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Abstract

Background: Targeted next-generation sequencing (NGS) has been widely used as a cost-effective way to identify
the genetic basis of human disorders. Copy number variations (CNVs) contribute significantly to human genomic
variability, some of which can lead to disease. However, effective detection of CNVs from targeted capture
sequencing data remains challenging.

Results: Here we present SeqCNV, a novel CNV calling method designed to use capture NGS data. SeqCNV extracts
the read depth information and utilizes the maximum penalized likelihood estimation (MPLE) model to identify the
copy number ratio and CNV boundary. We applied SeqCNV to both bacterial artificial clone (BAC) and human
patient NGS data to identify CNVs. These CNVs were validated by array comparative genomic hybridization (aCGH).

Conclusions: SeqCNV is able to robustly identify CNVs of different size using capture NGS data. Compared with
other CNV-calling methods, SeqCNV shows a significant improvement in both sensitivity and specificity.
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Background
The development of Next-Generation Sequencing (NGS)
technologies has enabled the generation of large-scale se-
quence datasets. The ability to identify and characterize
genomic variants and mutations from large numbers of
individuals has become feasible, driving advances in our
understanding of genetic diseases. Due to the cost and the
complexity of analyzing whole genome sequence data, tar-
geted capture sequencing has become the predominant
approach for genetic diagnostic purposes. Targeted cap-
ture sequencing yields significantly greater depth of cover-
age, providing increased quality and fidelity at a decreased
cost compared with whole genome sequencing [1–4].
However, a major limitation of capture NGS is that only
single nucleotide variants (SNVs) and small insertions and
deletions (Indels) can be identified, while large duplication

and deletions are ignored in most cases because copy
number variation (CNV) identification from targeted
NGS data is less reliable.
CNVs are large genomic DNA segments (≥1 kb) with

variable copy number among individuals [5]. A substan-
tial proportion of the human genome is copy number
variable and more than a thousand CNV regions with a
frequency of greater than 1% have been identified in the
genome [6]. CNVs encompassing genes can potentially
alter gene dosage, disrupt genes or perturb their expres-
sion levels [7], and are known to contribute to a number
of disorders [8–15]. Additionally, CNVs have played a
pivotal role in evolutionary [16–18] and population gen-
etics analysis [19, 20].
Traditional methods for CNV identification include

array comparative genomic hybridization (aCGH) [21]
and SNP array technologies. In recent years, NGS has
provided alternative approaches to assay CNVs [22–25].
There are two primary strategies for CNV detection
using NGS data: paired-end mapping (PEM) and depth
of coverage (DOC). In the PEM-based methods, both
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paired ends of a sequenced fragment are aligned against
the reference genome, and discordantly mapped paired
reads whose distances are significantly deviated from the
mean insert size of fragments are predicted to possess
alternations in copy number [26]. PEM-based methods
are not suitable for targeted NGS as they are limited by
the read length when finding large copy number gains.
More importantly, they require that paired reads cross
the junction. Since CNV boundaries are more likely to
be located in introns or intergenic regions that are far
from the targeted regions, many CNVs will be com-
pletely missed by PEM-based approaches that use tar-
geted capture sequencing data. Another type of CNV
calling methods is based on DOC windows [27]. The
underlying approach is to compare the differences of
DOC in particular genomic regions between case and
control samples [28, 29]. Unlike the PEM-based methods
that are limited by the insert size and can only detect
smaller CNVs, the DOC-based methods can, in theory,
detects arbitrarily large insertions. Furthermore, DOC
can be effectively used with paired-end, single-end, and
mixed read data. However, due to large variation of the
capture NGS data, DOC-based methods usually result in
significant false positives [30].
Currently, several methods have been developed to

identify CNVs from capture NGS data, including CoNI-
FER [31], CNVnator [32], CNVer [33] and XHMM [34].
CoNIFER exploits singular value decomposition (SVD),
which aims to eliminate capture biases among sample
batches. XHMM is based on principal component ana-
lysis (PCA) normalization and hidden Markov model
(HMM). Reliance on SVD and PCA limit the ability of
CoNIFER and XHMM to perform CNV calling with a
large number of samples. CNVnator and CNVer are
both DOC-based methods. CNVer supplements the
DOC with paired-end mapping information, where mate
pairs mapping discordantly to the reference indicate the
presence of variation [33]. Both of them can identify a
large number of CNVs but are not effective in detecting
small-size CNVs [35, 36].
To address the limitations of current methods in de-

tecting CNVs using target capture NGS data, we devel-
oped a robust statistical method called SeqCNV, which
uses maximum penalized likelihood estimation (MPLE)
to evaluate the CNV boundary and the copy number ra-
tio. Given the variation of the sequencing depths of the
case and control samples, normalization was performed
using the total reads number for each chromosome in
the likelihood model. A novel segmentation algorithm
was developed which enabled the detection of CNVs
with different lengths. We also present an assessment of
its sensitivity, specificity and limitations using targeted
sequencing data from both bacterial artificial clone
(BAC) and human patients.

Methods
Statistical modeling and algorithm
SeqCNV is a DOC-based method to identify CNVs from
target capture NGS data. The workflow of SeqCNV in-
cludes four steps as shown in Fig. 1. First, with provided
case and control samples, SeqCNV considers the starting
point of each read as a candidate break point (CBP).
Next, SeqCNV establishes the penalized log-likelihood
model for all segments between case and control sam-
ples. For each CBP, SeqCNV calculates the likelihood
and recursively finds the optimum starting point located
upstream of it. Once the optimum starting point is
determined, the region between it and the CBP is
considered as a candidate CNV region. Finally, SeqCNV
reports candidate regions whose likelihood values are
below 0.6 (for copy loss) or above 1.4 (for copy gain). In
the segmentation stage, each chromosome can be parti-
tioned into n segments with n-1 breakpoints. When case
and control reads are mixed together and given a read
that is successfully mapped to the ith segment, we as-
sume the probability that the read is from the case
sample (pi) is homogeneous across the entire targeted

Fig. 1 Workflow of SeqCNV. A dynamic programming procedure
is included in the step “Recursively find candidate regions”. It
aims to quickly break iteration to find candidate regions that are
most likely to be CNV events, thereby saving much time for
whole algorithm running
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region. Thus, the control is diploid and the pi is normal-
ized to the diploid genome, which is the relative
probability. Therefore, the probability that the read is
from the control sample is 1-pi. Thus, each short read
mapped to the ith segment is an independent Bernoulli
experiment with two outcomes: being a case read or a
control read. ti and ci are denoted as the number of
reads mapped to the ith segment in case and control
samples, respectively. The log-likelihood L of the model
is as follows:

L ¼
X

i

ti lnpi þ ci ln 1−pið Þ: ð1Þ

Each segment has two parameters to be determined:
the left boundary position and the copy number ratio,
with the exception of the first segment, which only re-
quired the copy number ratio. Thus, the model contains
2n-1 parameters.
The optimization goal is to minimize the number of

segments while keeping its fitness to the data. This task
can be achieved by several criteria, such as p-value-based
statistical testing, Akaike’s information criterion (AIC)
[37] and Bayesian information criterion (BIC) [38]. All
these criteria can be viewed as particular instances of
MPLE, which attempts to maximize the following penal-
ized likelihood (PL):

PL ¼
X

i

ti lnpi þ ci ln 1−pið Þð Þ−λ 2n−1ð Þ: ð2Þ

In this equation, λ is the penalization factor, as λ ¼ 1
2 χ

2
p

for the p-value-based criterion, λ = 1 for AIC and λ ¼ 1
2 ln

N for BIC, where N is the total number of reads in the
targeted genome. We recommended BIC owing to its
robust statistical properties such as minimum description
length [39, 40].
To find the MPLE, we proposed a dynamic program-

ming procedure. Suppose there are M CBPs. Let s (j, i)
be the log-likelihood of the segment that starts from the
jth CBP and ends at the ith CBP.

s j; ið Þ ¼ t ln
t

t þ c
þ c ln

c
t þ c

� �
; ð3Þ

where t (c) is the number of reads mapped in the seg-
ment in the case (control). Denote b(i) as the maximum
penalized log-likelihood of the chromosome started at
the beginning and ended at the ith CBP. Denote B (i) as
the best starting CBP of the segment that ended at the
ith CBP. The recursion formula is as follows:

b ið Þ ¼
0 i ¼ 0
s 1; 1ð Þ−λ i ¼ 1
max s j; ið Þ þ b j−1ð Þ−2λ; 0 < j≤ið Þ 1 < i≤M;

8
<

:

ð4Þ

BðiÞ ¼
0 i ¼ 1

maxj
�
sðj; iÞ þ bðj−1Þ−2λ; 0 < j≤i

�
1 < i≤M

(

ð5Þ
The recursion formula has a computational complexity

of O(n2). For implementing this dynamic procedure,
double loops are necessary in the coded program. The
outer loop is for each i from 1 to M, traversing M CBPs.
The inner loop is for j, decreasing from i to 1, searching
the optimum starting point from the ending point i. To
speed up, the inner loop will stop if the penalized log-
likelihood at j is much lower than that at the current
optimum starting point, s (j, i) + b (j-1)-2λ < b(i)j-const,
where in our experiment, const = 5λ.
If the dataset contains less than 1 M shorts reads, each

read can be set as a CBP and the best partition can be
found within several hours with read level resolution.
For larger datasets, first, CBPs can be selected instead of
treating each read as a CBP as described [28]. To iden-
tify the CBP set, the dynamic programming algorithm
described in formula (4) could also be utilized with
lower penalty, for instance, λ = 1.92, which is equivalent
to a p-value of 0.05 threshold. After CBPs being deter-
mined, the formula (4) will be run again with bigger λ to
solve the optimization problem of formula (2).

Simulation dataset preparation
To evaluate the detection power and the false positive
rate (FPR) of SeqCNV with different lengths of CNVs,
we generated sequencing reads with the starting position
based on the NimbleGen CCDS design file on chromo-
some 1, which includes 8315 targets with an average
length of 168 base pairs. Detection power is defined as
how many simulated one-copy gains or losses are cov-
ered by the segments that have close ratios. FPR is de-
fined as how many segments whose ratios indicate more
than one copy change actually do not overlap with the
simulated ones. We assumed that the number of reads
for each target followed a Poisson distribution with as
the product of the affinity and length, and coordinated
within the range being sampled. For the rest of the
chromosome, off-target reads were assumed to be uni-
formly distributed and randomly sampled.

BAC spike-in experiment
DNA of nine non-overlapping BAC clones were spiked
into control human genomic DNA (Additional file 1).
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The spike-in sample was used to mimic copy number
gains in nine targeted regions.

Retinitis pigmentosa (RP) patient data analysis
RP is an inherited form of retinal degenerative disease
causing progressive vision loss. Autosomal dominant RP
(adRP) can be caused by loss of a single copy of PRPF31
gene on chromosome 19. To test the performance of our
method, we applied SeqCNV on five adRP patients who
were known to carry PRPF31 deletions. Patient DNA was
extracted from peripheral blood using standard techniques.

Targeted panel design and sequencing data analysis
A custom capture panel was designed using Agilent-
SureSelect (Agilent Technologies, CA) targeting 18
genes (RPGR, TULP1, CABP4, RGR, MYO7A, PRPF31,
ABCA4, USH2A, CNGB1, SAG, RPGRIP1, LCA5, CNGA1,
MERTK, CLRN1,TTC8, CC2D2A, and PDE6A). All normal
control samples, BAC spike-in samples, and adRP patient
samples were sequenced using the same panel in the same
batch. Resultant DNA was bar-coded, prepared, and shot-
gun sequenced. Reads were aligned to Human Reference
Genome hg19 using Burrows Wheeler Aligner (BWA) [41].
Recalibration and realignment were performed using The
Genome Analysis Toolkit (GATK) [42]. Samtools [43] was
used to sort and index the resultant BAM files. Quality
control analysis showed that 97% and 81% of the target
area were covered with > 10× and > 40×, respectively.

aCGH validation
To validate the CNVs identified from NGS, we per-
formed aCGH experiments on the patients with adRP. A
customized aCGH platform targeting the same 18 genes
including the PRPF31 (MIM: 606419) was designed

using Agilent Suredesign (https://earray.chem.agilent.com/
suredesign). The probes used are available upon request.
The aCGH experiments were performed as per the manu-
facturer’s instructions and were analyzed using Agilent
Genomic Workbench.

Results
Simulated results
We simulated both case and control data and applied
SeqCNV to obtain the segmentations. We performed
this process for 100 rounds. In each run, we randomly
generated four copy changes including two gains and
two losses at different sizes of 1 MB, 100 KB, 10 KB and
1 KB, containing at least one captured exon. For each of
these 16 changes per sample, we mimicked a single copy
number gain or loss by increasing or decreasing the
number of case reads by 50% relative to the control, re-
spectively. As shown in Fig. 2, simulated copy number
changes of different sizes can be detected.
As shown in Table 1, SeqCNV is sensitive to gains of

1 KB and losses of 1 KB. Sensitivity was calculated as
the ratio of correctly detected CNV regions to the total
number of simulated CNV regions. A detected region
was considered as a true positive only if SeqCNV deter-
mined a copy gain ratio no greater than 1.4, or loss ratio
no less than 0.6 (complying with the ideal ratios of 1.5
for gain and 0.5 for loss). Additionally, the overlap of
copy loss detections and simulated regions was required
to exceed 50%. Due to the detection difficulty of copy
number gains, any overlap of simulated regions was
deemed sufficient for copy gain detections [44]. It is
noted that high sensitivity is associated with 1 KB re-
gions, which is indicative of an ability to detect a single
exon copy number gain or loss.

Fig. 2 An example of simulated CNV data on chromosome 1. The data set, computationally simulated, includes two deletions and two
duplications at each of four lengths. Black dots represent read density over 500 bp fixed windows along the entire chromosome. The red bands
indicate the results of SeqCNV analysis. Horizontal lines mark significant points of deletion or gain
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Comparison of performance on BAC spike-in data
One of the challenges in evaluating the performance
of CNV callers is the lack of a gold standard. To ad-
dress this issue, we spiked in equal molar BAC DNA
for nine regions into control genomic DNA to mimic
copy number gains (see Additional file 1). Using this
dataset, the performance of SeqCNV was compared
with previous published tools in detecting CNVs from
targeted NGS data.
The results are shown in Table 2. CNVnator and

CNVer reported a large number of candidate CNVs,
most of which were long regions whose lengths sur-
passed 1Mbp and turned out to be false positives. CoNI-
FER identified two CNVs, and both were located in the
designed CNV regions, indicating high specificity but
relatively low sensitivity. XHMM predicted a few CNV
events, but none of them overlapped with the spiked in
CNV regions. Precision is calculated as the ratio be-
tween the number of correctly detected events (the
intersection between the tool calls and the known calls)
and the total number of events detected by a tool [45].
The recall is calculated as the ratio between the number
of correctly detected events and the total number of
events in the validation set [45]. From comparative ana-
lysis of the methods, SeqCNV showed a more balanced
recall and precision (Fig. 3). CNVnator is the best for re-
call, followed by CNVer, SeqCNV, CoNIFER and
XHMM. The high recall of CNVnator is attributed to its
large number of called long CNV regions, which also
leads to the low precision. CoNIFER is superior in terms
of precision, followed by SeqCNV, CNVer, CNVnator
and XHMM. However, the recall of CoNIFER is very
low since only two CNVs were called. In comparison,
SeqCNV achieved high precision and moderate recall.
Overall, from the results on the BAC spike-in data,

SeqCNV showed the best trade-off between high preci-
sion and recall comparing with the other four methods.

Comparison of performance on adRP patient data
We collected targeted NGS data from five patients with
adRP. Normal control samples were sequenced in the
same batch. Each of these case samples contained a copy
number loss in PRPF31, which was validated by aCGH
(Fig. 4, Additional file 2). Considering the possibly of a
non-even read distribution, we selected four samples
without a copy change in PRPF31 and merged these
samples with the control set. With five patient samples
and the merged control samples, we ran all the CNV
tools and the obtained results shown in Table 3 and
Fig. 5. For CoNIFER and XHMM, we added an extra 46
samples without copy change in PRPF31 as controls due
the requirement of SVD and PCA methods. The criteria
of control sample selection are described in the
Additional file 3. As shown in Fig. 5, both SeqCNV and
CoNIFER identified deletions in PRPF31 on chromo-
some 19. However, CoNIFER resulted in a larger FPR.
Consistent with our previous BAC spike-in experiment,
both CNVnator and CNVer reported large number of
CNVs, almost covering the entire chromosome. XHMM

Table 1 Summary of 100 runs of SeqCNV on simulation data. Boundary (Start/End) is the average distance to the nearest starting
(ending) point of the detected variants

Type One copy gain One copy loss

Resolution 1 MB 100 KB 10 KB 1 KB 1 MB 100 KB 10 KB 1 KB

Sensitivity 99.50% 99.00% 75.00% 67.80% 99.00% 96.50% 91.00% 66.80%

Boundary (Start) 1.69 KB 1.37 KB 0.73 KB 0.29 KB 0.71 KB 0.64 KB 0.49 KB 0.18 KB

Boundary (End) 1.28 KB 1.01 KB 0.91 KB 0.32 KB 0.91 KB 0.71 KB 0.72 KB 0.21 KB

False Positive Rate 0% 0% 0% 0% 0% 0% 0% 3.74%

Table 2 Number of predicted CNV events and correctly
detected events for each method on BAC spike-in data

SeqCNV CoNIFER CNVnator CNVer XHMM

Number of Predicted
CNV events

53 2 8032 4487 2

Number of Correctly
Detected events

7 2 9 8 0

Fig. 3 Precision-Recall Contours for five CNV methods on spike-in
data. Light grey contours represent F-measure levels (harmonic
mean of precision and recall). SeqCNV achieved the highest
F-measure value
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did not give any positive results. Therefore, SeqCNV out-
performed the other four methods in this comparison.

Execution time estimation
Since efficiency is an important factor to consider in
evaluating the performance of the tools, we tested
SeqCNV with other four methods on the BAC spike-in
data, adRP human patients data and whole-exome se-
quencing (WES) data obtained from the 1000 Genome
projects (ftp://ftp.1000genomes.ebi.ac.uk/) [46, 47]. As
shown in Additional file 4, SeqCNV required 4–5 min to
analyze the BAC spike-in and adRP patient data, and
about 17 min to process chromosome 1 data from WES.
Compared with other tools, SeqCNV was the most effi-
cient in performing the processing and analysis of the
datasets.

Discussion
SeqCNV offers many advantages over previously used
methods. It does not require a large number of samples

to run and is able to detect CNVs of different sizes by
treating the left boundary of each reads as a CBP. As
shown in both BAC spike-in data and adRP human pa-
tient data, SeqCNV exhibited the highest accuracy com-
pared with other methods.
SeqCNV can also be effectively used to analyze

patient data for other regions potentially causing
additional genetic diseases. Besides BAC spike-in and
RP patient data, we also tested SeqCNV on WES
samples from the 1000 genome project (ftp://
ftp.1000genomes.ebi.ac.uk/). Similar to the methods
used for analysis of the adRP patient data, we con-
sidered multiple factors such as DNA quality, DNA
extraction protocol and the possibly non-even reads
distribution and randomly selected three samples to
pool together as a control, and randomly selected
one sample as case. We validated our results with
the CNVs previously reported by Conrad et al. [46,
47] in the WES samples. The results are shown in
Additional file 5. Overall, SeqCNV was able to

Fig. 4 aCGH validation of copy number deletion in PRPF31 gene for sample UTAD082. The shaded area indicates the CNV area with loss of one
copy of the genomic segment. Validation results for other 4 samples can be found in Additional file 1. Five samples share different deletion sizes,
ranging from several exons to entire genomic region of PRPF31

Table 3 Number of predicted CNV events and correctly detected events for each method on adRP patient data

Sample ID CNV SeqCNV CoNIFER CNVer CNVnator XHMM

UTAD034 PRPF31 entire gene deletion Y Y N N Na

UTAD069 PRPF31 exon 4–8 deletion Y Y N N Na

UTAD082 PRPF31 exon 4–13 deletion Y Na N N Na

UTAD411 PRPF31 entire gene deletion Y Y N N Na

UTAD611 PRPF31 exon 1–11 deletion Y Y N N Na

Each element in the table indicates that whether copy number deletion for genomic region of gene PRPF31 in that sample is identified by the CNV method or
not. ‘Na’ element indicates the method did not report any CNV for the sample. As we can see, SeqCNV really identified all the copy number deletion for all the
5 samples
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identify the known CNVs with a good recall rate
(55%) and low false positive rate (~10%).
The study of CNVs in human disease is a rapidly

evolving field. CNVs can result in gene dosage changes
and give rise to a substantial amount of human pheno-
typic variability. It also has been shown that CNVs play
an essential role in cancer [46, 47]. However, currently
investigating CNVs for human disease is still largely
overlooked due to technical issues, such as the limited
accuracy of CNV detection methods from NGS data.
Therefore, it is important to increase the sensitivity of
detection while controlling the false positive rate with
statistical tools. We recognize that although SeqCNV
demonstrated the best trade-off between precision and
recall compared to other approaches in our tests, it does
still result in a significant number of false positives, es-
pecially when the sequencing quality is not reliable. In
addition, the performance of CNV tools based on tar-
geted capture sequencing would be limited by the cap-
ture design, although it is very efficient in detecting
CNVs in known pathogenic genes. Contrarily, whole-
genome sequencing may be more effective in detecting
CNVs in novel regions. However, because of factors such
as cost, it is not so widely used in clinical applications.
As shown in the simulation results, the length of the

CNV will affect the sensitivity of detection. It is easier to
detect larger CNVs while smaller size CNVs are some-
times indistinguishable from the background. One pos-
sible solution is to increase the sequencing depth, which
will improve the statistical power of SeqCNV. In
addition, using matched case and control files can help
reduce the number of false positives resulting from se-
quencing bias.

Based on our comparative analysis, we observed
that CNVer and CNVnator predicted a large number
of CNVs. Both methods shared good recall but high
FPR. Although SeqCNV requires matched control
samples to perform the analysis, we can also derive a
control sample by pooling other samples together,
which will still serve as an effective control. As
shown in the PRPF31 deletion analysis of adRP pa-
tients, we combined four normal samples that were
sequenced in the same batch as the control. Further-
more, since sequencing quality can be affected by
multiple factors, including DNA quality, and DNA ex-
traction protocol, it is recommended that users select
samples with good quality to pool together as con-
trols. For example, users can calculate the evenness
scores [48] representing the uniformity of sequencing
and samples with highest evenness scores can be
pooled as controls.

Conclusions
In this study, we devised a novel method, SeqCNV,
based on the MPLE statistical model for CNV identi-
fication in targeted NGS data. Simulation analysis
showed SeqCNV can detect CNVs of different sizes
robustly. Additionally, we applied our method to BAC
spike-in data. Compared with other methods, our
method demonstrated higher sensitivity and specifi-
city. We also tested our method on human patient
datasets and causative CNVs were identified in all five
samples and validated by aCGH. SeqCNV is a power-
ful and practical tool for CNV identification in target
capture NGS data and may facilitate causative CNV
discovery in genetic diseases.

Fig. 5 CNV result for five methods on adRP patient data. a SeqCNV b CoNIFER c CNVnator d CNVer e XHMM. X-axis represents the genomic
position for chromosome chr19. PRPF31 gene is located at chr19:54,618,790–54,635,150. Both SeqCNV and CoNIFER identified the PRPF31 copy
number deletion
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Detecting CNV in targeted NGS data is a challenging
area due to non-uniform distribution of read depth of
target sequencing and the variation in capture efficiency.
A significant difference lies in the existing tools. We
think combining SeqCNV with other tools could make
more reliable predictions.
A standard C++ implementation named SeqCNV

can be downloaded from: http://www.iipl.fudan.edu.cn/
SeqCNV.

Additional files

Additional file 1: BAC spike-in regions. CNVs for 9 genes performed in
BAC spike-in experiment. (PDF 86 kb)

Additional file 2: Additional aCGH validation. aCGH validations for copy
number loss in PRPF31 gene for other samples. (A), UTAD034; (B),
UTAD069. (C), UTAD411; (D), UTAD611. (PDF 1564 kb)

Additional file 3: The criteria of control sample selection. This file
describes the criteria for control sample selection. (PDF 8 kb)

Additional file 4: Execution time comparison. Estimation of the
execution time for SeqCNV compared with other tools on BAC spike-in
data, retinitis pigmentosa data and whole-exome sequencing data
(chr1 only) in our study. (PDF 11 kb)

Additional file 5: SepCNV results on WES data. As we did on retinitis
pigmentosa data, considering multiple factors such as DNA quality, DNA
extraction protocol and the possibly non-even reads distribution, we
randomly selected three samples to pool together as control (NA19152,
NA18973, and NA19206), and randomly select one sample as case
(NA10847). (PDF 7 kb)
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