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Abstract

The tumor suppressor PTEN is frequently lost in human cancers. In addition to gene mutations 

and deletions, recent studies have revealed the importance of post-translational modifications, 

such as ubiquitination, in the regulation of PTEN stability, activity and localization. However, the 

deubiquitinase that regulates PTEN poly-ubiquitination and protein stability remains unknown. 

Here we screened a total of 30 deubiquitinating enzymes (DUBs) and identified five DUBs that 

physically associate with PTEN. One of them, USP13, stabilizes PTEN protein via direct binding 

and deubiquitination of PTEN. Loss of USP13 in breast cancer cells promotes AKT 

phosphorylation, cell proliferation, anchorage-independent growth, glycolysis and tumor growth 

through downregulation of PTEN. Conversely, overexpression of USP13 suppresses 

tumorigenesis and glycolysis in PTEN-positive but not PTEN-null breast cancer cells. 

Importantly, USP13 protein is downregulated in human breast tumors and correlates with PTEN 
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protein levels. These findings identify USP13 as a tumor-suppressing protein that functions 

through deubiquitination and stabilization of PTEN.

The lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) 

catalyzes the conversion of phosphatidylinositol-3,4,5-trisphosphate to 

phosphatidylinositol-4,5-bisphosphate1, 2. By antagonizing PI3K-AKT signaling, PTEN 

plays crucial roles in many cellular processes3-5. This protein is encoded by a tumor 

suppressor gene located at 10q236, which is one of the most frequently mutated genes in 

human cancer7, 8. Germline PTEN mutations occur in several inherited syndromes (such as 

Cowden syndrome) characterized by hamartomatous growth and predisposition to breast, 

thyroid and endometrial cancers, and somatic mutations of PTEN are observed in a wide 

cancer spectrum, including breast, prostate, kidney and brain tumors7-9.

Despite frequent genetic alterations of PTEN in human tumors, only 25% of cancer patients 

show a correlation between loss of PTEN protein and loss of its mRNA10, which 

underscores the importance of PTEN regulation at post-transcriptional and post-translational 

levels. Indeed, mono- or poly-ubiquitination, phosphorylation, sumoylation, acetylation and 

regulation by non-coding RNAs can control PTEN expression, activity or 

localization5, 11, 12. While recent studies have revealed the role of ubiquitination in 

modulating PTEN protein5, 11, 12, the regulation of PTEN deubiquitination remains poorly 

understood. Several ubiquitin ligases of PTEN, including NEDD4-113, 14, WWP215, XIAP16 

and CHIP17, have been found to target PTEN for proteasomal degradation. On the other 

hand, reversal of the mono-ubiquitination of PTEN by USP7 (also known as HAUSP) 

regulates PTEN subcellular localization without affecting its protein level18. However, the 

deubiquitinase that regulates PTEN poly-ubiquitination and protein stability has not been 

reported.

In this study, we identified USP13 as the first deubiquitinase that reverses PTEN poly-

ubiquitination and stabilizes PTEN protein, and found that USP13 suppresses tumorigenesis 

and glycolysis through PTEN. In human breast cancer, loss of USP13 is highly associated 

with loss of PTEN.

RESULTS

USP13 regulates PTEN protein level and AKT signaling

Deubiquitinating enzymes (DUBs) are a group of proteases that regulate ubiquitin-

dependent pathways by cleaving ubiquitin-protein bonds19. In order to identify PTEN-

interacting deubiquitinases, we screened a panel of DUBs, in which a total of 30 

deubiquitinase ORFs were fused with a triple-epitope tag, SFB (S-protein, FLAG tag and 

streptavidin-binding peptide), and then co-transfected with MYC-tagged PTEN into 293T 

cells. Immunoblotting assays showed that MYC-PTEN could be detected on S-protein beads 

conjugated with five DUBs, USP7, USP8, USP10, USP13 or USP39 (Fig. 1a). Moreover, 

MYC-PTEN transfected into HeLa cells could also be pulled down by each of these five 

SFB-tagged DUBs (Fig. 1b), further corroborating a physical association.
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To examine the effects of these five PTEN-associated DUBs on PTEN expression and the 

growth of tumor cells, we stably expressed them individually in the MCF7 human breast 

cancer cell line. Although each of these five DUBs could interact with endogenous PTEN 

(Supplementary Fig. S1a), only one of them, USP13, significantly increased endogenous 

PTEN protein expression (Supplementary Fig. S1a). Compared with the control MCF7 cells, 

cells overexpressing USP7, USP10 or USP13 displayed a pronounced reduction in both 

proliferation (Supplementary Fig. S1b) and anchorage-independent growth (Supplementary 

Fig. S1c, d). Therefore, USP13 stood out as the top candidate for a possible PTEN 

deubiquitinase and a putative tumor suppressor.

As an alternative approach to identify PTEN-associated DUBs, we isolated PTEN-

containing protein complexes using SFB-tagged PTEN. Tandem affinity purification using 

streptavidinsepharose beads and S-protein-agarose beads followed by mass spectrometric 

analysis identified six DUBs, USP10, USP13, USP7, USP8, USP39 and USP4, as PTEN 

interactors (Supplementary Table S1). Conversely, purification of SFB-tagged USP13 

complexes identified PTEN as a USP13-interacting protein (Supplementary Table S2).

Next, we expressed USP13 in additional human breast cancer cells. This overexpression 

upregulated PTEN protein and downregulated AKT and FOXO1/3 phosphorylation in the 

MDAMB-231 cell line (Fig. 1c) which expresses moderate but detectable levels of 

endogenous PTEN (Supplementary Fig. S2a), while knockdown of PTEN in USP13-

overexpressing MDA-MB-231 cells rescued the phosphorylation of both AKT and 

FOXO1/3 (Supplementary Fig. S2b). In contrast, expression of USP13 did not reduce 

phospho-AKT and phospho-FOXO levels in BT549 cells (Fig. 1c) which showed no PTEN 

protein expression (Supplementary Fig. S2a) due to a frameshift mutation20, 21. 

Overexpression of a catalytically inactive mutant of USP13, C345A22, had no effect on 

PTEN protein levels and the phosphorylation of AKT and FOXO1/3 in these two cell lines 

(Fig. 1c).

To further validate regulation of PTEN protein by USP13, we performed loss-of-function 

analysis in multiple cell lines that express abundant USP13 and PTEN protein levels. Two 

independent USP13 shRNAs both decreased PTEN protein expression by 80% and 

increased phospho-AKT and phospho-FOXO1/3 levels by 3- to 5-fold in SUM159 breast 

cancer cells, while restoration of PTEN or expression of an RNAi-resistant ‘silence mutant’ 

(i.e., no amino acid change) of USP13 (USP13-RE) in USP13-depleted SUM159 cells 

completely reversed the effect of USP13 shRNA on upregulating the phosphorylation of 

AKT and FOXO (Fig. 1d and Supplementary Fig. S2c, d). Similarly, depletion of USP13 

downregulated PTEN protein and upregulated AKT and FOXO1/3 phosphorylation in 

MCF10A (Fig. 1e) and MCF7 (Fig. 1f) mammary epithelial cells and in HCT116 colon 

cancer cells (Fig. 1g), but not in the isogenic PTEN-null HCT116 cells (Fig. 1g). In addition, 

USP13 shRNA potentiated insulin-induced AKT phosphorylation in SUM159 cells, which 

could be reversed by re-expression of PTEN (Supplementary Fig. S2e). We conclude from 

these data that USP13 inhibits AKT signaling through positive regulation of PTEN protein. 

It should be noted that neither knockdown nor overexpression of USP13 affected PTEN 

mRNA levels (Supplementary Fig. S3a, b). Thus, USP13 does not regulate PTEN 

expression at the transcriptional level.
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In contrast to the knockdown effect of USP13, silencing of the other four PTEN-interacting 

DUBs, USP7, USP8, USP10 or USP39, did not affect PTEN protein levels (Supplementary 

Fig. S4a-d). USP7 (HAUSP), the only known PTEN deubiquitinase reported to date, 

regulates PTEN mono-ubiquitination and subcellular localization but not its protein 

stability18. In the present study, immunofluorescent staining (Fig. 2a, b) and fractionation 

assays (Fig. 2c, d) demonstrated that manipulating USP13 levels altered PTEN protein 

expression but not its localization; moreover, either overexpression or knockdown of USP13 

had no effect on the levels of Cyclin A2 and PLK1 (Fig. 1c, d), the key substrates of the 

APC-CDH1 complex which has been shown to be regulated by nuclear PTEN in a 

phosphatase-independent manner23. In contrast, USP7 reduced nuclear localization of PTEN 

in PC3 cells without affecting total PTEN protein levels (Fig. 2c, d), consistent with 

previously reported findings18.

USP13 deubiquitinates and stabilizes PTEN

We sought to determine whether USP13 directly interacts with PTEN and functions as a 

bona fide PTEN deubiquitinase. Consistent with the interaction observed in the initial 

screen, coimmunoprecipitation assays confirmed that ectopically expressed MYC-tagged 

PTEN could be detected in FLAG-tagged wild-type or the C345A mutant of USP13 

immunoprecipitates (Fig. 3a), and that endogenous PTEN was present in endogenous USP13 

immunoprecipitates (Fig. 3b). Moreover, purified GST-USP13, but not the GST-GFP 

control, was able to bind to FLAG-tagged PTEN under cell-free conditions (Fig. 3c), which 

demonstrated a direct interaction between USP13 and PTEN. PTEN consists of an N-

terminal phosphatase domain, a C2 domain and a C-terminal PDZ motif24. To map the 

USP13-binding region on PTEN, we co-expressed MYC-tagged USP13 along with a series 

of deletion mutants of PTEN15 (Fig. 3d). Co-immunoprecipitation assays demonstrated that 

the phosphatase domain of PTEN is essential for its physical interaction with USP13 (Fig. 

3e).

We hypothesized that USP13 regulates PTEN through deubiquitination. Indeed, silencing 

USP13 expression by two independent shRNAs increased PTEN poly-ubiquitination by 

approximately 3-fold (Fig. 3f). On the other hand, ectopic expression of wild-type USP13, 

but not the C345A mutant which is still capable of interacting with PTEN (Fig. 3a), reduced 

the poly-ubiquitination of PTEN by 65% (Fig. 3g), suggesting that the enzymatic activity of 

USP13 is indispensable for USP13-dependent deubiquitination of PTEN. In order to 

determine whether PTEN is a direct substrate of USP13, we purified USP13 and 

ubiquitinated PTEN and then incubated them in a cell-free system. Wild-type USP13 

purified from either bacteria or 293T cells, but not its catalytically inactive mutant C345A, 

decreased PTEN poly-ubiquitination by 64-70% in vitro (Fig. 3h, i). Therefore, USP13 can 

directly deubiquitinate PTEN.

To determine whether USP13 regulates the stability of PTEN protein, we examined 

ectopically expressed or endogenous PTEN protein levels in the presence of cycloheximide 

(CHX), an inhibitor of protein translation. Notably, overexpression of USP13, but not the 

enzyme-dead mutant, led to a prominent increase in the stability of endogenous or 

overexpressed PTEN protein, whereas the stability of HSP90 or co-transfected GFP control 

Zhang et al. Page 4

Nat Cell Biol. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was not affected (Fig. 4a, b). Conversely, knockdown of USP13 resulted in destabilization 

of PTEN protein (Fig. 4c, d). Collectively, these results suggest that USP13 is a PTEN 

deubiquitinase that stabilizes PTEN.

Loss of USP13 promotes tumorigenesis through downregulation of PTEN

We asked whether USP13 functions as a tumor-suppressing protein by regulating PTEN. 

Two independent USP13 shRNAs (Fig. 1d) both markedly increased the proliferation (Fig. 

5a) and anchorage-independent growth (Fig. 5b, c) of SUM159 breast cancer cells, while 

restoration of PTEN (Fig. 1d) or expression of an RNAi-resistant USP13 mutant 

(Supplementary Fig. S2c, d) completely reversed the effect of USP13 shRNA (Fig. 5a-d). 

Moreover, knockdown of USP13 promoted the proliferation of HCT116 colon cancer cells 

but not the isogenic PTEN-null HCT116 cells (Fig. 5e).

The effect of USP13 shRNA on cell proliferation is AKT-dependent, as treatment with the 

AKT inhibitor MK-2206 abolished this effect (Fig. 5f). Furthermore, since USP13 regulates 

AKT phosphorylation through PTEN (Fig. 1c-g), and since AKT plays a critical role in 

regulating the Warburg effect whereby cancer cells exhibit a high rate of glucose uptake and 

glycolysis25-27, we speculated that USP13 might regulate the Warburg effect through PTEN. 

Indeed, knockdown of USP13 increased glucose uptake and glycolysis, which could be fully 

reversed by restoration of PTEN, as gauged by lactate production and glucose incorporation 

assays (Fig. 5g, h).

To investigate the biological function of USP13 in breast cancer cells in vivo, we 

subcutaneously implanted USP13-depleted SUM159 cells into nude mice and monitored 

tumor growth for more than nine weeks. Mice bearing USP13 shRNA-expressing SUM159 

cells showed increased tumor growth throughout the experiment compared with mice 

implanted with control shRNA-infected cells (Fig. 5i). At 65 days after tumor cell 

implantation, we observed a 2.5-fold increase in tumor volume (Fig. 5i) and a 3.5-fold 

increase in the weight of the tumors formed by USP13-depleted SUM159 cells (Fig. 5j, k). 

Notably, restoring PTEN expression fully reversed the tumor-promoting effect of USP13 

shRNA (Fig. 5i-k). Western blot analysis of tumor lysates confirmed that the effect of 

USP13 shRNA on PTEN and phospho-AKT was retained in these tumors (Fig. 5l). 

Therefore, loss of USP13 promotes tumorigenesis through downregulation of PTEN.

The anti-tumor function of USP13 depends on PTEN status

To further determine the dependence of the USP13 function on PTEN status, we compared 

the PTEN-positive cell line MDA-MB-231 and the PTEN-null cell line BT549 (Fig. 1c). 

Expression of USP13 (but not the C345A mutant) in MDA-MB-231 cells, which led to 

upregulation of PTEN and downregulation of phospho-AKT and phospho-FOXO1/3 (Fig. 

1c), significantly inhibited cell proliferation (Fig. 6a), colony formation on soft agar (Fig. 

6b, c), lactate production (Fig. 6d), glucose uptake (Fig. 6e) and tumor growth (Fig. 6f-h), 

while knockdown of PTEN (Supplementary Fig. S2b) rescued the proliferation of USP13-

overexpressing MDA-MB-231 cells (Fig. 6i). In stark contrast, none of these effects were 

observed in USP13-overexpressing BT549 cells (Fig. 6a-e and 6j-l), which showed no 

substantial difference in AKT phosphorylation compared with mock-infected cells (Fig. 1c). 
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Western blot analysis of tumor lysates confirmed that the effect of USP13 on PTEN and 

phospho-AKT was retained in tumors formed by USP13-overexpressing MDA-MB-231 or 

BT549 cells (Fig. 6m). Taken together, USP13 has a PTEN-dependent tumor-suppressing 

function.

USP13 is downregulated in human breast tumors and correlates with PTEN protein levels

PTEN plays a pivotal role in human breast cancer suppression and is dose-dependent. 

Female patients with Cowden syndrome have partial loss of PTEN due to heterozygous 

germline PTEN mutations and are estimated to have a 25-50% risk of developing breast 

cancer28. Genetic analysis of mouse models has revealed Pten haploinsufficiency and dose 

dependence in breast tumor suppression29. Moreover, while approximately 5% of sporadic 

breast tumors harbor PTEN mutations9, loss of PTEN immunoreactivity is found in nearly 

40%30, which indicates that post-transcriptional and post-translational regulation of PTEN 

may contribute substantially to the development of human breast cancer. To determine the 

relevance of regulation of PTEN by USP13 in patients, we performed immunohistochemical 

staining of PTEN and USP13 (Fig. 7a) on the breast cancer progression tissue microarrays 

(TMAs) from the National Cancer Institute31, with antibodies validated for 

immunohistochemistry (Supplementary Fig. S5). Notably, downregulation of PTEN and 

USP13 was observed in 73.8% (152 of 206) and 41.3% (83 of 201) of breast tumors, 

whereas only 31.8% (14 of 44) and 13.2% (5 of 38) of normal mammary tissues exhibited 

low expression of PTEN and USP13 (Fig. 7b, c), respectively, suggesting that both PTEN 

and USP13 are downregulated in human breast tumors. Moreover, a significant positive 

correlation (R = 0.25, P = 4 × 10-4) between PTEN and USP13 protein levels was observed 

in these breast carcinomas, in which 88% (73 of 83) of the tumors with low USP13 

expression also displayed low PTEN expression (Fig. 7d). However, it should be noted that 

38.8% (78 of 201) of total tumor specimens had low PTEN expression but high USP13 

expression (Fig. 7d). Collectively, these data suggest that loss of USP13 may contribute to 

loss of PTEN in a substantial fraction of human tumors, whereas in other tumors PTEN can 

be inactivated by different mechanisms, including genetic alterations and upregulation of 

PTEN ubiquitin ligases (such as NEDD4-114 and WWP215).

DISCUSSION

The current study identified USP13 as a PTEN deubiquitinase and a tumor-suppressing 

protein. Besides USP13, another two PTEN-interacting DUBs, USP7 (HAUSP) and USP10, 

also exhibited a growth-inhibitory effect (Supplementary Fig. S1b-d), which might be 

explained by USP7-mediated delocalization of PTEN18 and USP10-mediated stabilization 

of p5332, respectively. However, neither USP7 nor USP10 regulates PTEN protein levels 

(Supplementary Fig. S1a and S4a, b). In contrast, here we report USP13 as the first PTEN 

deubiquitinase that reverses the poly-ubiquitination of PTEN, leading to PTEN stabilization 

and tumor suppression. Whereas the majority of USP7 (HAUSP) protein is present in the 

nucleus18, which is consistent with its role in reversing the mono-ubiquitination of nuclear 

PTEN and promoting PTEN export from the nucleus, USP13 is predominantly cytoplasmic 

or membrane-bound (Fig. 2a, b and 7a; Supplementary Fig. S5), which is consistent with its 

role in reversing the poly-ubiquitination of cytoplasmic or membrane-bound PTEN protein.
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In contrast to the fast turnover of another major tumor suppressor protein, p53 (half-life: 5– 

20 minutes33), PTEN has a relatively long half-life (3–6 hours; Fig. 4a-d). We propose that 

unlike p53, PTEN is by default a relatively stable protein but its degradation is accelerated 

upon upregulation of PTEN ubiquitin ligases or downregulation of PTEN deubiquitinases. 

Because USP13 is downregulated in human breast tumors and correlates with PTEN 

expression, and because a large fraction of human cancers exhibit loss of only one PTEN 

allele34, we propose that loss of USP13 may drive breast tumorigenesis in mammary tissues 

with heterozygous inactivation of PTEN. Future studies are needed to determine the 

physiological functions of USP13 and how USP13 expression is lost in human cancer.

METHODS

Methods and any associated references are available in the online version of the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. USP13 is a PTEN-interacting deubiquitinase that regulates PTEN and AKT signaling
(a) Five of 30 DUBs physically associate with PTEN. SFB-tagged DUBs were co-

transfected with MYC-PTEN into 293T cells, followed by pull-down with S-protein beads 

and immunoblotting with antibodies to FLAG and MYC.

(b) Five SFB-tagged DUBs were co-transfected with MYC-PTEN into HeLa cells, followed 

by pull-down with S-protein beads and immunoblotting with antibodies to MYC and FLAG.

(c) Immunoblotting of USP13, PTEN, p-AKT, AKT, p-FOXO1/3, FOXO1, Cyclin A2, 

PLK1 and β-actin in BT549 and MDA-MB-231 cells transduced with wild-type USP13 or 

the USP13C345A mutant.

(d) Immunoblotting of USP13, PTEN, p-AKT, AKT, p-FOXO1/3, FOXO1, Cyclin A2, 

PLK1 and HSP90 in USP13 shRNA-transduced SUM159 cells with or without ectopic 

expression of PTEN.

(e-g) Immunoblotting of USP13, PTEN, p-AKT, AKT, p-FOXO1/3, FOXO1 and HSP90 (or 

GAPDH) in USP13 shRNA-transduced MCF10A (e), MCF7 (f), HCT116PTEN+/+ and 

HCT116PTEN−/− (g) cells.

Uncropped images of blots are shown in Supplementary Fig. S6.
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Figure 2. USP13 regulates PTEN protein level but not its subcellular localization
(a) Immunofluorescent staining of USP13 (red) and PTEN (green) in MDA-MB-231 cells 

transduced with wild-type USP13 or the USP13C345A mutant. Right panels are the overlay 

of USP13, PTEN and nuclear 4’,6-diamidino-2-phenylindole (DAPI; blue) staining of the 

same field. The GFP and RFP sequences in the pLOC vector were mutated to silence GFP 

and RFP expression from this vector. Scale bar: 10 μm.

(b) Immunofluorescent staining of USP13 (red) and PTEN (green) in SUM159 cells infected 

with USP13 shRNA or the pGIPZ vector with a scrambled sequence. Right panels are the 

overlay of USP13, PTEN and nuclear DAPI (blue) staining of the same field. The GFP 

sequence in the pGIPZ vector was mutated to silence GFP expression from this vector. Scale 

bar: 10 μm.

(c) Immunoblotting of MYC-PTEN, FLAG-USP and GAPDH in whole-cell lysates of PC3 

cells co-transfected with MYC-PTEN and FLAG-tagged USP13 or USP7.

(d) Immunoblotting of MYC-PTEN, FLAG-USP, HSP90 (cytoplasmic marker) and Lamin 

B (nuclear marker) in cytoplasmic (C) and nuclear (N) fractions of PC3 cells co-transfected 

with MYC-PTEN and FLAG-tagged USP13 or USP7.

Uncropped images of blots are shown in Supplementary Fig. S6.
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Figure 3. USP13 directly interacts with and deubiquitinates PTEN
(a) 293T cells were transfected with MYC-PTEN alone or in combination with FLAG-

tagged USP13 or the USP13C345A mutant, immunoprecipitated with FLAG beads and 

immunoblotted with antibodies to MYC and FLAG.

(b) Endogenous USP13 was immunoprecipitated from SUM159 cells and immunoblotted 

with antibodies to USP13 and PTEN.

(c) Top: GST-GFP or GST-USP13 was retained on glutathione-sepharose beads, incubated 

with extracts of FLAG-PTEN-transfected 293T cells and then immunoblotted with the 

antibody to FLAG. Bottom: recombinant GST-GFP and GST-USP13 were purified from 

bacteria and analyzed by SDS-PAGE and Coomassie blue staining.

(d) Schematic representation of FLAG-tagged full-length PTEN (FL) and its various 

deletion mutants (M1-M7).

(e) 293T cells were co-transfected with MYC-USP13 and FLAG-tagged full-length PTEN 

or its deletion mutants, immunoprecipitated with FLAG beads and immunoblotted with 

antibodies to MYC and FLAG.

(f) 293T cells were co-transfected with MYC-PTEN, USP13 shRNA and HA-ubiquitin 

(Ub), immunoprecipitated with MYC beads and immunoblotted with antibodies to HA and 

MYC. Cells were treated with MG132 (10 μM) for 6 hours before harvest.

(g) 293T cells were co-transfected with MYC-PTEN, HA-ubiquitin (Ub) and FLAG-tagged 

USP13 or the USP13C345A mutant, immunoprecipitated with MYC beads and 

immunoblotted with antibodies to HA and MYC. Cells were treated with MG132 (10 μM) 

for 6 hours before harvest.

(h) Top: unubiquitinated or ubiquitinated SFB-PTEN was incubated with GST-tagged 

USP13 or the USP13C345A mutant purified from bacteria with glutathione-sepharose beads. 
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After reaction, SFB-PTEN was immunoprecipitated with FLAG beads and immunoblotted 

with the antibody to PTEN. Bottom (input for the in vitro assay): SFB-PTEN was purified 

with streptavidinsepharose beads and immunoblotted with the antibody to FLAG. 

Recombinant GST-USP13 was purified from bacteria and analyzed by SDS-PAGE and 

Coomassie blue staining.

(i) Top: unubiquitinated or ubiquitinated SFB-PTEN was incubated with SFB-tagged USP13 

or the USP13C345A mutant purified from 293T cells with streptavidin-sepharose beads. After 

reaction, PTEN was immunoprecipitated with the antibody to PTEN and immunoblotted 

with the antibody to PTEN. Bottom (input for the in vitro assay): SFB-USP13 and SFB-

PTEN were purified with streptavidin-sepharose beads and immunoblotted with antibodies 

to USP13 and FLAG, respectively.

Uncropped images of blots are shown in Supplementary Fig. S6.
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Figure 4. USP13 stabilizes PTEN protein
(a) Left: MDA-MB-231 cells were transduced with USP13 or USP13C345A, treated with 100 

μg/ml cycloheximide (CHX), harvested at different time points and then immunoblotted 

with antibodies to USP13, PTEN and HSP90. Right: quantification of PTEN protein levels 

(normalized to HSP90).

(b) Left: 293T cells were co-transfected with MYC-PTEN, HA-GFP and FLAG-tagged 

USP13 or USP13C345A, treated with 100 μg/ml cycloheximide (CHX), harvested at different 

time points and then immunoblotted with antibodies to MYC, FLAG, HA and HSP90. HA-

GFP serves as the control for transfection. Right: quantification of PTEN protein levels 

(normalized to HSP90).

(c) Left: SUM159 cells were transduced with USP13 shRNA, treated with 100 μg/ml 

cycloheximide (CHX), harvested at different time points and then immunoblotted with 

antibodies to USP13, PTEN and HSP90. Right: quantification of PTEN protein levels 

(normalized to HSP90).

(d) Left: 293T cells were co-transfected with MYC-PTEN, HA-GFP and USP13 shRNA, 

treated with 100 μg/ml cycloheximide (CHX), harvested at different time points and then 

immunoblotted with antibodies to MYC, USP13, HA and HSP90. HA-GFP serves as the 

control for transfection. Right: quantification of PTEN protein levels (normalized to 

HSP90). Uncropped images of blots are shown in Supplementary Fig. S6.
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Figure 5. Loss of USP13 promotes tumor growth and glycolysis through downregulation of 
PTEN
(a) Growth curves of USP13 shRNA-transduced SUM159 cells with or without ectopic 

expression of PTEN.

(b, c) Images (b) and quantification (c) of anchorage-independent growth of USP13 shRNA-

transduced SUM159 cells with or without ectopic expression of PTEN.

(d) Growth curves of USP13 shRNA-transduced SUM159 cells with or without ectopic 

expression of an RNAi-resistant mutant of USP13 (USP13-RE).

(e) Growth curves of USP13 shRNA-transduced HCT116PTEN+/+ and HCT116PTEN−/− cells.

(f) Left: immunoblotting of USP13, p-AKT, AKT and HSP90 in USP13 shRNA-transduced 

SUM159 cells cultured in the presence or absence of the AKT inhibitor MK-2206 (1 μM). 

Right: growth curves of USP13 shRNA-transduced SUM159 cells cultured in the presence 

or absence of the AKT inhibitor MK-2206 (1 μM).

(g, h) Lactate secretion (g) and 2-deoxy-D-[3H]glucose (H3-DG) uptake (h) by USP13 

shRNA-transduced SUM159 cells with or without ectopic expression of PTEN.

(i) Tumor growth by 5 × 106 subcutaneously injected USP13 shRNA-transduced SUM159 

cells with or without ectopic expression of PTEN.

(j, k) Tumor weight (j) and tumor images (k) of mice with subcutaneous injection of 5 × 106 

USP13 shRNA-transduced SUM159 cells with or without ectopic expression of PTEN, at 

day 65 after implantation. Data in (a) and (c) – (j) are mean ± s.e.m. n = 5 mice per group in 

(i) and (j). Statistical significance was determined by two-tailed, unpaired Student's t test.

(l) Immunoblotting of USP13, PTEN, p-AKT, AKT and β-actin in tumor lysates from (k). 

Data in (a) and (c) – (h) are the mean of 3 wells per group and error bars indicate s.e.m. The 

experiments were repeated 3 times. The source data for (a) and (c) – (h) can be found in 

Supplementary Table S3. Uncropped images of blots are shown in Supplementary Fig. S6.
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Figure 6. USP13 suppresses tumorigenesis and glycolysis in PTEN-positive but not PTEN-null 
breast cancer cells
(a) Growth curves of USP13- or USP13C345A-transduced MDA-MB-231 and BT549 cells.

(b, c) Images (b) and quantification (c) of anchorage-independent growth of USP13- or 

USP13C345A-transduced MDA-MB-231 and BT549 cells.

(d, e) Lactate secretion (d) and 2-deoxy-D-[3H]glucose (H3-DG) uptake (e) by USP13- or 

USP13C345A-transduced MDA-MB-231 and BT549 cells.

(f) Tumor growth by 5 × 106 subcutaneously injected MDA-MB-231 cells transduced with 

USP13 or USP13C345A.

(g, h) Tumor weight (g) and tumor images (h) of mice with subcutaneous injection of 5 × 

106 MDA-MB-231 cells transduced with USP13 or USP13C345A, at day 50 after 

implantation.

(i) Growth curves of USP13-overexpressing MDA-MB-231 cells with or without 

knockdown of PTEN.

(j) Tumor growth by 5 × 106 subcutaneously injected BT549 cells transduced with USP13 

or USP13C345A.

(k, l) Tumor weight (k) and tumor images (l) of mice with subcutaneous injection of 5 × 106 

BT549 cells transduced with USP13 or USP13C345A, at day 55 after implantation. Data in 

(a), (c) – (g) and (i) – (k) are mean ± s.e.m. n = 5 mice per group in (f), (g), (j) and (k). 

Statistical significance was determined by two-tailed, unpaired Student's t test.

(m) Immunoblotting of USP13, PTEN, p-AKT, AKT and β-actin in tumor lysates from (h) 

and (l).
Data in (a), (c) – (e) and (i) are the mean of 3 wells per group and error bars indicate s.e.m. 

The experiments were repeated 3 times. The source data for (a), (c) – (e) and (i) can be 
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found in Supplementary Table S3. Uncropped images of blots are shown in Supplementary 

Fig. S6.
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Figure 7. USP13 protein is downregulated in human breast cancer and correlates with PTEN 
protein levels
(a) Immunohistochemical staining of PTEN and USP13 in representative normal breast and 

breast carcinoma specimens on the NCI progression TMAs. Brown staining indicates 

positive immunoreactivity. Scale bar: 50 μm.

(b, c) PTEN (b) and USP13 (c) protein expression status in normal breast and breast 

carcinoma specimens.

(d) Correlation between PTEN and USP13 protein levels in human breast tumors. Statistical 

significance in (b) – (d) was determined by χ2 test. R: correlation coefficient.
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