± 531 40.5± 6.4 22.6± 32.6 9.1± 19.4

OA 2607± 827 44.7± 8.7 23.4± 34.5 6.8± 21.1

Robot p < .001 (***) p < .001 (***) – –

VR 2397± 720 41.4± 7.71

GR 1890± 768 37.4± 9.26

Age*Robot p = .0105 (*) p < .001 (***) – –

YAV R−GR 702± 469 6.94± 5.5

MAV R−GR 363± 526 2.82± 7.21

OAV R−GR 428± 742 1.9± 8.65

(both p < .001), although this was not the case for older
adults (p = 0.26). The effect size was particularly large
for YA (ξ̂ = 0.82; ξ̂ = 0.24 for MA). The strength of
the facilitation effect was also calculated as a proportional
difference score (TCTV R − TCTGR)/TCTGR . A one-way
Robust ANOVA showed significant difference between age
groups in the strength of the facilitation effect (ξ̂ = 0.48). A

Post Hoc analysis indicated a significant difference in facil-
itation effect for TCT between YA & MA and YA & OA
(both p < .001), but not between MA & OA (p < .054).
In summary, task-completion times became faster with the
gaze robot compared to the verbal only robot, especially in
young adults, although this difference was not statistically
significant for the older group (Fig. 4B and Table 3).
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Table 4 Cronbachs’s α for
every social perception score;
main/interaction effects on the
social perception scores, and
mean score ± standard
deviation for every level of the
variables

Anth. (α = .88) Warmth (α = .87) Compt. (α = .85) Discom. (α = .8)

Age group p < .001 (***) p < .001 (***) p = .014 (*) p = .6 (NS)

YA 2.21± 0.85 2.16± 0.82 3.43± 0.84 1.72± 0.7

MA 2.76± 0.94 2.47± 0.79 3.61± 0.69 1.7± 0.6

OA 2.84± 0.88 2.5± 0.81 3.63± 0.735 1.74± 0.6

Robot p < .001 (***) p < .001 (***) p < .001 (***) p = .1 (NS)

VR 2.46± 0.94 2.25± 0.81 3.63± 0.73 1.76± 0.64

GR 2.72± 0.92 2.5± 0.82 3.73± 0.67 1.68± 0.62

Age*Robot p = .05 (*) p = 1 (NS) p = .4 (NS) p = .7 (NS)

YAV R−GR −0.37± 0.7 −0.33± 0.65 −0.4± 0.67 0.1± 0.52

MAV R−GR −0.32± 0.78 −0.25± 0.68 −0.37± 0.75 0.15± 0.58

OAV R−GR −0.09± 0.68 −0.18± 0.63 −0.28± 0.62 0± 0.5

Abbreviations for Tables 3 and 4:

Young adults [YA]
Middle-aged adults [MA]
Older adults [OA]
Verbal only robot [VR]
Gaze robot [GR]
Reaction Time [RT]
Task-Completion Time [TCT]
RT facilitation effect (See 5.1) [% Faci. (RT)]
TCT facilitation effect (See 5.1) [% Faci. (TCT)]
Anthropomorphism [Anth.]
Competence [Compt.]
Discomfort [Discom.]
p < .05 *
p < .01 **
p < .001 ***

5.2 Self-Report Measures

We present the scores of the self-report questionnaires and
scales from Sect. 4.4. Table 4 shows the social perception
mean scores, the Cronbachs’s α of each construct, and the
corresponding main and interaction effects.

We found a significant effect of age for anthropomorphism
(ξ̂ = 0.4), warmth (ξ̂ = 0.27), and competence (ξ̂ = 0.19).
A Post Hoc analysis showed that OA perceived the robots as
more anthropomorphic, competent, and warmer against MA
and YA (both p < .001 vs. MA and YA in anthropomor-
phism andwarmth; p = .007 vs.MA and p = .043 vs. YA in
competence). We also found a significant effect of robot con-
dition for anthropomorphism (ξ̂ = 0.21), warmth (ξ̂ = 0.2),
and competence (ξ̂ = 0.3). All these scores were higher
for the gaze robot condition. Finally, we found a significant
interaction in anthropomorphism, showing a narrower score
variation between robot conditions for OA as compared to
MA and YA. This indicates that the older participants barely
varied their anthropomorphism scores between the robot con-
ditions (See Table 4).

Finally, the mean of the mental demand subscale from the
NASA-TLX indicated a very low score for most participants
(M = 3.7 ± 3.5 out of 21 points). Along with the low trial
error rate (2%) during the tasks, this was an indication of
the low difficulty they involved. We did not analyze this data
given its limited variability and the evident floor effect it
showed [60].

5.3 Additional Analyses

We repeated our main analyses for the subset of all par-
ticipants who retrospectively reported to not have noticed
the difference between the robot conditions by answering
’No’ to Q1 (see Sect. 4.4), and therefore, who might have
been unaware of the head movement in the gaze robot (a
total of 124, 32.8% of the sample). In this subsample, we
found: (1) a main effect of age group on RT and TCT, both at
p < .001, and a main effect of age group on anthropomor-
phism at p = .012. These results are similar to those of the
total sample (N=377); (2) a main effect of robot condition on
RT and TCT, at p = .03 and p = .04 respectively, also in
the direction of the results analysis performed with the total
sample; (3) a main effect of robot condition on discomfort at
p < .001, scoring the GR 0.08 points higher in this dimen-
sion; (4) an over-representation of OA (51.1%), as compared
toMA (36%) and YA (12%) (χ2(2, 372) = 48.3, p < .001).

Two hundred and fifty participants (66.3%) expressed a
preference for a robot in their answer to Q2. 205 of them
(82%) preferred the GR over the VR. The difference in pref-
erence between age groups (GR in YA=85%, in MA=85.2%,
and in OA=72%) was marginally significant (χ2(1, 250) =
5.9, p = .052), indicating a lower preference of the GR in
older adults as compared to the other groups.

6 Discussion

This work explored age-related differences in the perception
of referential gaze from a social robot. We measured par-
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ticipants’ task-performance and social perception of a robot
during a collaborative task of preparing a sandwich with a
Pepper robot. Our main objective was to explore the dif-
ferent responses between three different age groups (young,
middle-aged and older adults) towards the referential gaze
from a robot. We examined task performance by measuring
the time a participant took to click on an ingredient indicated
by the robot (reaction time) and the time needed to finish the
task (task-completion time). The data revealed that partici-
pants were faster when the robot used referential gaze than
when the robot gave only verbal instructions. This was true
both for reaction time (average of 500 ms or 21% faster)
and task-completion time (average of 4 s or 9.7% faster).
This effect occurred in every age group, but especially in the
younger group. On average, young adults were 65% faster in
their RTs when they were guided by the gazing robot. In con-
trast, middle-aged and older adults showed a smaller benefit
of 22.6% and 23.4% respectively. These results were simi-
lar for the task-completion time, with younger participants
completing the task 25.6% faster when guided by the gazing
robot. Middle-aged and older adults showed a smaller bene-
fit of 9.1% and 6.8% respectively, although it did not reach
significance for the older group.

We measured age-related differences in the effect of
robotic gaze on reaction time and task-completion time
to explore possible effects in social cognition, but also to
explore practical outcomes in the performance of a full task.
Young adults showed a clear benefit due to robotic gaze
in both these outcome measures, as compared to the older
groups. First, these results suggest that the robotic referen-
tial gaze of a Pepper robot is effectively perceived as a social
cue. We observed a similar age-related decline in reaction
times as would occur if human referential gaze was used
as cue during task performance [12,36]. Second, this decline
alsomanifests in real interactions and has an overall effect on
the time it takes to end a task with a robot, i.e., the efficiency
of the collaboration.

In our previous preliminary study [22], with the same pro-
cedure but limited sample (N = 276), we could not find an
interaction between the robot condition and the age group.
There are two plausible reasons for this. First, in [22] the
participants were divided in two groups of similar size, but
that were not very different in their mean age (53.4 and 69.3
years). Second, the younger group showed amuchwider vari-
ability of ages than the older one (18-64 vs. 65-88). In the
present paper, the new data permitted a finer division of age
ranges andmade a younger (18-44) and amiddle-age (45-64)
group emerge.With this division, the differences between the
younger and the older groups became evident.

Our results also showed that on average, referential gaze
had a positive effect on task-completion time. These results
contrast with those of Kontogiorgos at al. [28] and Mwangi
et al. [16]. Additionally, this effect on task-completion time

occurred in a non-challenging task, in contrast to the work
of Admoni et al. [11], which discussed that referential gaze
is only useful in challenging task. The simplicity of this task
was shown by the low error rate and mental demand reported
byparticipants.Onepossible explanation for this discrepancy
is related to the absence of a robotic social presence within
the same shared spatial environment in our study, i.e. the use
of a recorded video [61], and the limited interactive scenario
we explored. While this reduced the external validity of this
experiment, we could control and isolate our variables of
interest in a trade-off between external and internal validity.

During the study, participants also reported their social
perception of the robot. The measured domains were anthro-
pomorphism, warmth, competence, and discomfort. We
found an increase in all the social perception scores, except
for discomfort, as a result of the referential gaze. Addi-
tionally, when asked about their preference, the robot using
referential gaze was chosen as the favourite. This is in
line with previous notions supporting that social behaviors
improve the acceptance of robots [31,62]. We also found that
older adults perceived the robot as more anthropomorphic,
competent, and warmer compared to the other groups. These
results can be considered under the light of a novelty effect,
as shown by the fact that the older group was less famil-
iar with Pepper. The attribution of anthropomorphism to a
robot is linked with novelty effects. It can help reducing the
uncertainty associated with an unknown agent and making
sense of their actions [63]. It is not surprising that warmth
and competence, both based on a certain degree of anthro-
pomorphism, were also higher for this group. Additionally,
the lack of variation in discomfort between the age groups
can also be explained by novelty effects. Carpinella et al.
[53] showed that this dimension does not vary as an effect of
familiarity. Finally, we found that the anthropomorphism of
the robot varied less for older adults between the robot con-
ditions. This was also the case for warmth and competence,
although the variation did not reach significance between the
groups. This small difference for older adults points in the
direction of a different social perception of a robot, i.e. a lim-
itation in the attribution of human characteristics towards it
as a result of its social behavior.

Moreover, a proportion of 32.8% of the participants
reported not detecting the differences between the robot
conditions. For these participants, there was also a time facil-
itation of referential gaze, suggesting a reflexive nature of
robotic gaze following. Nevertheless, the magnitude of the
facilitation remained equal between groups, both for reac-
tion and task-completion times. This is not surprising given
that most of the participants in this ’unaware’ group were
older adults (57% older, 30% middle-aged, and 13% young
adults). This unbalance between groups limits the statistical
power to find main effects of age group and thus, interaction
effects. However, the over representation of older partici-

123



International Journal of Social Robotics

pants is in line with the idea of an age-related decline robotic
gaze following, even if purely reliant on head movement,
as the majority of them reported not noticing differences
between conditions. Nonetheless, the question about differ-
ences between conditions appeared at the end of the study. It
cannot be excluded that the over representation of older par-
ticipants reflects a broader cognitive decline or difficulties in
remembering these differences [64].

This study used a Pepper social robot as main stimulus
to initiate referential gaze. Previous research has showed an
age-related decline in the perception of gaze from a virtual
agent [25]. In this research, we extended this to a commer-
cially available robot which is also lacking eye movement,
contrary to a virtual agent. The choice of Pepper was deter-
mined by these two factors. Future research should include
a clearly non-social signal to further investigate the social
nature of referential gaze from a robot moving its head. The
perception of general and biological motion also declines in
normal ageing [65,66]. Given the relatedness of motion per-
ception and social cognition [67], the non-social signal to be
used should also control for movement. This would permit to
isolate the social component of referential gaze in Pepper as
final cause of these results. Future studies should also explore
the reflexive nature of robotic gaze following by manipulat-
ing the validity of the cues, set to 100% in the present one. The
manipulation of gaze predictability can also help to study the
effects of strategic gaze following, led by the characteristics
of the task, and reflexive gaze following, modulated by the
social nature of the stimulus [12]. Additionally, the potential
appearance of attentional costs driven by the robot mislead-
ing the human could be studied, as they are not present for
older adults when following human gaze [12,36]. Although
the addition of invalid cueswould be difficult to justifywithin
a purely validation scenario, more concerned with the direct
utility of the robot, these can also be useful to explore the
impact of credibility of the robot and trust in a system that
might not always be completely accurate [68].

Besides gaze following, there are other plausible strate-
gies to study social cognition in older adults during HRI.
In addition to gaze following, there is a decline in emo-
tion recognition in faces [35,37–39] with older age. Emotion
recognition can be investigated with robots with enough
degrees of freedom to simulate facial cues suggestive of
emotions. As in this research, this would be interesting,
both to learn about the generalization of human responses
towards social stimuli in different contexts and to understand
the usefulness of robotic facial expressions for older adults.
Moreover, future studies should attempt to replicate the cur-
rent study by employing robots with average baseline social
perception scores different to those of Pepper. Additionally,
including robots in face-to-face scenarios is important to see
how well these results generalize with the additional compo-
nent of social presence.

There are two limitations in the generalizability of our
results arising from our sample. First, the age groups also
differed in their level of education and familiarity with Pep-
per (Tables 1 and 2). Although expected, these differences
prevent strong conclusions in terms of only chronological
age. This is important to acknowledge, as variables such as
familiarity might have a role in the perception of gaze from a
social robot. It could occur that those more familiarized with
social robots perceive them as more anthropomorphic and as
social entities, potentially showing higher facilitation effects
irrespective of age. To understand the role of chronological
age in the perception of social robots, longitudinal research
can help isolating other confounding variables. Alternatively,
quasi-experimental research should aim to reach a high
homogeneity between age groups in these potentially con-
founding variables. For example, an introductory video of the
robot showing its capabilities could be shown to all partici-
pants prior to the experiment to familiarize with it. Second,
there was an under representation of men in themiddle-aged
adults group in our sample. However, most differences in
this research occurred between young adults and older ones,
with a balanced representation of gender.

7 Conclusion

We explored the influence of referential gaze from a Pepper
robot in three age groups: young adults, middle-aged adults,
and older adults. A facilitation effect of referential gaze was
found in all the groups, especially in young adults. Older
adults still reacted to the instructions 23.4% faster when the
robot used referential gaze than when the robot only gave
verbal instructions. Although they also completed the task
6.8% faster, this gain was not statistically significant. Over-
all, head movement representing referential gaze seems to be
beneficial for task performance. Additionally, the attenuation
of this benefit in task performancewith older age suggest that
Pepper is probably perceived as a social entity, and that social
cuesmight be less optimal for older users.Moreover, average
social perception scores increased in response to referential
gaze. However, older adults showed a smaller difference in
perceived anthropomorphism between the robot conditions
than to middle-aged adults and young adults, indicating a
lower attribution of social traits to the robot in response to
its behavior. Finally, we found differences between the age
groups in their perception of how anthropomorphic, warm
and competent they perceived the robot (regardless of the
robot condition). These group differences are more likely
explained as a result of novelty effects than chronological
age.

Future research should better isolate the role of chrono-
logical age in the perception of social robots. Additionally,
it should include non-social control cues to better inform the
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possible differences between human and robot gaze cues.
Finally, adding invalid cues would be convenient to explore
potential attentional costs and to determine the role of trust
in the interaction. This user-centered approach would be of
value to inform future designs of non-verbal cues in HRI that
lead to a wider acceptance of social robots.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12369-022-00926-
6.

Acknowledgements We want to thank the universities that helped us
with the sample recruiting process: Complutense University of Madrid,
University Carlos III of Madrid, University of Murcia and University of
Alicante. The authors thank Lucía González González for proofreading
the article.

Funding Work on this paper have been supported by the EU Horizon
2020 research and innovation programme under theMarie Skłodowska-
Curie grant agreement No 754285; by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Wallenberg
Foundation; and by the RobWell project (No RTI2018-095599-A-C22)
funded by the Spanish Ministerio de Ciencia, Innovación y Universi-
dades.

Availability of Data and Materials The data generated for this experi-
ment are openly available at: DOI 10.17605/OSF.IO/V3GP5

Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Scassellati B (2007) How social robots will help us to diagnose,
treat, and understand autism. Springer Tracts Adv Robot 28:552–
563

2. Cabibihan JJ, Javed H, Ang M, Aljunied SM (2013) Why robots?
A survey on the roles and benefits of social robots in the rherapy
of children with autism. Int J Soc Robot 5:593–618

3. Cifuentes CA, Pinto MJ, Céspedes N, Múnera M (2020) Social
robots in therapy and care. Curr Robot Rep 1:59–74

4. van den Berghe R, Verhagen J, Oudgenoeg-Paz O, van der Ven S,
Leseman P (2018) Social robots for language learning: a review.
Rev Educ Res 89:259–295

5. Belpaeme T, Kennedy J, Ramachandran A, Scassellati B (2018)
Tanaka F. A review. Sci Robot, Social robots for education, 3

6. RobinsonH,MacDonald B, Broadbent E (2014) The role of health-
care robots for older people at home: a review. Int J Soc Robot
6:575–591

7. Pu L, Moyle W, Jones C, Todorovic M (2019) The effectiveness of
social robots for older adults: a systematic reviewandmeta-analysis
of randomized controlled studies. Gerontologist. 59:37–51

8. Zafrani O, Nimrod G (2019) Towards a holistic approach to study-
ing human-robot interaction in later life. Gerontologist. 59:26–36

9. (2019) United Nations: Department of Economic and Social
Affairs, Population Division. World Population Prospects: High-
lights. New York: United Nations Publication

10. Mutlu B, Shiwa T, Kanda T, Ishiguro H, Hagita N (2009) Footing
in human-robot conversations. In: Proc. ACM/IEEE Int. Conf. HRI
(HRI’09). La Jolla, California, USA. p. 61–68

11. Admoni H, Weng T, Hayes B, Scassellati B (2016) Robot nonver-
bal behavior improves task performance in difficult collaborations.
In: Proc. ACM/IEEE Int. Conf. HRI (HRI’16). Christchurch, New
Zealand. p. 51–58

12. Slessor G, Venturini C, Bonny EJ, Insch PM, Rokaszewicz A,
Finnerty AN (2016) Specificity of age-related differences in eye-
gaze following: evidence from social and nonsocial stimuli. J
Gerontol B Psychol Sci. 71:11–22

13. Baron-Cohen S (1995) Mindblindness: An Essay on Autism and
Theory of Mind. The MIT Press, Cambridge

14. Argyle M, Cook M (1976) Gaze and Mutual Gaze. Cambridge
University Press, Cambridge

15. Cañigueral R, de C Hamilton AF (2019) The role of eye gaze
during natural social interactions in typical and autistic people.
Front Psychol, 10

16. Mwangi E, Barakova EI, Díaz-Boladeras M, Mallofré AC, Rauter-
berg M (2018) Directing attention through gaze hints improves
task solving in human-humanoid interaction. Int J Soc Robot
10(3):343–355

17. Pandey AK, Gelin R (2018) A mass-produced sociable humanoid
robot: pepper: the first machine of its kind. IEEE Robot Autom
Mag 9(25):40–48

18. Papadopoulos I, Koulouglioti C, Lazzarino R, Ali S (2020)
Enablers and barriers to the implementation of socially assistive
humanoid robots in health and social care: a systematic review.
BMJ Open 10(1):e033096

19. Wykowska A, Chaminade T, Cheng G (2016) Embodied artificial
agents for understanding human social cognition. Philos Trans R
Soc Lond, B, Biol Sci., 371

20. Chevalier P, Kompatsiari K, Ciardo F, Wykowska A (2019) Exam-
ining joint attention with the use of humanoid robots - a new
approach to study fundamental mechanisms of social cognition.
Psychon Bull Rev 27:217–236

21. Mutlu B (2011) Designing embodied cues for dialog with robots.
AI Mag 32(4):17–30

22. Morillo-Mendez L, Schrooten MGS, Loutfi A, Mozos OM (2021)
Age-Related Differences in the Perception of Eye-Gaze from a
Social Robot. In: Proc. Int. Conf. ICSR (ICSR’21). vol. 13086
LNAI. Springer, Cham. p. 350–361

23. Ruhland K, Andrist S, Badler JB, Peters CE, Badler NI, Gleicher
M, et al (2014) Look me in the Eyes: A Survey of Eye and Gaze
Animation for Virtual Agents and Artificial Systems. In: Lefebvre
S, Spagnuolo M, editors. Eurographics 2014 - State of the Art
Reports. The Eurographics Association

24. Admoni H, Scassellati B (2017) Social eye gaze in human-robot
interaction: a review. J Hum Robot Interact. 6(1):25–63

123

https://doi.org/10.1007/s12369-022-00926-6
https://doi.org/10.1007/s12369-022-00926-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


International Journal of Social Robotics

25. Pavic K, Oker A, Chetouani M, Chaby L (2021) Age-related
changes in gaze behaviour during social interaction: An eye-
tracking study with an embodied conversational agent. Q J Exp
Psychol. 74:1128–1139

26. Mutlu B, Forlizzi J, Hodgins J (2006) A storytelling robot:
Modeling and evaluation of human-like gaze behavior. In: Proc.
IEEE-RAS Int. Conf. HUMANOIDS (HUMANOIDS’06). Genoa,
Italy. p. 518–523

27. Andrist S, Tan XZ, Gleicher M, Mutlu B (2014) Conversational
gaze aversion for humanlike robots. In: Proc. ACM/IEEE Int. Conf.
HRI (HRI’14). Bielefeld, Germany. p. 25–32

28. Kontogiorgos D, Pereira A, Andersson O, Koivisto M, Rabal EG,
Vartiainen V, et al (2019) The effects of anthropomorphism and
non-verbal social behaviour in virtual assistants. In: Proc. ACM
Int. Conf. IVA (IVA’19). Paris, France. p. 133–140

29. BurraN,Mares I, SenjuA (2019) The influence of top-downmodu-
lation on the processing of direct gaze.Wiley Interdiscip Rev Cogn
Sci., 10

30. KelleyMS,Noah JA, ZhangX, Scassellati B, Hirsch J (2021) Com-
parison of Human Social Brain Activity During Eye-Contact With
Another Human and a Humanoid Robot. Front Robot AI., 7

31. Kiilavuori H, Sariola V, Peltola MJ, Hietanen JK (2021) Making
eye contact with a robot: psychophysiological responses to eye
contact with a human and with a humanoid robot. Biol Psychol
158:107989

32. Kompatsiari K, Ciardo F, Tikhanoff V, Metta G, Wykowska A
(2018) On the role of eye contact in gaze cueing. Sci Rep 12(8):1–
10

33. Manzi F, IshikawaM, Dio CD, Itakura S, Kanda T, Ishiguro H et al
(2020) The understanding of congruent and incongruent referential
gaze in 17-month-old infants: an eye-tracking study comparing
human and robot. Sci Rep 10:11918

34. Slessor G, Phillips LH, Bull R (2008) Age-Related Declines in
Basic Social Perception: Evidence From Tasks Assessing Eye-
Gaze Processing. Psychol Aging 23:812–822

35. Phillips LH, Slessor G, Bailey PE, Henry JD (2014) The Oxford
Handbook of Emotion, Social Cognition, and Problem Solving in
Adulthood. The Oxford Handbook of Emotion, Social Cognition,
and Problem Solving in Adulthood

36. Kuhn G, Pagano A, Maani S, Bunce D (2015) Age-related decline
in the reflexive component of overt gaze following. Q J Exp Psy-
chol. 68:1073–1081

37. Sullivan S, Ruffman T (2004) Emotion recognition deficits in the
elderly. Int J Neurosci 3(114):403–432

38. Slessor G, Phillips LH, Bull R (2007) Exploring the specificity
of age-related differences in theory of mind tasks. Psychol Aging
22:639–643

39. Ruffman T, Henry JD, Livingstone V, Phillips LH (2008) A meta-
analytic review of emotion recognition and aging: Implications
for neuropsychological models of aging. Neurosci Biobehav Rev
32:863–881

40. Phillips LH, Bull R, Allen R, Insch P, Burr K, OggW (2011) Lifes-
pan aging andbelief reasoning: influences of executive function and
social cue decoding. Cognition 120:236–247

41. Metta G, Sandini G, Vernon D, Natale L, Nori F (2008) The
iCub humanoid robot: An open platform for research in embodied
cognition. Performance Metrics for Intelligent Systems (PerMIS)
Workshop. p. 50–56

42. Matsui T, Yamada S (2018) Robot’s Impression of Appearance
and Their Trustworthy and Emotion Richness. In: Proc. IEEE
International Symposium on Robot and Human Interactive Com-
munication (RO-MAN’18). Nanjing, China. p. 88–93

43. Correia F, Paiva A, Chandra S, Mascarenhas S, Charles-Nicolas J,
Gally J, et al (2019) Walk the Talk Exploring (Mis)Alignment of
Words and Deeds by Robotic Teammates in a Public Goods Game.

In: Proc. IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN’19). New Dehli, India

44. Hilbig BE (2016) Reaction time effects in lab- versus Web-based
research: experimental evidence. BBehav Res Methods 48:1718–
1724

45. Semmelmann K, Weigelt S (2017) Online psychophysics: reac-
tion time effects in cognitive experiments. Behav Res Methods
49:1241–1260

46. HoffmanG, ZhaoX (2020)A primer for conducting experiments in
human-robot interaction. ACM Trans Hum-Robot Interact. 10:1–
31

47. Baxter P, Kennedy J, Senft E, Lemaignan S, Belpaeme T (2016)
From characterising three years of HRI tomethodology and report-
ing recommendations. In: Proc.ACM/IEEE Int.Conf.HRIHRI’16.
IEEE Computer Society. p. 391–398

48. Levinson DJ (1986) A conception of adult development. Am Psy-
chol 41:3–13

49. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A
flexible statistical power analysis program for the social, behav-
ioral, and biomedical sciences. Behav ResMethods 39(2):175–191

50. Finger H, Goeke C, Diekamp D, Standvoß K, König P (2017)
LabVanced: A Unified JavaScript Framework for Online Studies.
In: Proc. Int Conf. IC2S2 (IC2S2’17). Cologne, Germany

51. Hart SG, Staveland LE (1988) Development of NASA-TLX (Task
Load Index): results of empirical and theoretical research. Adv
Psychol 52:139–183
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