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Abstract: The endosomal sorting complex required for transport (ESCRT) system consists of pe-
ripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This
system plays an important role in the degradation of non-essential or dangerous plasma membrane
proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and
promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT
pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes
and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elabo-
ration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides
important implications for the further study of the infection mechanism of other enveloped viruses.

Keywords: exosome; endosomal sorting complex required for transport (ESCRT); enveloped virus

1. Introduction

Exosomes are smaller extracellular vesicles (EVs) involved in complex intercellular
communication, which were first discovered in sheep reticulocytes [1–3]. Exosomes in-
clude two subpopulations, large (Exo-L, 90–120 nm) and small (Exo-S, 60–80 nm) exosome
vesicles [4]. Exosomes originate from the multivesicular bodies (MVBs) and then are trans-
ported to the plasma membrane, fused with the cell membrane, and subsequently released
into the extracellular space [3]. They carry various intracellular products, such as nucleic
acids and proteins, for information and material exchange between cells [5,6]. Exosomes
can incorporate a diverse repertoire of proteins, RNA, and lipids, which may lead to varied
biological activity in the recipient cell. Exosome characterization has been supported by
the advancements of inclusive databases (e.g., Vesiclepedia, ExoCarta, EVpedia) that amass
exosome findings from abundant studies to find distinguishing molecular signatures to
specific cell/tissue types [7–9]. Consequently, certain proteins, including classic exoso-
mal markers, are present and may be used as exosomes markers following the minimum
guidelines set by the International Society of Extracellular Vesicles (ISEV) [10]. An array
of exosomes markers such as the tetraspanin proteins (CD9, CD63, and CD81), flotillin-
1/-2, ESCRT-related (ALIX and TSG101), RABs, SNAREs, and others have been reported
in different disease models [11–18]. However, with a particular focus on budding and
infection of viruses, recent studies showed that nucleic acids, proteins, and even virions of
enveloped viruses can be wrapped into the exosomes and transmitted between cells by the
“free ride” of exosomes.

The endosomal sorting complex required for transport (ESCRT) is several peripheral
membrane protein complexes [3,19] that play various roles in cytokinesis, autophagy,
retroviral budding, the process of exosome formation and release, and other biological
activities [20–27]. In addition, ESCRT-independent mechanisms are also possible for
exosome biogenesis [28–30]. Whether ESCRT-independent mechanisms play a role remains
to be determined. Nevertheless, the cellular ESCRT system is essential for the budding
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and infection of enveloped viruses. Therefore, it is necessary to further investigate the
mechanism of exosomes and the ESCRT pathway in enveloped virus infection.

2. Biogenesis of Exosomes and MVBs

Exosomes originate from MVBs (Figure 1). The late endosome successively recruits
ESCRT-0, -I, -II, -III, and the VPS4 complex. With the help of the ESCRT complex, the
endosome membrane invaginates and buds to generate intraluminal vesicles (ILV), and
finally forms the MVB [31–34].
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The MVB in wild-type yeast is roughly spherical, about 200 nm in diameter, and
filled with spherical ILVs, about 24 nm in diameter [35]. In yeast and human cells,
when the ESCRT pathway is blocked, it not only interferes with the formation of nor-
mal MVB but also shows a unique and abnormal subcellular structure, namely the ‘Class E’
compartments [36,37]. The ‘Class E’ compartments are composed of stacked flat vesicu-
lar membranes, which are not connected [35]. Conversely, the presence of the ‘Class E’
compartments can also indicate that the ESCRT pathway is interfered with or blocked.
After the formation of MVB, the VPS4–VTA1 complex hydrolyzes ATP to provide energy
to depolymerize ESCRT-III for recycling. Some MVBs are degraded after fusion with
lysosomes, while the other parts are released into body fluids in the form of small vesicles
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after fusion with the plasma membrane; these are called exosomes. Studies have shown
that the role of ESCRT in MVB biogenesis in eukaryotes is the same as that in yeast.

3. Structure and Function of the ESCRT Protein Complex

The ESCRT system consists of ESCRT-0, -I, -II, -III, and vacuolar protein sorting
4–vesicle trafficking 1 (VPS4–VTA1), as well as some accessory proteins such as the ALG-2-
interacting protein X (ALIX) homodimer [3,19]. The endosome initiates the ESCRT pathway
from ESCRT-0, which is composed of two subunits: hepatocyte growth factor-regulated
tyrosine kinase substrate (HRS) and signal transducing adaptor molecule 1/2 (STAM1/2)
in eukaryotes (VPS27 and HSE1 in yeast). These subunits interact in a 1:1 ratio via coiled
coil GAT (GGAs and Tom) domains [38,39]. Thereafter, these two subunits recognize and
bind to the ubiquitinated target, and thus promote its binding to the endosome which is
rich in ubiquitinated cargo to be shipped, enabling the endosome to recruit ESCRT-0 to the
budding site (Figure 1).

In eukaryotes and yeasts, ESCRT-0 also plays a key role in the recruitment of ESCRT-
I to the endosomal membrane, which is crucial for the initiation of MVB-related cargo
sorting [40,41]. ESCRT-I was first identified in yeast as a heterotetramer consisting of
VPS23, VPS28, VPS37 [42], and MVB12 [43]. Similarly, mammalian ESCRT-I consists
of TSG101, VPS28, VPS37, and HMVB12. There are three subtypes of VPS37 (VPS37A,
B, and C) and two subtypes of HMVB12 (HMVB12A and B) [44,45]. The length of the
ESCRT-I heterotetramer is about 20 nm, in which three subunits are interwoven into a
long coil stem with a spherical head formed at one end [46]. Both ends of ESCRT-I interact
with ESCRT-0 and ESCRT-II, respectively [47]. Moreover, ESCRT-I also interacts with the
ESCRT-II complex.

ESCRT-II is a Y-shaped heterotetramer, with one subunit VPS22 and one subunit
VPS36 (EAP30 and EAP45 in mammals) forming the base of Y, each of which binds to one
subunit of VPS25 (EAP20 in mammals), which forms the Y arm [48–51]. In yeast, ESCRT-II
interacts with the C-terminal of VPS28 in ESCRT-I through the GLUE (gram-like ubiquitin-
binding in EAP45) domain of VPS36 [52,53]. ESCRT-I and ESCRT-II promote the budding
of the endosomal membrane to form the initial bud [54,55]. And VPS25 of ESCRT-II binds
to VPS20 of ESCRT-III with a high affinity. After VPS20 binds to VPS25, ESCRT-III is
activated by ESCRT-II, and components of ESCRT-III begin to recruit and assemble into the
endosomal membrane [51], thus activating the shattering function of ESCRT-III. Therefore,
ESCRT-II plays a key role in initiating the formation of the ESCRT-III complex.

The main function of ESCRT-III is to aggregate at the neck of the bud formed in the
previous step and cleave it, making it enter the endosomal compartment in the form of
ILVs to form MVBs [54,55]. Unlike other ESCRT complexes, ESCRT-III does not form stable
cytoplasmic complexes, so its crystal structure is currently unclear. ESCRT-III consists of
four core subunits: VPS20, SNF7, VPS24, and VPS2 [13]. In mammals, they are known as
charged multivesicular body proteins (CHMPs) and include CHMP6, CHMP4A, CHMP4B,
CHMP4C, CHMP3, CHMP2A, and CHMP2B. After the ESCRT-III complex aggregates in
the neck of the bud to complete its cleaving function, energy is required to depolymerize
ESCRT-III to allow it to enter the next cycle. While ATPase associated with various cellular
activities (AAA) ATPase VPS4 is responsible for hydrolyzing ATP and providing energy
to depolymerize ESCRT-III for recycling [56]. VPS4 is a multimeric mechanoenzyme, that
identifies the MIT-interaction Motifs (MIMs) at the C-end of the ESCRT-III subunit through
the N-end microtubule interacting and transport (MIT) domain to bind to the ESCRT-III-
subunit [56,57]. VTA1 protein is a positive regulator of VPS4, which can promote the
polymerization of VPS4 and activate its ATPase activity. When VPS4 performs its biological
function in the ESCRT pathway, it is assembled in the form of a polymer which polymerizes
into a stable dodecameric containing two hexametric rings and binds with VTA1 protein to
form a super complex, namely, the VPS4–VTAL complex [58–60]. In conclusion, the ESCRT
system plays an irreplaceable key role in the biogenesis of exosomes and MVBs.
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4. The Role of ESCRT in Enveloped Virus Infection

Enveloped virus infection begins with binding to the plasma membrane of the host
cell. Next, the virus enters the host cell for replication and expression, and finally, the new
virions leave the host cell at maturity and begin a new cycle of infection [61]. With the
discovery that HIV exploits the host cell ESCRT system to assist its budding, numerous
studies have shown that a variety of enveloped viruses can hijack the exosomal ESCRT
system to assist virus proliferation, budding, and transmission [62–68]. As a result, the
ESCRT system has become an indispensable tool for enveloped virus infection.

4.1. The ESCRT System and Enveloped RNA Viruses

At present, the research achievements on the mechanism of enveloped virus budding
come mainly from retroviruses. It has been found that retroviruses can release virions from
the cell membrane via the ESCRT system [69], and the p6 region of HIV-1 Gag protein
(p6Gag) is an essential component for the separation and release of new virions from the
plasma membrane [70]. Several short sequences were identified in the p6 region that are
helpful for the budding of HIV-1 and are known as late assembly (L) domains [70–74].
Mutations in this region would lead to the accumulation of new virions in the inner side
of the cell that could not be released. The Gag proteins of retroviruses encode at least
three distinct L domains, whose core sequences are PPXY, PT/SAP, and YPX(n)L (where X
refers to any amino acid), which recruit different components of ESCRT to form a budding
complex for viral release [72,75]. The PT/SAP of the L domain plays a role by combining
the TSG101 subunit of ESCRT-I, YPX(n)L works on binding to the ALIX protein, while
PPXY binds to members of the ESCRT-related NEDD4 family of E3 ubiquitin ligases [75].

Some enveloped viruses do not depend on ESCRT-II for budding [49,76–78], but
almost all known viruses that use ESCRT for budding must recruit VPS4, which seems to
be the key to viral budding [79]. In addition to retroviruses, A large number of envelope
RNA viruses contain L domains, such as Arenaviruses, Rhabdoviruses, Filoviruses, Reoviruses,
and Paramyxoviruses [64]; however, mutations in the viral amino acid sequence of the L
domain inhibit the budding and release of the virus. Further studies have shown that the
budding and release of these viruses also depend on the host cell ESCRT system [80,81].

4.1.1. The Role of the ESCRT System in the Budding of Retroviruses

The retrovirus budding, especially human immunodeficiency virus type 1 (HIV-1), is
particularly similar to the biogenic origin of exosomes [82]. As reported, the TSG101 and
ALIX proteins of ESCRT are critical for the budding and release of HIV-1 [83]. Exosome
surface marker molecules such as CD63 and CD81 are also involved in HIV-1 budding
and infection [84]. HIV-1 RNA and protein can enter the exosome for delivery, and
thus retroviruses exploit the exosome formation and release pathways in host cells to
produce infectious virions, which was proposed as the “Trojan horse” hypothesis and
has been confirmed by subsequent studies, i.e., that HIV-1 hijacks ESCRT-I, -III, and Vps4
to participate in its budding [85]. It was reported that HIV-1 does not require ESCRT-0
and -II for budding [49], presumably because HIV-1’s Gag protein plays a similar role
to ESCRT-0 and -PIN. The researchers also used siRNA knockout to demonstrate that
budding of HIV-1 in 293T cells does not require ESCRT-II [49]. However, recent studies
have shown that efficient production of HIV-1 requires the participation of ESCRT-II [86].
Meng et al. found that during HIV-1 infection, elimination and depletion of ESCRT-II
produced distinct effects, as the elimination of ESCRT-II did not eliminate the release of the
virus, while depletion of ESCRT-II produced similar effects to depletion of ESCRT-I and -III
components, suggesting that ESCRT-II plays an important role in the budding of HIV-1 [86].
Furthermore, ESCRT-I interacts with and activates ESCRT-II through the C-terminal gall
of EAP45 and the H0 junction domain, and then recruits CHMP6 of ESCRT-III to form
the ESCRT-I-II–CHMP6 complex to play its role [87]. In addition, ESCRT-III is considered
to guide membrane remodeling and scission [20,85,88–90]. The narrow membrane necks
formed during cytokinesis, retroviral, or exosomal budding from membranes [88–90].
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The scission of these membrane necks from the inner surface is called reverse topology
membrane scission, and is directed by the ESCRT complexes, especially ESCRT-III [88–90].

The HIV-1 Gag protein initiates viral assembly and budding but requires ESCRT-III
and VPS4 to separate and release virions from the cell membrane [91]. The Gag protein
can promote the formation of buds, which is similar to the role of ESCRT-0 and -II in
MVB. Meanwhile, the L domain of the Gag protein containing the PTAP sequence can
bind to the UEV domain of ESCRT-I protein TSG101 [92], replacing ESCRT-0 to recruit
the ESCRT-I complex. The YPXL module near the C-terminal of HIV-1 Gag protein can
interact with the V domain in ALIX [93], thus recruiting ESCRT-I and ALIX in the cell
membrane region where the virus is assembled and buds, and then further recruiting
ESCRT-III and VPS4 through ESCRT-I and ALIX proteins [94], thus completing the whole
process of virus budding.

Different from HIV-1, although equine infectious anemia virus (EIAV) is a vesicular
RNA retrovirus, studies have confirmed that TSG101 does not participate in the budding
of the virus due to the lack of binding site with EIAV [75,93]. The YPDL sequence of the
Gag protein of the virus can recruit ALIX [74] and connect the EIAV to the ESCRT system,
which plays a key role in the release of virions at the late stage of EIAV budding [72]. ALIX
is involved in the EIAV budding and is responsible for connecting the YPDL of EIAV p9Gag

to the host cell ESCRT-III [72]. EIAV infects mammalian cells bud by the interaction of
ALIX with EIAV p9Gag and CHMP4 of the host ESCRT-III. The N-terminal Bro1 domain
of ALIX binds to CHMP4 and the central V domain binds to the Gag protein [95]. These
results suggest that ALIX is essential to the budding of the EIAV.

4.1.2. The IHNV Can Recruit the ESCRT Pathway in Three Ways

Infectious Hematopoietic Necrosis Virus (IHNV) is a kind of Rhabdovirus, whose host
is fish. IHNV infection poses an enormous threat to salmon farming worldwide because it
causes widespread fish die-offs. The L domain of IHNV interacts with multiple host factors
to mediate viral assembly and budding, including the ESCRT pathway [96]. The M, G, and
L proteins of IHNV contain the L domain, and can directly interact with Nedd4, TSG101,
and ALIX in the host ESCRT system [97]. Furthermore, Nedd4, TSG101, and ALIX are all
involved in the release of IHNV [97]. However, the three L domains of IHNV are located
in different viral proteins, indicating that the absence of one or two viral proteins and the
loss of some related factors cannot block the release and infection of IHNV, which may be
related to the wide range of hosts of IHNV [98]. In conclusion, PPPH, PSAP, and LXXLF
on the IHNV protein can interact with the ESCRT component of fish cells to recruit it to
mediate virus budding, but their cell budding sites are not the same [97]. Further research
is needed on the biological mechanism of budding virus aggregation in different locations.

4.1.3. The Role of ESCRT in EBOV Budding

Ebola virus (EBOV) is a single-stranded, negative-sense, enveloped RNA virus be-
longing to the Filoviridae family, which can cause hemorrhagic fever syndrome with high
mortality. Currently, there is no effective vaccine or treatment for infection and transmission.
Recently, it was reported that the ESCRT pathway plays an important role in the budding
of EBOV [26,99]. The structural protein VP40 of EBOV plays a central role in the late stage
of the assembly and release of the virion. The L domain of VP40 mediates the separation
of the virus from the host cell membrane through the recruitment of host ESCRT and its
related proteins. VP40 of EBOV contains two overlapping L-domain PPXY sequences and
PTAP sequences, similar to the HIV-1 Gag protein, they bind to NEDD4 ubiquitin ligase
and TSG101, respectively [100]. Studies have shown that there is a YPX(n)L/I sequence on
VP40 of EBOV, which can interact with the ALIX Bro1-V fragment to recruit host ALIX [101].
Moreover, ESCRT-III is critical for the release of Ebola [102]. In recent years, according
to the relevant mechanism of ESCRT in EBOV infection, antiviral therapy targeting the
interaction between PTAP-TSG101 and PPXY-NEDD4 has been developed [103,104], and it
is believed that it will be possible for humans to completely defeat EBOV in the near future.
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4.2. Exosomal ESCRT Pathway and Enveloped DNA Virus

Apart from enveloped RNA viruses, the ESCRT system also involves the infection of
many enveloped DNA viruses, such as insect baculoviruses, hepatitis B, and herpes simplex
virus type-1. Some DNA viruses use exosomes to evade cellular immune surveillance,
providing an environment for viral proliferation, and thus expanding viral infection.

4.2.1. Insect Baculoviruses’ Invasion and Release from Cells Depends on the
ESCRT System

Baculovirus is an enveloped macromolecule double-link DNA virus with a genome
size of about 80–180 kb. In nature, baculovirus uses arthropods as a specific host for
transmission and can be used as biological insecticides [105,106], protein expression vectors,
and gene transduction vectors of mammalian cells [107–109], etc.

Baculovirions come in two forms: On one hand, Occlon-derived viruses (ODV) are
responsible for a viral infection at the individual insect level. ODV is embedded in a pro-
teinaceous occlusion body (OB), and it contains one or more nucleocapsids in an envelope.
After oral ingestion of ODV in arthropods, the alkaline environment in their intestines
causes the ODV shell to fall off, releasing infectious virions, which initiate infection from
insect intestinal epithelial cells. Then the nucleocapsid enters the midgut cells for replica-
tion, and the newly formed nucleocapsid buds out of the midgut cells to form the second
virion blastomavirus (BV), which invades cells through receptor-mediated endocytosis and
mediates systemic infection between cells [106,110]. More than 600 species of baculoviruses
have been found, among which Autographa californica multiple nucleopolyhedrovirus
(ACMNPV) has been extensively studied as a model baculovirus [111]. Early studies have
identified several host proteins associated with vesicular transport in ACMNPV budding
viruses [112,113].

To further determine whether baculovirus infection (invasion and release) is depen-
dent on the host cell ESCRT system, the researchers designed a dominant-negative mutant
expressing the VPS4 protein of Spodoptera frugiperda cells (Sf9 insect cell) to study its effect
on ACMNPV replication. The results confirmed that VPS4 is necessary for both the inva-
sion and release of ACMNPV in insect cells [114]. And recent studies have shown that both
the ESCRT-I and ESCRT-III complexes are critical for the effective entry of ACMNPV into
insect cells [115]. In addition, several baculovirus cores or conserved proteins (AC11, AC76,
AC78, GP41, AC93, AC103, AC142, and AC146) were found to interact with components of
VPS4 and ESCRT-III. It is speculated that these viral proteins form an “Egress Complex”,
recruiting the components of ESCRT-III to the viral export domain on the nuclear mem-
brane [115]. In conclusion, the host cell ESCRT system is essential for the invasion and
release of insect baculovirus infection.

4.2.2. HBV and the ESCRT System

Hepatitis B virus (HBV) is an encapsulated, DNA-containing Pararetrovirus, which is
one of the most successful pathogens in the world, and there is no radical cure for HBV
infection at present [116]. As reported, late endosomes and MVB are used by HBV for
assembly and release [117], and the budding and release of HBV virions are related to
ESCRT-related molecules [116,118–120]. For example, CD63 was found to co-locate with
HBV protein in infected liver cells [117]. In addition, all ESCRT-0 components are required
for HBV replication, and HRS, the core component of ESCRT-0, plays an important role
in HBV transcription [121]. In HBV-producing cells, knockout of TSG101 and VPS28 did
not prevent the release of the virus, while knockout of ESCRT-II not only inhibited the
production and release of enveloped virions but also impaired the formation of the cell
core capsid. Moreover, ESCRT-II was found to co-locate and interact with viral capsid
proteins, suggesting that ESCRT-II plays an irreplaceable and important role before HBV
buds [122]. In addition, HBV budding on the cell intima and requires the ESCRT-III and
VPS4 complex to separate from the membrane [122]. However, the mechanism of how
HBV enters the ESCRT pathway is not clear yet. It was reported that Nedd4 ubiquitin
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ligase interacts with the PPAY sequence of the L domain on HBV capsid efficiently, while
γ2-Adaptin, a clathrin adaptor-related protein, establishes the necessary association with
both viral capsid and host cell capsule [123–126], indicating that ESCRT-related proteins
involve in the HBV infection.

4.2.3. Correlation between HSV-1 and the ESCRT System

Herpes simplex virus-1 (HSV-1) is an envelope double-stranded linear DNA virus that
uses the host ESCRT to facilitate viral production and transport [127]. The virus can infect
humans and a variety of animals, and it is currently highly prevalent in humans [103–105].

During infection, viral DNA replication, gene transcription, and nucleocapsid as-
sembly occur in the nucleus. After assembly of progeny virions, they first bud from the
nuclear membrane to cytoplasm and obtain a lipid envelope. They then enter the plasma
membrane through a second budding and obtain the second envelope before being released
into the extracellular environment [128]. HSV-1 exploit nucleoplasmic ESCRTs to promote
inner nuclear membrane (INM) remodeling and fission in the first envelopment step [128].
ESCRT-III is recruited to the INM during the budding of HSV-1 from the nucleus, medi-
ating the budding of HSV-1 from the INM and regulating the integrity of the INM [129].
However, the secondary envelope of HSV-1 is dependent on functional VPS4 [130]. Subse-
quent studies have shown that the expression of any dominant-negative ESCRT-III protein
effectively blocked the production of the infectious HSV-1 virus, suggesting that in addition
to VPS4 activity, the secondary envelope of HSV-1 is highly dependent on the functional
ESCRT-III complex [131].

CHMP4 is the most abundant component in the ESCRT-III membrane remolding
machine, and it has been found that HSV-1 morphogenesis requires CHMP4C, but not
CHMP4A or CHMP4B [132]. In addition, due to several HSV-1 proteins contain the
binding motif of ALIX and TSG101, it was suspected that the TSG101 protein of ESCRT-I
and the ALIX protein were also involved in the production of infectious HSV-1. However,
the results of dominant-negative protein and RNAi detection indicated that ALIX and
TSG101 are not required for the secondary envelope of the HSV-1 virus [131]. The specific
mechanism by which various proteins of the ESCRT system affect the production of HSV-1
remains to be further studied.

5. Conclusions and Perspectives

Exosomes carry cell cargo for cell-to-cell transport, which is also a process that assists
in the cell-to-cell transmission of viral nucleic acids and proteins. Envelope viruses can
escape the immune system of host cells by encapsulating viral nucleic acids, viral proteins,
and even virions into exosomes, regulating the intracellular environment of host cells to
help the proliferation of viruses, and using exosomes to follow the circulation of body fluids
to various targets of the host body for diffusion and infection. The various components
of the host exosome ESCRT system are also involved to varying degrees in the budding
and infection of many enveloped viruses, which are hijacked by the virus to assist their
proliferation and infection. Therefore, the study of the mechanism of the exosome ESCRT
pathway in enveloped virus infection is of great significance for blocking the spread of
the virus, inhibiting the proliferation of the virus, and preparing antiviral targeted drugs
and virus vaccines. As the mechanism of cystic virus budding and infection via exosome
ESCRT continues to unravel, it should soon be possible to target the exosome and ESCRT
systems to block and prevent various enveloped virus infections.
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