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Glucagon-like-peptide-1 (GLP-1) derived from gut enteroendocrine cells and a dis-
crete population of neurons in the caudal medulla acts through humoral and neural
pathways to regulate satiety, gastric motility and pancreatic endocrine function.
These physiological attributes contribute to GLP-1 having a potent therapeutic action
in glycaemic regulation and chronic weight management. In this review, we provide
an overview of the neural circuits targeted by endogenous versus exogenous GLP-1
and related drugs. We also highlight candidate subpopulations of neurons and cellular
mechanisms responsible for the acute and chronic effects of GLP-1 and GLP-1 recep-
tor agonists on energy balance and glucose metabolism. Finally, we present potential
future directions to translate these findings towards the development of effective
therapies for treatment of metabolic disease.

LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands
(BJP 75th Anniversary). To view the other articles in this section visit http://
onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
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1 | GLP-1: FROM DISCOVERY TO USE AS However, the concept or existence of such an incretin was met by
AN OBESITY AND DIABETES THERAPEUTIC scepticism and controversy over the following century (reviewed in

Holst, 2019; Miiller et al., 2019; Rehfeld, 2018). Briefly, the develop-
The discovery of the first hormone, secretin in 1902, led to the search ment of radioimmunoassay methods for insulin as well as glucagon
for other gut hormones that could stimulate pancreatic secretion. greatly advanced the detection of these hormones and allowed for in-

Abbreviations: AGRP, agouti-related protein; CRH/CRF, corticotropin releasing hormone/
corticotropin releasing factor; GIP, gastric inhibitory polypeptide/glucose-dependent

depth investigations on how they are regulated in normal physiology
as well as disease (Scherer & Newgard, 2020). The ability to directly

and reliably measure circulating insulin levels led to the description

insulinotropic polypeptide; GLP-1, glucagon-like-peptide 1; KO, knockout; MC, receptor, that oral glucose administration results in considerably higher insulin

melanocortin 4 receptor; mRNA, messenger RNA; NPY, neuropeptide Y; SDA,

responses when compared with intravenous glucose, heralding in a

subdiaphragmatic vagal deafferentation; Sim-1, single-minded 1; TRH, thyrotropin releasing

hormone.

renewed interest in incretins. The first identified incretin hormone
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This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

600 wileyonlinelibrary.com/journal/bph

Br J Pharmacol. 2022;179:600-624.


https://orcid.org/0000-0002-8434-8658
mailto:kevin.williams@utsouthwestern.edu
http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3643
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1136
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5012
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3542
https://doi.org/10.1111/bph.15682
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/bph

KABAHIZI ET AL.

BRITISH
PHARMACOLOGICAL 601
SOCIETY

FIGURE 1 Sagittal view of a murine brain
depicting select nucleus tractus solitarius
(NTS|GLP-1 projections discussed within the
review. Endogenous GLP-1 (left) and GLP-1
receptor analogues (GLP-1As) (right) act on a
variety of brain regions. Abbreviations: AMG,
amygdala; ARC, arcuate nucleus; BNST, bed
nucleus of the stria terminalis; DMH, dorsomedial
hypothalamus, DMV, dorsal motor nucleus of the
vagus; GLP-1, glucagon like peptide 1; GLP-1RAs,
GLP-1 receptor agonists; NAc, nucleus
accumbens; NTS, nucleus tractus solitarius; PBN,
parabrachial nucleus; PVH, paraventricular
hypothalamic nucleus; VLM, ventrolateral medulla
and VTA, ventral tegmental area

dependent insulinotropic polypeptide. Subsequent and parallel inter-
ests in the hormone glucagon suggested the existence of another
incretin hormone later identified as a pro-hormone, pro-glucagon
structure with two glucagon-like-peptides. This ultimately led to the
discovery of glucagon-like-peptide 1 (GLP-1).

GLP-1 is a small peptide hormone, which is a post-translational
cleavage product of the preproglucagon encoded gene, GCG. GLP-1 is
produced by intestinal L-cells and also by a discrete population of
neurons in the caudal medulla (Figure 1) (Drucker, 2018; Larsen,
Tang-Christensen, Holst, & Orskov, 1997). The multiple physiological
effects of GLP-1 make it a viable candidate for diabetes mellites and
obesity therapies. In particular, GLP-1 has potent effects on blood glu-
cose by either stimulating glucose induced insulin release or inhibiting
glucagon secretion (Drucker, 2018; Holst, 2019; Mller et al., 2019),
both of which limit hepatic glucose production, which has been asso-
ciated with hyperglycaemia in type 2 diabetic patients. Additionally,
GLP-1 suppresses appetite and food intake (Drucker, 2018; Shah &
Vella, 2014; van Bloemendaal et al., 2014). However, the beneficial
effects of GLP-1 were limited in clinical trials of type 2 diabetic
patients due to the very short half-life of GLP-1, which is approxi-
mately 2-5 min, via degradation by the enzyme dipeptidyl peptidase
4 (DPP-4) (Holst, 2019; Miiller et al., 2019). Orally active inhibitors of
DPP-4 and of GLP-1
(e.g. exendin-4, sitagliptin, liraglutide, semaglutide, albiglutide,

long-acting injectable/oral analogues
dulaglutide and others) were subsequently developed to enhance the
efficacy of GLP-1 (Holst, 2019; Kanoski et al., 2016; Miiller
et al., 2019). Physiological and pharmacological data have shown that
activation of the GLP-1 receptors promotes insulin secretion from
pancreatic beta cells and also causes weight loss and thus rep-
resenting a significant pharmacological target for the treatment of

type 2 diabetes (Drucker, 2018; Kanoski et al., 2016). Importantly,
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these effects are shared across species from rodents to humans, as
peripheral GLP-1 administration to normal and diabetic human sub-
jects induced satiety and reduced food intake in short term studies
(Flint et al., 1998; Gutzwiller et al., 1999; Toft-Nielsen et al., 1999;
Verdich et al., 2001). Additionally, chronic GLP-1 or GLP-1 mimetic
administration to human diabetic subjects was associated with
improvements in glycaemic control and a modest 1.5-5.3 kg weight
loss over a period of 0.5-3years (Klonoff et al., 2008; Riddle
et al., 2006). As GLP-1 receptor agonists are effective anti-diabetic/
weight control agents and their use is rapidly expanding. It is critical
to understand how GLP-1 mediates beneficial effects on food
intake/body weight and glucose homeostasis in order to develop
therapies with potential for even greater efficacy and tolerability in
patients. This review highlights the emerging findings that illustrate
how GLP-1 receptor signalling in the CNS reduces both food intake
and body weight (with an emphasis on GLP-1 action within the
hypothalamus).

2 | DISTRIBUTION AND REGULATION OF
THE GLP-1 SYSTEM

Although GLP-1 deficiency maybe unlikely to contribute to impaired
insulin action in type 2 diabetes (Gribble & Reimann, 2021), low
GLP-1 levels are a potential risk factor in the development of type
2 diabetes (Lastya et al., 2014). Weight gain may also lead to dys-
regulation of the GLP-1 system and contribute to the maintenance of
metabolic dysfunction (Ranganath et al, 1996). Moreover, type
2 (non-insulin-dependent) diabetic patients exhibit a reduced incretin
effect (Nauck et al., 1986). Thus, better defining the factors that regu-
late the production and release of GLP-1, along with the physiological
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conditions associated with the rise and fall of GLP-1 levels may
advance our understanding of GLP-1 physiology in metabolic disease.

Secretion of GLP-1 is regulated by multiple factors involved in
homeostasis (Gribble & Reimann, 2021; Muiller et al., 2019). Some of
these factors overlap with the regulation of both the peripheral and
central GLP-1 system. For instance, in a fasted or interprandial state,
GLP-1 is secreted from enteroendocrine L-cells at low levels (Orskov
et al., 1996). Owing to the incretin actions of GLP-1, GLP-1 secretion is
increased and circulating levels are elevated several folds in magnitude
in response to a meal, which contributes to increased insulin secretion
(Campbell & Drucker, 2013; Drucker & Nauck, 2006). Elevated blood
levels of GLP-1 following a meal may depend upon mechanical forces
such as gastric distension (Mdiller et al., 2019; Rowlands et al., 2018).
Nucleus tractus solitarius (NTS) GLP-1 neurons also are activated in
response to gastric distension (Vrang et al., 2003). These effects may
involve oxytocin signalling on vagal afferents and contribute to the neg-
ative energy balance of central GLP-1 (Brierley et al., 2021; Cheng
et al., 2020; Gaykema et al., 2017; Holt et al., 2019; Scott et al., 2011).
In addition to mechanical forces, classical satiety factors such as
cholecystokinin (CCK) increase both central GLP-1 cellular activity and
peripheral GLP-1 release (Beglinger et al., 2010; Hansen & Holst, 2002;
Hisadome et al., 2011). However, the concentration of cholecystokinin
necessary for peripheral GLP-1 secretion may require non-physiological
doses (Hansen & Holst, 2002). The adipose-derived peptide leptin also
stimulates the release of GLP-1 from rodent and human L-cells (Anini &
Brubaker, 2003). Nucleus tractus solitarius GLP-1 neurons express lep-
tin receptors and activation of these neurons by leptin may contribute
to leptin-induced control of food intake and body weight (Cheng
et al, 2020; Elias et al., 2000; Scott et al, 2011). Similarly,
5-hydroxytryptamine (5-HT; serotonin) signalling is likely to influence
nucleus tractus solitarius GLP-1 neuronal activity with resulting actions
on metabolism (D'Agostino et al., 2018; Holt et al., 2019). In addition to
mechanical, peptide and neurotransmitter induced GLP-1 secretion;
GLP-1 release in the periphery is also influenced by a variety of
nutrients—carbohydrates, lipids, proteins and amino acids (Bodnaruc
et al, 2016; Mdller et al., 2019). However, less is known about
nutrient-induced changes in central GLP-1 neuronal activity.

GLP-1 acts through a G-protein-coupled receptor expressed on
pancreatic beta cells and neurons of the central and peripheral ner-
vous system (Kanoski et al., 2011; Nakagawa et al., 2004; Paternoster
& Falasca, 2018; Sandoval et al., 2008; Vahl et al., 2007). GLP-1
receptors are highly abundant in circumventricular organs (CVOs) as
well as nuclei involved in the regulation of energy balance (e.g. the
control of food intake and energy expenditure) and glucose metabo-
lism (e.g. glycolysis, gluconeogenesis, glycogenolysis and glycogenesis)
(Knudsen & Lau, 2019; Morita & Miyata, 2012; Secher et al., 2014).

Within the CNS, hindbrain GLP-1 neurons project to numerous brain
regions relevant to metabolic regulation in mice (Figure 1) (Burcelin
et al, 2009; Ghosal et al, 2017; Llewellyn-Smith et al, 2011;
Rinaman, 2010). Not surprisingly, these regions also express GLP-1 recep-
tors supporting a potential redundancy of downstream targets for effects
of peripheral and/or central GLP-1 (Figure 2) (Alhadeff et al., 2014;
Brierley et al., 2020; Kanoski et al., 2016). However, it is also possible that

these systems may play subtle and different roles suggesting that it is not
just a matter of simple redundancy (Brierley et al., 2021).

Activation of nucleus tractus solitarius GLP-1 neurons leads to an
attenuation of metabolic rate and a reduction of food consumption in
both fed and fasted states in mice (Table 1) (Cheng et al., 2020;
Gaykema et al., 2017; Holt et al., 2019). Stimulation of nucleus tractus
solitarius GLP-1 neurons also suppresses glucose production without
effects on glucose uptake, highlighting a potential role for the central
GLP-1 system to regulate both energy balance and glucose metabo-
lism. (Table 1) (Gaykema et al., 2017; Shi et al., 2017). Importantly,
ablation or inhibition of nucleus tractus solitarius GLP-1 neurons
increased refeeding after a fast and inhibits stress-induced
hypophagia (Holt et al., 2019). However, constitutive deficiency of
pre-proglucagon in nucleus tractus solitarius GLP-1 neurons fails to
alter energy balance (Cheng et al., 2020). Thus, there are varied
reports of either continuous stimulation or loss of function/inhibition
of nucleus tractus solitarius GLP-1 neurons resulting in chronic
changes in metabolism (Tables 1 and 2).

The hypothalamus (a focus of this review) is a primary down-
stream target of peripherally administered GLP-1 receptor agonists or
hindbrain GLP-1 neurons (Gabery et al., 2020; Miiller et al., 2019).
Herein, we review various brain regions, including the hypothalamus,
which are required and/or sufficient to mediate the acute and chronic
effects of GLP-1 and GLP-1 receptor agonists on energy balance and
glucose metabolism. However, we acknowledge that there are differ-
ences between species (including variability in rodents) in how native
peripheral/central GLP-1 and long-acting GLP-1 receptor agonists
alter energy balance and glucose metabolism. As our review primarily
focuses on studies in mouse models, it is imperative to consider how

GLP-1 is metabolized by other species (see Section 4).

3 | GLP-1SIGNALLING IN THE PERIPHERY
VERSUS CNS

Classical whole animal pharmacological studies established GLP-1
receptor activation promotes glucose tolerance and decreases food
intake, thereby inducing weight loss and improving glucose homeosta-
sis (Burcelin et al., 2009; Buse et al., 2009; Richard et al., 2014). Utiliza-
tion of mouse genetic tools (see technical considerations of rat
vs. mouse models) has also supported a physiological role of GLP-1
receptors in the regulation of energy balance and glucose homeostasis.
For example, global deficiency of GLP-1 receptors consistently resulted
in decreased glucose excursion in response to an oral glucose tolerance
test, which was also accompanied by lowered circulating insulin levels
(Table 2) (Hansotia et al., 2007; Scrocchi et al., 1996). Mice globally
deficient for GLP-1 receptors also exhibited increased blood glucose
levels in response to an intraperitoneal glucose tolerance test (ipGTT)
(Scrocchi & Drucker, 1998). These data support a principal action of
GLP-1 receptors to properly regulate blood glucose levels. With regard
to energy balance, global deficiency of GLP-1 receptors predictably
attenuated the GLP-1 induced hypophagia (Table 3) (Scrocchi
et al., 1996). However, these mice failed to exhibit altered body weight
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FIGURE 2 (a) Four nuclei are shown here: arcuate nucleus (ARC), lateral parabrachial nucleus neurons (L-PBN), paraventricular hypothalamic

nucleus (PVH) and nucleus tractus solitarius (NTS). Each neuronal structure has input and output projections represented by a coloured line. Each
colour represents a specific cell population, that is, pro-opiomelanocortin (POMC) is pink and projects from the ARC to the L-PBN, nucleus
tractus solitarius (NT)S and PVH. The coloured lines represent cell-specific projections to different brain structures. Projections to a specific
region are cell-type dependent projections to that region and not to a specific cell type in that region. Projections are labelled with either F, A or
O—fluid intake, anorexigenic or orexigenic pathways, respectively. Cell populations expressing GLP-1 receptor (R)s are highlighted within a yellow
box in the figure legend at the bottom right as well as with a yellow triangle on top of the GLP-1 receptor expressing cells (coloured circle). Yellow
triangles in any nuclei signify the presence of GLP-1 receptors but not assigned to a specific cell type. Central GLP-1 originates from the NTS
(yellow) whereas peripheral GLP-1 from the intestine (bottom right; yellow-brown). The black arrows represent non-cell-type specific projections
from the NTS, PVH and L-PBN to other hypothalamic and extra-hypothalamic sites. (b) The highlighted region focuses on the PVH single-minded
1 (Sim1)+, pituitary adenylate-cyclase-activating polypeptide (PACAP)+, thyrotropin releasing hormone (TRH)+ to ARC agouti-related protein
(AGRP) orexigenic pathway (Krashes et al., 2014). Positions of cells do not represent hemispheric segregation nor exact location. Abbreviation:

SCP, superior cerebellar peduncle

suggesting that GLP-1 receptors are not a key determinant of body
mass under basal conditions (Scrocchi et al., 1996). Subsequent studies
showed male and female mice globally deficient for GLP-1 receptors
were paradoxically protected against diet-induced weight-gain (Table 2)
(Ayala et al., 2010; Hansotia et al., 2007; Scrocchi et al., 1996; Scrocchi
& Drucker, 1998). Although not entirely clear, some of the early dispar-
ities between global knockout studies on energy balance were attrib-
uted to varying dietary components (e.g. % kcal from fat), age of diet
exposure, as well as the endpoint chosen for assessment of various
metabolic parameters (Ayala et al., 2010).

Specific to the brain, intracerebroventricular (i.c.v.) administration
of GLP-1 fails to alter eating in mice globally deficient for GLP-1
receptors (Table 3) (Scrocchi et al., 1996). Inhibition of GLP-1 receptor
in the brain also impedes glucose homeostasis and food intake,
whereas inactivation of GLP-1 receptor in the gut impairs glucose-
stimulated insulin secretion, reduces glucose clearance, increases
levels of glucagon and increases gastric emptying after disruption of
GLP-1 action but not food intake or body weight after 24 h (Table 3)
(Knauf et al., 2008; Sandoval et al., 2008; Scrocchi et al., 1996). These

reports are consistent with the demonstration that GLP-1 receptors in
the brain are capable of controlling food intake and body weight
(Drucker, 2018; Gribble & Reimann, 2021; Knudsen & Lau, 2019;
Miiller et al., 2019; Shah & Vella, 2014). This is in addition to the
hypophagic effects of endogenous GLP-1 via peripheral GLP-1 recep-
tors (Ruttimann et al., 2009). As endogenous GLP-1 is rapidly
degraded once it enters circulation, hypothalamic GLP-1 receptors are
likely primarily targeted by nucleus tractus solitarius GLP-1 neurons
(Kanoski et al., 2016; Richard et al., 2015). However, recently devel-
oped long-acting GLP-1 analogues have also been demonstrated to
target multiple nuclei within the brain, including the hypothalamus
(Gabery et al., 2020; Williams et al., 2009).

It is important to note that although subdiaphragmatic vagal afferent
deafferentation in rats inhibits the effects of liraglutide and exendin-4 to
suppress food intake and body weight at low doses, subdiaphragmatic
vagal deafferentation fails to attenuate the food intake and body weight
lowering effects of these GLP-1 receptor agonists at high doses (Table 3)
(Kanoski et al., 2011). Similarly, peripheral administration of exendin-4

suppressed food intake and body weight equally in rats that underwent
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(Continued)

TABLE 2

Fat

Lean

BRITISH
PHARMACOLOGICAL
SOCIETY

References

ITT

Food intake GTT

mass

EE

Body weight mass

Genetic marker

Cheng et al., 2020

PpgGLP1-NTSKO

N/A

N/A

N/A

Chow (Purina Lab Diet,

5001)
HCD (Research Diets

N/A

N/A

N/A

N/A

N/A

N/A

N/A

KABAHIZI ET AL.

D12492)
PpgLepRbKO

N/A

N/A

N/A

Chow (Purina Lab Diet,

5001)
HCD (Research Diets

N/A

N/A

N/A

N/A

N/A

N/A

N/A

D12492)

Note: 1/] statistically significant response; A/V non-significant trend; < equivalent to control/ wild type.

Abbreviations: DIO, diet-induced obese mice; EE, energy expenditure; HFD/HCD, high fat/high caloric diet; NTS, nucleus tractus solitarius; PVN, paraventricular hypothalamic nucleus.

lesioning of the chemoreceptor trigger zone (CTS) for emesis - the area
postrema (Baraboi et al., 2010). Moreover, the hypophagic effects of the
GLP-1 agonists were blunted by administration of GLP-1 receptor antag-
onists into the brain ventricular system (i.c.v. injection into the 3™ ventri-
cle; Table 3) (Kanoski et al., 2011). Together, these data suggest the
potential requirement of GLP-1 receptors in both the vagal afferents as
well as the CNS for the full effects of long-acting designer GLP-1 recep-
tor analogues on energy balance.

The aforementioned studies relied upon pharmacology and broad
spectrum genetic tools (e.g. whole animal knockouts) to elucidate the
effects of GLP-1 on energy balance and glucose metabolism. Although
these studies were greatly informative in demonstrating among other
things that direct microinjection of GLP-1 into the brain (either via
administration into the ventricles or hypothalamic as well as
extrahypothalamic nuclei—discussed below) may result in decreased
food intake/weight gain and improved blood glucose control, it may be
difficult to determine the sites of action in intact animals. Examining cel-
lular activity directly linked or associated with physiology might also be
disconnected. As a means of circumventing this dilemma, researchers
used cyclization recombination-locus of X over P1 (Cre-loxP) technology
alone or in combination with pharmacological approaches to (1) interfer
with circuits, guided by neuroanatomic information coupled with the
power of mouse genetics and (2) assess effects on energy and glucose
homeostasis in awake, unrestrained mice.

Deficiency of GLP-1 receptors in the CNS (both neuronal and
glial cells) or in the visceral nerves failed to alter food intake of
rodents when fed either a chow or a high fat diet (Table 2) (Sisley
et al., 2014). Similar to global knockout studies, these data suggest
that CNS and vagal GLP-1 receptors may not be necessary for the
control of food intake or body weight (Sisley et al., 2014). However,
separate cohorts of mice null for GLP-1 receptors in the CNS did
reveal an increase in food intake (Sisley et al., 2014). Speculatively,
these effects may be highly transient or potentially compensated for
with time, as no differences in cumulative body weight or body com-
position were observed (Sisley et al., 2014). Knockdown of GLP-1
receptors within the CNS also failed to alter baseline blood glucose
levels (Table 2), supporting a principal action for GLP-1 in the periph-
ery for proper basal glycaemic control (Sisley et al., 2014). Although
there was a non-significant impairment of glucose changes in
response to either an intraperitoneal glucose tolerance test or oral
glucose tolerance test, lack of GLP-1 receptors in the CNS also failed
to alter glucose tolerances (Table 2) (Sisley et al., 2014). In support of
these data, chronic inhibition of GLP-1 receptors potently increased
food intake, while failing to alter long-term body weight of high fat
diet fed mice (Knauf et al., 2008). However, these mice were also
protected from hyperinsulinaemia and insulin resistance suggesting a
potential central action of GLP-1 receptors in regulating glucose
metabolism (Knauf et al., 2008). One possible explanation for this
protection may involve an apparent connection between vagal affer-
ent GLP-1 receptors and brown adipose tissue (BAT) (Krieger
et al., 2018). However, both peripheral and central GLP-1 receptors
could be involved in the mediation of these effects. Mice deficient

for GLP-1 receptors in vagal sensory and motor neurons also
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(Continued)

TABLE 3

Agonists

References

GTT

Fat mass

Food intake

Drug Body weight

Genetic marker

Alhadeff et al., 2012

VTA injection; wild type

BRITISH
PHARMACOLOGICAL
SOCIETY

N/A
N/A

N/A
N/A

N/A

N/A

N/A

Chow Purina Rodent Chow, 5001

HFD (D12492)

T(8and 6hr)

exendin-9

Alhadeff et al., 2012

NAc core injection; wild type

N/A
N/A

N/A
N/A

N/A

N/A

N/A

Chow Purina Rodent Chow, 5001

HFD (D12492)

KABAHIZI ET AL.

7 (1 and 3hr)

exendin-9

Alhadeff et al., 2012

NAc shell injection; wild type

N/A
N/A

N/A
N/A

N/A

N/A

N/A

Chow Purina Rodent Chow, 5001

HFD (D12492)

exendin-9

Note: 1/] statistically significant response; A/V non-significant trend; < equivalent to control/ wild type.

Abbreviations: DIO, diet-induced obese mice; EE, energy expenditure; HFD/HCD, high fat/high caloric diet.; IPBN, lateral parabrachial nucleus; NAc, nucleus accumbens; POMC, pro-opiomelancortin; SDA,

subdiaphragmatic vagal deafferentation; VTA ventromedial hypothalamus.

exhibited increased fasting glucose levels and impaired glucose toler-
ance (Varin et al., 2019). These data begin to illustrate a contradiction
in the assessment of GLP-1 receptors in the CNS to regulate
glycaemic control. Although not entirely clear, these data may be
explained in a similar vein to the global receptor knockout (KO )
reports which suggested a disparity between diet composition—with
utilization of standard chow (Varin et al., 2019) or high fat diets of
58% from fat in the former study and 72% from fat in the later
(Knauf et al., 2008; Sisley et al., 2014).

Opposite to loss of function, peripheral administration of
liraglutide provides beneficial effects on blood glucose control in
both chow- and high fat diet fed mice (Table 3) (He et al., 2019;
Secher et al., 2014; Sisley et al., 2014). Liraglutide also suppresses
food intake and body weight of high fat diet fed mice (Table 3) (Li
et al, 2017; Sisley et al., 2014). Similar effects have also been
observed when GLP-1 or GLP-1 receptor agonists are administered
directly to the lateral/fourth ventricles or hypothalamus (Secher
et al, 2014). Importantly, loss of GLP-1 receptors within the CNS
inhibits the effects of liraglutide on body weight, however much of
the effects of liraglutide to improve blood glucose control remains
intact (Table 3) (Sisley et al, 2014). Recent work also suggests
glutamatergic neurons, not GABAergic neurons, may be the pri-
mary cell type responsible for the liraglutide-induced decrease in
food intake and body weight (Tables 2 and 3) (Adams et al., 2018).
However, GABAergic neurons may not be completely dispensable
as inhibition of hindbrain GABAergic neurons attenuates the food
intake and body weight reducing effects of liraglutide in rats on a
high fat diet (Fortin et al., 2020). Moreover, the pharmacological
effects of GLP-1 receptor agonists to reduce food intake are
inhibited in mice deficient for GLP-1 receptors on vagal sensory
and motor neurons, an effect that was variably dependent on the
class of GLP-1 receptor mimetic utilized (Varin et al., 2019). This
suggests a principal action of GLP-1 and GLP-1 receptor agonists
to improve blood glucose control via peripheral GLP-1 receptors,
but improvements in energy balance may rely on specific neural
circuits. Importantly, this may not be absolute as growing evidence
supports nuclei and/or cell-type specific effects of GLP-1 or GLP-1
receptor agonists (with some action within the hypothalamus) to
contribute to the regulation of glucose homeostasis (discussed fur-

ther below).

3.1 | Arcuate nucleus (ARC)

Classical studies implicated the mediobasal hypothalamus in the reg-
ulation of energy balance and glucose homeostasis (Morton, 2007;
Myers & Olson, 2012; Schwartz & Porte, 2005; Timper &
Bruning, 2017; Williams & Elmquist, 2012). The use of pharmacol-
ogy and molecular genetics led to the identification of the arcuate
nucleus, which contains the orexigenic neuropeptide Y (NPY)/
agouti-related protein (AGRP) and anorexic pro-opiomelancortin

(POMC) cells. These neurons are required and sufficient for
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counter-regulatory action on feeding behaviour/weight gain as well

as blood glucose control.

3.1.1 | Arcuate GLP-1 receptor effects on energy
balance and glucose metabolism

Within the arcuate nucleus, GLP-1 receptors are co-expressed with
pro-opiomelanocortin neurons independent of NPY/AGRP expression
(He et al., 2019; Sandoval et al., 2008; Secher et al., 2014). Injection
of a GLP-1 bolus into the third ventricle increases glucose stimulated
insulin secretion, whereas inhibition of central GLP-1 receptors
impairs glucose exchanges in response to an intraperitoneal glucose
tolerance test (Table 3) (Sandoval et al., 2008). Similarly, a bolus of
GLP-1 or GLP-1 receptor agonist infusion directly into the arcuate
nucleus reduces hepatic glucose production and improves glucose
changes in response to a glucose challenge, supporting a link with
GLP-1 receptors in the arcuate nucleus to regulate blood glucose
levels (Sandoval et al., 2008). These effects occur independent of
changes in feeding behaviour on a chow diet (Sandoval et al., 2008).
In agreement with these data, knockdown of GLP-1 receptor expres-
sion in arcuate pro-opiomelancortin neurons fails to alter basal food
intake or energy expenditure of mice on a chow diet (Table 2)
(Burmeister et al., 2017). Although the pharmacological effects of the
GLP-1 receptor agonist, exendin-4, to reduce food intake was also
similar between knockdown and control mice (Table 3) (Burmeister
et al., 2017), antagonism of GLP-1 receptors in the arcuate nucleus
inhibits the weight reducing effects of liraglutide (Secher et al., 2014).
Moreover, mice deficient in GLP-1 receptors selectively in pro-
opiomelanocortin neurons display increased high fat diet-induced
weight gain independent of changes in food intake and energy expen-
diture (Table 2) (Burmeister et al., 2017). This effect may be due to
distinct cell-type and/or brain region specific roles for GLP-1 receptor
signalling as well as a potential for pro-opiomelanocortin GLP-1 recep-
tors to alter handling of nutrient stores independent of changing food
intake or energy expenditure (Burmeister et al., 2017). These data also
highlight some inconsistencies in the interpretations of the effects of
GLP-1 in the arcuate nucleus. In particular, it appears in some
instances that GLP-1 signalling in the arcuate nucleus and/or pro-
opiomelanocortin neurons may alter energy balance/glucose metabo-
lism, whereas at other times, this may not occur. These contradictions
may depend on a variety of factors, again, previously suggested in the
global knockout studies (Ayala et al., 2010). However, possibly
another explanation resides with how GLP-1 modifies the activity of
the melanocortin circuit. For instance, GLP-1 receptor agonists
directly activate pro-opiomelanocortin neurons via a transient
receptor potential channel 5 (TRVP5) (He et al., 2019; Secher
et al., 2014). Moreover, this activity appears to be required at least in
part for the weight reducing and glucose lowering effects of liraglutide
(He et al, 2019). Opposite to pro-opiomelanocortin neurons,
NPY/AGRP neurons are inhibited in response to GLP-1 receptor ago-
nists (He et al., 2019; Secher et al., 2014). However, NPY/AGRP neu-
rons are inhibited indirectly via a GLP-1 receptor dependent
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activation of presynaptic GABA-ergic neurons (He et al., 2019; Secher
et al, 2014). Similarly, arcuate pro-opiomelanocortin neurons also
receive an indirect enhanced excitatory tone in response to GLP-1
receptor agonism (He et al., 2019). In many of the aforementioned
genetic and pharmacological studies, the indirect regulatory activity of
arcuate pro-opiomelanocortin and/or NPY/AGRP neurons remains
intact. That is, if GLP-1 receptors are selectively ablated from pro-
opiomelanocortin neurons, then pro-opiomelanocortin neurons may
still be activated in response to GLP-1 receptor agonists, albeit indi-
rectly. A similar indirect regulation of NPY/AGRP neurons would also
remain intact. This indirect regulatory activity may compensate for
the cell-specific GLP-1 receptor deficiency (whereas this indirect regu-
lation would be inhibited in whole arcuate or 3™ ventricle antagonism
studies) and contribute to some of the inconsistencies observed. This

warrants further investigation.

3.2 | Paraventricular hypothalamic nucleus
(PVH/PVN)

Similar to the arcuate nucleus, classical lesion and pharmacological
studies have implicated the paraventricular hypothalamic nucleus in
regulation of energy balance and glucose metabolism (Andermann &
Lowell, 2017; Gold et al., 1977; Leibowitz et al., 1981; Shor-Posner
et al., 1985; Sutton et al., 2016). It is important to note that the para-
ventricular hypothalamic nucleus receives afferent input from a vari-
ety of nuclei including the arcuate nucleus (Bouret
et al., 2004a, 2004b; Bouret & Simerly, 2004; Geerling et al., 2010). In
particular, arcuate pro-opiomelanocortin and NPY/AGRP neurons
both project to melanocortin 4 (MC,) receptor neurons within the
paraventricular hypothalamic nucleus (Figure 2) (Krashes et al., 2013).
This constitutes part of the melanocortin circuit, which is a principal
contributor of monogenic forms of obesity and diabetes in multiple
species from rodents to humans (Faroogi & O'Rahilly, 2005). Thus, in
addition to a direct role of the paraventricular hypothalamic nucleus
to regulate energy balance and glucose metabolism, neurons in the
paraventricular hypothalamic nucleus function as an important relay
for various circuits including melanocortin neurons, which contribute

to proper metabolic regulation.

3.2.1 | Paraventricular hypothalamic nucleus GLP-1
receptor effect on glycaemic control and energy
balance

GLP-1 receptors are widely distributed within the paraventricular hypo-
thalamic nucleus (Figure 2) (Larsen, Tang-Christensen, & Jessop, 1997).
Similar to the activity of GLP-1 cells in the periphery and the CNS (Dan-
iels & Mietlicki-Baase, 2019), GLP-1 receptor expressing neurons in the
paraventricular hypothalamic nucleus are activated in response to
refeeding (Table 1) (Li, Navarrete, et al., 2019). The activation of para-
ventricular hypothalamic nucleus GLP-1 receptor neurons occurs in

response to both chow and high-energy diets (Table 1) (Li, Navarrete,
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et al., 2019). Direct microinjection of GLP-1 or GLP-1 receptor ana-
logues into the paraventricular hypothalamic nucleus potently sup-
presses food intake and body weight, largely independent of changes
in glucose metabolism (Andermann & Lowell, 2017; McMahon &
Wellman, 1997; McMahon & Wellman, 1998; Sutton et al., 2016).
Accordingly, intra-paraventricular hypothalamic nucleus antagonism of
GLP-1 receptors in the paraventricular hypothalamic nucleus increased
food intake and body weight (Katsurada et al., 2014). Together,
GLP-1 in the paraventricular hypothalamic nucleus appears to contrib-
ute to proper energy balance. However, studies regarding the physio-
logical importance of GLP-1 to control food intake and body weight
via action within the paraventricular hypothalamic nucleus has yielded
some irregularities. For instance, while lesioning the paraventricular
hypothalamic nucleus results in significant increases in body weight
(Secher et al., 2014), the anorexigenic effects of the GLP-1 receptor
agonist liraglutide remained intact in paraventricular hypothalamic
nucleus-lesioned rodents (Tables 2 and 3) (Secher et al., 2014). In
support of these data, loss of GLP-1 receptors in single-minded
homolog 1 (Sim-1) cells of the paraventricular hypothalamic nucleus
failed to increase food intake (Table 2) (Burmeister et al, 2017,
Ghosal et al., 2017). Moreover, mice with GLP-1 receptor deficiency
in the paraventricular hypothalamic nucleus (using Sim1-Cre) exhibited
normal anorectic responses to peripherally administered GLP-1 recep-
tor agonists (Table 3) (Burmeister et al, 2017; Ghosal et al., 2017).
This may suggest that the paraventricular hypothalamic nucleus is
physiologically dispensable for the metabolic actions of GLP-1. Alter-
natively, GLP-1 receptor-expressing neurons in other brain regions
are more involved and/or compensate for proper regulation of energy
balance. However, this is in direct contradiction with other reports
that identified the paraventricular hypothalamic nucleus as required in
the control of food intake via CNS-derived GLP-1 (Liu et al., 2017).
In particular, cell specific loss of GLP-1 receptor-expressing para-
ventricular hypothalamic nucleus neurons in adult mice increased
body weight as well as elevated fasted blood glucose levels and
impaired insulin sensitivity (Table 2) (Liu et al., 2017). Activation of
GLP-1 afferent fibres in the paraventricular hypothalamic nucleus that
originated from the nucleus tractus solitarius also was sufficient to
suppress food intake (Table 1) (Liu et al., 2017). Moreover, activation
of GLP-1 receptor expressing neurons in the paraventricular hypotha-
lamic nucleus reduced dark cycle food intake and refeeding after an
overnight fast (Table 1) (Li, Navarrete, et al, 2019). Accordingly,
chemogenetic inhibition of GLP-1 receptor expressing paraventricular
hypothalamic nucleus neurons increased motivation to attain food
and evoked hunger (Table 1) (Li, Navarrete, et al, 2019). Although
GLP-1 receptor specific effects in the paraventricular hypothalamic
nucleus to induce changes in glucose metabolism may be secondary
to effects on body weight, these data demonstrate a potent role for
GLP-1/GLP-1 receptors in the paraventricular hypothalamic nucleus
to maintain energy homeostasis. These findings may also exemplify a
differing role for peripheral GLP-1 versus central GLP-1. Thus, it is
possible that these data support the idea that peripheral and central
GLP-1 may act independently as well as additively to suppress food
intake (Brierley et al., 2020).

3.2.2 | Substrate utilization

Substrate utilization is the preference between carbohydrate and fat
during metabolic reactions. The inability to select between substrates
may be linked to metabolic disorders. GLP-1 has been implicated to
modify substrate utilization. For example, exendin-4 has recently been
shown to alter substrate oxidation by promoting fat utilization
(as measured using indirect calorimetry yielding measures of the respi-
ratory exchange ratio, or respiratory quotient) in the paraventricular
hypothalamic nucleus (Abtahi et al., 2019). Moreover, exendin-4
attenuates the respiratory exchange ratio effects of ghrelin (a potent
orexigenic peptide) injected into the paraventricular hypothalamic
nucleus (Abtahi et al., 2019). Similar findings have been observed in
the arcuate nucleus (Abtahi et al., 2016). Additionally, exendin-4 pre-
treatment attenuates the combined effects of NPY and ghrelin co-
infusion into this same nucleus (Dalvi et al., 2012). Therefore, GLP-1
in the paraventricular hypothalamic nucleus and the arcuate nucleus
can spur a metabolic shift towards lipid utilization and contribute to
peripheral substrate utilization.

3.2.3 | Candidate paraventricular hypothalamic
nucleus neurons in GLP-1 induced hypophagia

The paraventricular hypothalamic nucleus contains multiple cell
populations that are involved in the regulation of metabolism [includ-
ing single minded 1 (Sim1), oxytocin, corticotropin releasing
hormone/corticotropin releasing factor (CRH/CRF), MC, receptor,
(PACAP),
thyrotropin releasing hormone (TRH) and prodynorphin neurons]
(Figure 2) (Kishi et al., 2003; Lee et al, 2009; Simmons &

Swanson, 2009). Some of these neurons project directly to the arcu-

pituitary  adenylate-cyclase-activating  polypeptide

ate nucleus (either to AGRP or pro-opiomelanocortin neurons),

whereas others project to additional hypothalamic and
extrahypothalamic sites (Figure 2) (Garfield et al, 2015; Krashes
et al., 2014; Ryan et al., 2017; Sutton et al., 2020). Within the para-
ventricular hypothalamic nucleus, GLP-1 receptors are expressed on
candidate neurons including Sim1, MC,4 receptor, oxytocin and corti-
cotropin releasing hormone (CRH) neurons possibly independent of
TRH and pituitary adenylate-cyclase-activating polypeptide neurons
(Krashes et al., 2014; Li, Navarrete, et al., 2019). Independence of
GLP-1 receptor expression on paraventricular hypothalamic nucleus
TRH and pituitary adenylate-cyclase-activating polypeptide neurons
might be further supported by evidence that paraventricular hypotha-
lamic nucleus Sim1+/TRH+/ pituitary adenylate-cyclase-activating
polypeptide+ neurons project directly to arcuate AGRP neurons and
form an excitatory orexigenic circuit (Figure 2) (Krashes et al., 2014).
As GLP-1 activates neurons within the paraventricular hypothalamic
nucleus to suppress food intake (Liu et al., 2017), it is unlikely that
GLP-1 would activate this orexigenic circuit.

Oxytocin neurons in the paraventricular hypothalamic nucleus
have classically been associated with feeding behaviour (Sabatier

et al, 2013). This was recently supported by evidence that AGRP
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neurons (which when activated potently drive feeding behaviour) pro-
ject to paraventricular hypothalamic nucleus oxytocin neurons
(Figure 2) (Atasoy et al., 2012). Moreover, simultaneous activation of
paraventricular hypothalamic nucleus oxytocin neurons and arcuate
AGRP neurons blunts AGRP-induced food intake (Atasoy et al., 2012).
Accordingly, paraventricular hypothalamic nucleus oxytocin neurons
are a potential candidate in the GLP-1 induced suppression of food
intake that is observed when GLP-1 receptors are activated in the
paraventricular hypothalamic nucleus. However, neuron ablation or
bidirectional control of paraventricular hypothalamic nucleus oxyto-
cin neuron activity has largely been limited to suppression of
energy expenditure independent of eating (Sutton et al., 2014; Wu
et al, 2012). Additionally, activation of paraventricular hypotha-
lamic nucleus oxytocin neurons or downstream oxytocin neurons in
the parabrachial nucleus (PBN) suppresses non-caloric fluid intake
while failing to influence eating (Figure 2) (Ryan et al., 2017).
These downstream oxytocin neurons in the parabrachial nucleus in
turn send projections to several forebrain regions [e.g. central
nucleus of the amygdala, bed nucleus of the stria terminalis, orga-
num vasculosum of the lamina terminalis (OVLT), anteroventral per-
iventricular nucleus (AVPV) and median preoptic nucleus (MnPO)]
and are predominately separate from calcitonin gene-related
peptide (CGRP) neurons in the parabrachial nucleus which decrease
both food and fluid intake (Ryan et al., 2017) (the effects of GLP-1
receptor signalling on feeding behaviour via actions in the para-
brachial nucleus will be further discussed in section 3.4.1). Thus,
although GLP-1 recetors may influence eating in the para-
ventricular hypothalamic nucleus via oxytocin neurons under some
physiological conditions, this may not be the primary candidate cell
population for these responses.

Another possible candidate neuron population for the GLP-1
receptor induced regulation of eating within the paraventricular
hypothalamic nucleus are CRH neurons. In addition to potential
access via peripheral GLP-1 or GLP-1 receptor agonists, nucleus
tractus solitarius GLP-1 neurons are monosynaptically connected to
paraventricular hypothalamic nucleus CRH neurons (Liu et al., 2017).
CRH suppresses arcuate AGRP neuronal activity possibly contribut-
ing to suppression of appetite (Kuperman et al, 2016). However,
photoactivation of paraventricular hypothalamic nucleus CRH neu-
rons fails to elicit synaptic activity in arcuate AGRP neurons
(Krashes et al., 2014). Although it is possible that CRH may alter
AGRP cellular activity independent of ionotropic induced changes in
cellular activity, GLP-1 effects on paraventricular hypothalamic
nucleus CRH neurons may rely more heavily on modifying activity
at target nuclei outside of the arcuate nucleus (Liu et al., 2017). Par-
aventricular hypothalamic nucleus CRH neuron activation by central
GLP-1 may also have a modulating/attenuating effect on GLP-1's
inhibitory effect on eating by stimulating the hypothalamus and
pituitary adrenal axis (Lee et al., 2016).

GLP-1 receptors are also expressed on MCR, receptor+ neurons
in the paraventricular hypothalamic nucleus (Li, Navarrete,
et al, 2019). Paraventricular hypothalamic nucleus MCR, receptor

expressing neurons are prototypical neurons in the melanocortin
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induced regulation of satiety and body weight. In particular, para-
ventricular hypothalamic nucleus MCR4 receptor neurons are believed
to receive the preponderance of melanocortin-dependent orexigenic
signalling from arcuate AGRP neurons (Garfield et al., 2015). These
neurons project to multiple sites, including the lateral parabrachial
nucleus (LPBN), ventrolateral periaqueductal grey matter (VIPAG),
nucleus tractus solitarius and dorsal motor nucleus of the vagus
(DMV) (Figure 2) (Garfield et al., 2015). Selective activation of para-
ventricular hypothalamic nucleus MC4 receptor neurons or MC recep-
tor terminals in the lateral parabrachial nucleus potently suppresses
feeding behaviour independent of illness-associated appetite or aver-
sion correlated with calcitonin gene-related peptide expressing neu-
rons in the lateral parabrachial nucleus (Garfield et al., 2015;
Palmiter, 2018). Activation of MC,4 receptor terminals in the nucleus
tractus solitarius, dorsal motor nucleus of the vagus or ventrolateral
periagueductal grey matter failed to influence eating (Garfield
et al, 2015). Silencing synaptic transmission from paraventricular
hypothalamic nucleus GLP-1 receptor and MC, receptor neurons (not
paraventricular hypothalamic nucleus oxytocin or CRH neurons)
resulted in similar increases in body weight, fat mass, lean mass and
food intake (Li, Navarrete, et al., 2019). Together, the activity-
dependent regulation of paraventricular hypothalamic nucleus MC,
receptor neurons, MC,4 receptor projections to the lateral parabrachial
nucleus, and the relationship of this circuit as well as associated nuclei
with satiety and body weight make them a prime candidate for the
hypophagic effects of GLP-1.

It should be noted that GLP-1 receptor expression within the par-
aventricular hypothalamic nucleus is dispersed over several cell
populations outlined above (Figure 2). Considering the individual
populations, GLP-1 receptors overlap with ~40% of MC,4 receptor+,
~30% of oxytocin+ and ~15% of CRH+ neurons in the para-
(Figure 2) (L,

et al,, 2019). This may further support a more prominent role for

ventricular hypothalamic nucleus Navarrete,
GLP-1 receptor induced hypophagia via MC,4 receptor+ neurons over
oxytocin+ or CRH+ neurons. This may also suggest a combined role
for these subsets of neurons within the paraventricular hypothalamic
nucleus to contribute to the metabolic effects of GLP-1 signalling.
Another important aspect is that each cell population (MC,4 receptor
+, oxytocin+ and CRH+) represents only a small fraction of GLP-1
receptor expression within the paraventricular hypothalamic
nucleus—typically each only take up 10%-15% of total GLP-1 recep-
tor expression in the paraventricular hypothalamic nucleus (Li,
Navarrete, et al., 2019). However, deletion of GLP-1 receptors from
Sim1+ neurons resulted in a 70% reduction in GLP-1 receptor mRNA
from the paraventricular hypothalamic nucleus (Ghosal et al., 2017).
This suggests the possibility of another cell population that may take
the ‘lion's share’ of GLP-1 receptor expression within the para-
ventricular hypothalamic nucleus or multiple other populations of
neurons that have yet to be defined. One possible example of this
could be the prodynorphin-expressing neurons that lack MC4 recep-
tors within the paraventricular hypothalamic nucleus and have been
shown to act additively as well as independent of paraventricular

hypothalamic nucleus MC, receptor induced satiety (Li, Madara,
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et al., 2019). However, prodynorphin's actions within the context of
GLP-1 signalling are not well defined. Thus, although not entirely
clear, there are multiple candidate populations of neurons within the
paraventricular hypothalamic nucleus, which may mediate the effects

of GLP-1 on energy balance.

3.3 | Additional hypothalamic sites of GLP-1 action
In addition to the arcuate nucleus and paraventricular hypothalamic
nucleus, peripheral administration of GLP-1 or GLP-1 receptor ago-
nists may generate distinct patterns of cellular activity within several
hypothalamic sites (Gabery et al., 2020; Parkinson et al., 2009). Direct
injection of GLP-1 receptor agonists into the lateral hypothalamic area
(LHA), ventromedial hypothalamus (VMH) and dorsomedial hypothala-
mus (DMH) may also decrease food intake in rodents contributing to
possible changes in body weight (Beiroa et al., 2014; Lépez-Ferreras
et al, 2018). Importantly, the magnitude and/or absence of these
effects may be dependent upon the specific GLP-1 receptor agonist
utilized (Beiroa et al., 2014). Moreover, the effects on body weight
and not energy expenditure may be independent of GLP-1 receptors
in the ventromedial hypothalamus, as knockdown of GLP-1 receptors
in the ventromedial hypothalamus was not sufficient to block the
effect of exendin-4 to suppress food intake and improve glucose
metabolism (Burmeister et al., 2017). Effects that might be explained
by overlapping mechanisms.

Candidate neuron populations for the effects of GLP-1 receptors
have also been suggested within the lateral hypothalamic area and the
dorsomedial hypothalamus. In particular, GLP-1 may activate
orexin-expressing neurons independent of melanin concentrating
hormone neurons (MCH) within the lateral hypothalamic area
(Acuna-Goycolea & van den Pol, 2004). Within the dorsomedial
hypothalamus, GLP-1 receptors are expressed on GABAergic neurons
independent of NPY neurons (Lee et al., 2018). This selective expres-
sion of GLP-1 receptor in the dorsomedial hypothalamus appears
analogous to the GLP-1 receptor-dependent regulation of arcuate
NPY neurons, as GLP-1 receptor expression on GABAergic neurons
negatively regulates NPY expression within the dorsomedial hypothal-
amus (Lee et al., 2018). These additional hypothalamic populations
have suggested a role for GLP-1/GLP-1 receptors in the hypothalamic
arousal system as well as brown adipose tissue (BAT) thermogenesis
and adiposity.

34 |
action

Additional extra-hypothalamic sites of GLP-1

The role of the GLP-1 system for energy balance extends beyond the
hypothalamus with both local GLP-1 neuronal projections within the
dorsal vagal complex and more extensive projections to the mid-brain,
mesolimbic ventral tegmental area and the nucleus accumbens in the
regulation of eating (Alhadeff et al., 2012, 2014; Reiner et al., 2018;
Richard et al., 2014).

3.4.1 | The parabrachial nucleus (PBN)

The parabrachial nucleus is implicated in various aspects of energy
balance including feeding behaviour and visceral satiety as well as vis-
ceral malaise, taste, temperature, pain and itch (Kanoski et al., 2016;
Palmiter, 2018; Richard et al., 2014; Rinaman, 2010). Central nucleus
tractus solitarius GLP-1 expressing neurons send projections to the
lateral and medial lateral parabrachial nucleus (IPBN and mPBN)
(Alhadeff et al., 2014; Richard et al., 2014). Lateral ventricle injection
of exendin-4 results in the activation of lateral parabrachial nucleus
neurons which can be blocked by exendin-9 (a GLP-1 receptor antag-
onist), suggesting the involvement of the central GLP-1 system on
energy balance via the parabrachial nucleus (Richard et al., 2014). This
is further supported by the demonstration that pharmacological acti-
vation of GLP-1 receptors in the lateral parabrachial nucleus neuron
results in a reduction of food intake and body weight (Table 3)
(Richard et al., 2014). Accordingly, blockade of GLP-1 recetors in the
lateral parabrachial nucleus neurons increases body weight and chow
intake demonstrating that GLP-1 receptors in the lateral parabrachial
nucleus neurons are both sufficient and required to control food
intake (Table 3) (Alhadeff et al., 2014; Richard et al., 2014). Moreover,
consumption of palatable foods such as chocolate pellets and the
motivation to eat palatable foods is reduced by intra-parabrachial
nucleus injection of GLP-1 agonists (Richard et al., 2014). Caloric den-
sity and hedonic properties of food may be interacting with GLP-1
receptor signalling within the lateral parabrachial nucleus neurons
(Richard et al., 2014). Ablation of the parabrachial nucleus may also
play a role in blunting the ability of the nucleus accumbens to raise

dopamine levels in response to appetizing food (Richard et al., 2014).

3.4.2 | Mesolimbic reward system (MRS) nuclei and
GLP-1 signalling

GLP-1 receptor signalling may also play an important role in the non-
homeostatic control of eating via activity within the ventral tegmental
area (VTA) and nucleus accumbens (NAc). In particular, GLP-1
expressing neurons in the caudal medulla project directly to the VTA
and nucleus accumbens (Alhadeff et al., 2012). Administration of GLP-1
receptor agonists to the ventromedial hypothalamus, nucleus
accumbens core and shell of rats on a high-energy diet results in the
reduction of food intake (Table 3) (Alhadeff et al., 2012). This may also
involve satiety promoting and food intake reducing effects by GLP-1
via a reduction in the reward value of food by direct action in the mes-
olimbic reward system (MRS) (Alhadeff et al., 2012). It is also important
to note that administration of exendin-4 to the nucleus accumbens
core and not the shell displayed a reduction of sucrose intake (Table 3)
(Alhadeff et al., 2012). Conversely, blockade of GLP-1 receptor in the
ventromedial hypothalamus and nucleus accumbens core increased
food intake (Table 3) (Alhadeff et al., 2012). This suggests that a physio-
logical role of GLP-1 signalling in the mesolimbic reward system to reg-
ulate energy balance. Moreover, the nucleus accumbens core may play

a more significant role in carbohydrate intake and preference under
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food deprivation conditions (Alhadeff et al., 2012). Although these data
highlight nutrient dependent effects of GLP-1 in the nucleus
accumbens, specific macronutrient selection or orosensory processing
remains undefined (Alhadeff et al., 2012). Collectively, these data indi-
cate that GLP-1 receptor signalling in the mesolimbic reward system
reduces food intake; however, the signalling cascade and downstream
targets mediating this effect are not well established.

The hypothalamic, hindbrain and mesolimbic reward pathways
discussed herein are reciprocally connected as well as with various
other brain regions (including but not limited to the hippocampus,
lateral dorsal tegmental area and the lateral septum). Many of these
brain regions are also involved in the GLP-1 receptor dependent reg-
ulation of energy balance (Reiner et al., 2018). Collectively, these
data highlight a multi-nodal neural circuit in the brain which is nec-
essary and sufficient (and in some cases redundant or compensatory)
for the full effects of GLP-1 on energy balance and glucose

metabolism.

4 | TECHNICAL CONSIDERATIONS

As with all studies, there are several technical considerations that
should be considered in context with the conclusions presented. First,
there are species differences with regard to GLP-1 dependent
changes in food intake (Tornehave et al., 2008). For example, central
GLP-1 is a physiologically important signal in the control of eating and
energy balance in rats (Alhadeff et al., 2017; Hayes et al., 2009). How-
ever, brain derived GLP-1 in the mouse may be more responsible for
stress-induced hypophagia, limiting unusually large intake of food and
remaining relatively irrelevant for the control of normal meals (Cheng
et al.,, 2020; Holt et al., 2019). This suggests a context specific control
of food intake in a physiological setting by central GLP-1 receptors
between rodent models. In a pharmacological context, food intake is
minimally impacted by interference with endogenous GLP-1/GLP-1
receptor, while eating is decreased by activation of GLP-1 neurons
within the nucleus tractus solitarius (Cheng et al.,, 2020; Gaykema
et al,, 2017; Holt et al., 2019). These differences suggest that activa-
tion of central GLP-1 neurons within the nucleus tractus solitarius and
subsequent downstream GLP-1 receptor containing circuits may pro-
vide a useful tool for controlling food intake.

Secondly, irregularities exist in the literature with regard to the
hypothalamic versus extra-hypothalamic requirement of GLP-1 recep-
tors in the control of food intake. As outlined in the current review,
the hypothalamus is a target (not the only target) of endogenous
GLP-1 originating from hindbrain GLP-1 neurons and for peripherally
administered GLP-1 receptor agonists in mice. However, owing to its
rapid half-life, the hypothalamus is not likely a target of endogenous
peripheral GLP-1 and probably not for peripherally administered exog-
enous native GLP-1 (Fortin et al., 2020). In rats, several studies have
shown that native GLP-1 administered intraperitoneally (i.p.) requires
intact vagal afferents to cause satiation, that is, to reduce meal size
(Ruttimann et al., 2009). Consistent with these findings, inhibition of
eating in response to i.p. administered native GLP-1 in rats can be
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fully blocked by peripheral, but not by central administration of a
GLP-1 receptor antagonist (Williams et al., 2009). Together, these
findings indicate that i.p. administered native GLP-1 reduces food
intake by acting on peripheral, most likely vagal afferent GLP-1 recep-
tors in rats. Thus, it becomes easy to see that translating results
between species (even between rodents) is very challenging. The
divergence of GLP-1 neural circuitry between rats and mice are at
least one likely culprit (Cork et al., 2015; Trapp & Cork, 2015).
Together, this highlights a need to further delineate differences in
GLP-1/GLP-1 receptor signalling between species in future investiga-
tions in order to better understand the physiology versus pharmacol-
ogy of the GLP-1 system.

Another distinction that should be considered is the reporting
of short versus long term effects with respect to changes in feeding
behaviour. In particular, many of the studies mentioned herein refer
to the measurement of food intake at 24-h intervals. It is important
to note that 24-h food intake is not feeding behaviour and examin-
ing shorter intervals may reveal important insights. For instance,
vagal afferent GLP-1 receptor knockdown by RNA interference in
rats increased meal size and was compensated for by a decrease in
meal frequency such that 24-h food intake was not affected
(Krieger et al., 2016). Moreover, intact abdominal vagal afferents
are necessary for the full expression of the short-term eating-
inhibitory effect of the i.p. administered GLP-1 receptor agonist
exendin-4 (Labouesse et al., 2012). These findings suggest that an
initial inhibition of eating after i.p. administration of GLP-1 receptor
agonists in laboratory animals is at least partly mediated by periph-
eral GLP-1 receptors, presumably reflecting a major route/
mechanism of action of endogenous peripheral GLP-1. Due to the
central effects of GLP-1 receptor agonists this short-term peripheral
effect maybe subsequently overpowered by the central effect of
the pharmacological substances. Thus, looking at shorter time inter-
vals may reveal physiologically important differences with respect
to satiation or satiety that are simply not reflected in 24-h food

intake measurements.

5 | CONCLUSION AND FUTURE
DIRECTIONS

In summary, there are multiple brain regions and neural circuits by
which GLP-1 controls food intake and body weight. GLP-1 activity
within these circuits may also contribute to proper blood glucose con-
trol. However, the pleiotropic nature of GLP-1 might be subject to
species variability as well as a dependence upon the source of GLP-1
(i.e. whether GLP-1 is derived from the periphery or CNS, both the
periphery & CNS, or when using a specific designer long-acting GLP-1
receptor agonist). A primary focus of GLP-1 action in the brain has
revolved around hypothalamic sites of action (with an emphasis on
the arcuate and paraventricular nuclei). However, there are also
emerging and important roles for extra hypothalamic sites in the
effects of GLP-1, including hindbrain, midbrain and forebrain regions.

Although these data highlight a growing understanding of GLP-1
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action in the brain, they also raise several questions for future
investigation.

First, how do GLP-1 neurons and their projections develop/form and
what is required to maintain them throughout life? The brain regions and
neural circuits involved in the central actions of GLP-1 are highly plastic
or malleable (Lieu et al., 2020). This plasticity may be triggered in
response to a variety of nutrient, humoral and metabolic challenges
(Lieu et al., 2020). The melanocortin circuit within the hypothalamus is
a classic example of this plasticity (Bouret et al., 2004a; Bouret
et al., 2004b; Bouret & Simerly, 2004; Lieu et al., 2020). Early studies
suggested that trophic factors, such as leptin, guided the axon neurite
outgrowth from arcuate NPY/AGRP and pro-opiomelancortin neurons
influencing the connections to downstream targets (Bouret
et al., 2004a; Bouret et al., 2004b; Bouret & Simerly, 2004). Similar to
arcuate melanocortin neurons, nucleus tractus solitarius GLP-1 neurons
express leptin receptors (Biddinger et al, 2020; Cheng et al., 2020).
Leptin can acutely drive the activity of nucleus tractus solitarius GLP-1
neurons, with the potential to influence metabolism (Scott et al., 2011).
A less appreciated role for leptin in this circuit is the requirement of
leptin receptors in the proper neurite outgrowth of nucleus tractus
solitarius GLP-1 neurons to target downstream neurons [putative oxy-
tocin, CRH and MC, receptor neurons (Li, Navarrete, et al., 2019)] in
the paraventricular hypothalamic nucleus (Biddinger et al., 2020). This
initial report suggests some specificity of this GLP-1 neuronal targeting
to the paraventricular hypothalamic nucleus, as axonal targeting of
nucleus tractus solitarius GLP-1 neurons to the arcuate nucleus was
independent of leptin receptor expression on nucleus tractus solitarius
GLP-1 neurons (Biddinger et al., 2020). Surprisingly, restoration of the
nucleus tractus solitarius GLP-1 neuron projections to the para-
ventricular hypothalamic nucleus by expression of leptin receptors in
nucleus tractus solitarius GLP-1 neurons failed to normalize the physio-
logical outcomes of impaired nucleus tractus solitarius GLP-1 projec-
(Biddinger

et al, 2020). Similarly, loss of leptin receptors in nucleus tractus

tions to the paraventricular hypothalamic nucleus
solitarius GLP-1 neurons fails to alter long-term energy balance
(Table 2) (Cheng et al., 2020). Possibly, these data highlight the inherent
redundancy in the nucleus tractus solitarius GLP-1 central regulation of
metabolism, however this warrants further investigation. The changes in
axonal targeting of nucleus tractus solitarius GLP-1 neurons to para-
ventricular hypothalamic nucleus neurons was also observed at the
extremes of leptin receptor expression/signalling (i.e. either in leptin
deficient or selective expression of leptin receptors in GLP-1 neurons).
Although these data are necessary and informative, it will be critical to
better understand whether analogous effects are observed within a
narrower window of changing leptin levels, as may occur during alter-
ations of energy state or development in fed versus fasted states
(Ramos-Lobo et al., 2019). Also, increases in circulating leptin levels cor-
relate with increased adiposity (Considine et al., 1996), and weight gain
itself may result in impaired GLP-1 signalling (Ranganath et al., 1996).
Understanding the leptin induced suppression of GLP-1 inputs to the
hypothalamus during weight gain and/or in the obese state may pro-
vide an additional pathology of obesity and diabetes. Ultimately, under-
standing how the GLP-1 to hypothalamic/extrahypothalamic circuits

develop and are maintained may be a critical aspect in understanding
the development of obesity and diabetes.

Second, there are several pharmaceuticals that have emerged for
use in chronic weight management and the treatment of diabetes that
act on metabolically relevant brain regions (Gautron et al., 2015;
Yanovski & Yanovski, 2014). However, most of the weight loss from
these medications takes place within the first 6 months of usage and
rarely exceeds 5%-10% weight loss (Yanovski & Yanovski, 2014).
Importantly, even moderate weight loss results in measurable
improvements in blood sugar control, BP regulation and triglyceride
levels (Magkos et al., 2016; Yanovski & Yanovski, 2014). However,
work has continued in an attempt to achieve effects that are even
more robust. Combination drug therapy was introduced as a way to
surpass the weight loss barrier of a single medication (Gautron
et al., 2015; Muller et al., 2018; Yanovski & Yanovski, 2014). This con-
cept has recently been extended to the incretin system and has
shown real promise. In particular, the beneficial effects of GLP-1 have
been combined in dual agonists (for both GLP-1 and GIP receptors or
GLP-1 and glucagon receptors) or tri-agonist (for GLP-1, GIP and glu-
cagon receptors) strategies (Capozzi et al., 2018; Tschép et al., 2016).
There has been a preference towards a single-molecule multi-agonist
strategy due to a variety of competing complications when using a
combination of mono-agonists (Capozzi et al, 2018; Tschop
et al., 2016). These can include differing bioavailabilities, half-lives, tis-
sue specificity and pharmacokinetics (Capozzi et al., 2018). There are
several clinical trials investigating the utility of these multi-agonists
strategies in humans and showing significant benefits on body weight,
postprandial glucose levels, insulin sensitivity and cholesterol levels
(Bastin & Andreelli, 2019; Mathiesen et al., 2019). In particular, dual
agonists improve metabolic control by promoting weight loss and
improving glucose tolerance (Thomas et al, 2020; Willard
et al., 2020). Tri-agonists in preclinical/clinical research have also dem-
onstrated some superior beneficial effects compared to dual agonists,
which include reduction of body weight, enhancement of glycaemic
control and the reversal of nonalcoholic steatohepatitis (NASH)
(Capozzi et al., 2018). Although the beneficial effects of these com-
pounds likely involve activity at cognate receptors, better understand-
ing any biases within these compounds for varying receptors and their
effects on metabolism may advance development of future therapeu-
tic interventions. Moreover, there is a need to understand the ability
of these compounds to target receptors in the periphery versus the
CNS (with an emphasis on specific brain regions) in order to maximize
metabolic benefits. In addition to GIP and glucagon, GLP-1 has also
been implicated to interact with other hormones involved in metabo-
lism. In particular, ghrelin, a potent orexigenic peptide, has also been
implicated in appetitive motivation, energy metabolism, homeostasis
and respiratory exchange ratio/respiratory quotient. Importantly,
long-acting GLP-1 receptor agonists antagonize the metabolic effects
of acylated ghrelin signalling within the paraventricular hypothalamic
nucleus (Abtahi et al., 2019). These effects may also be apparent in
leptin and 5-HT systems (Holt et al., 2017), illustrating the neural inte-
gration of what was once thought of as separate neural systems regu-

lating eating and metabolic-related disorders. Together, this highlights
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a broad action across multiple nuclei and a need to simultaneously tar-
get multiple systems or receptor mechanisms in order to provide max-
imum pharmacological and therapeutic benefit for eating and
metabolic-related disorders.

Various genetic tools have been useful at identifying the glu-
coregulatory action of GLP-1. However, most of these same genetic
models—in the absence of pharmacological administration of GLP-1
or GLP-1 receptor mimetics—failed to identify a role for GLP-1 recep-
tors to alter food intake or body weight (Ayala et al., 2010; Ghosal
et al.,, 2017; Scrocchi et al., 1996; Scrocchi & Drucker, 1998; Sisley
et al., 2014). This might be due to several reasons: First, GLP-1 recep-
tor agonists are similar to other monoagonist therapies for chronic
weight management, as they result in a modest 5%-15% weight loss
in adults with obesity and/or diabetes (Klonoff et al., 2008; Riddle
et al., 2006; Wilding et al., 2021). This modest change in body weight
might be difficult to delineate in genetic models that examine changes
in energy balance in only a few weeks of weight gain on either a stan-
dard chow or high-energy diet. Second, most of the genetic models
employed to investigate GLP-1 receptors in energy balance were con-
stitutive deletion models resulting in the ablation of GLP-1 receptors
in development. The hypothalamus (particularly the melanocortin cir-
cuit) is a classic model that is susceptible to up-regulation of develop-
mental compensatory pathways that mask food intake and body
weight phenotypes (Wu & Palmiter, 2011; Xu et al., 2018). It is possi-
ble that an analogous compensation occurs in models with constitu-
tive deficiency of GLP-1 receptors, which prevents the identification
of GLP-1 receptors as required in the regulation of energy balance at
basal levels. In support of this idea, ablation of GLP-1 receptors in the
adult (using AAV-Cre injected directly into the paraventricular hypo-
thalamic nucleus) resulted in marked obesity whereas constitutive
deletion of GLP-1 receptors in the paraventricular hypothalamic
nucleus (using Sim1-Cre) failed to alter energy balance (Table 2)
(Burmeister et al., 2017; Ghosal et al., 2017; Liu et al., 2017). Perhaps,
further examination of loss or gain of function of GLP-1 receptors in
the adult might be necessary for a better understanding of the
requirements for GLP-1 receptors in energy homeostasis. Another
possibility is that GLP-1 receptor signalling simply is not required for
proper energy balance regulation in the basal state. Rather the GLP-1
system and downstream GLP-1 receptors must be activated—as
occurs after a meal or in response to GLP-1 receptor mimetics—in
order to alter energy balance. However, this suggests that if GLP-1
functions at least in part as a satiety factor then other satiety systems
must compensate for the loss of GLP-1 receptors to control food
intake and body weight in times which GLP-1 signalling would be acti-
vated (e.g. in response to a meal). The end result of these studies dem-
onstrate that conventional genetic screens alone (in the absence of
pharmacology) fail to realize the potential for improvements in food
intake and body weight regulation of GLP-1 signalling and highlight a
need to pair pharmacology with genetic models.

Finally, GLP-1 and designer GLP-1 receptor agonists elicit
changes in cellular activity within the brain that is localized to both
pre- and post-synaptic sites (He et al., 2019; Liu et al., 2017; Secher
et al., 2014). Much of this activity has been assessed acutely and there
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are some discrepancies between ex vivo and in vivo measurements of
this activity that warrant further investigation (Beutler et al., 2017; Su
et al., 2017). However, less is also known about the effects of chronic
GLP-1 receptor agonist administration on the activity of these brain
regions or neural circuits. This is an important area of investigation as
clinically, patients are likely to undergo long-term therapy with these
compounds as opposed to a single administration. Better understand-
ing the development/maintenance of GLP-1 neurons, combinatorial
therapy involving GLP-1 designer agonists, as well as the acute versus
chronic effects of GLP-1 on the brain will undoubtedly be growing
areas of study to better understand the therapeutic benefits of this
system in metabolic disease.

5.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-
OGY http://www.guidetopharmacology.org and are permanently
archived in the Concise Guide to PHARMACOLOGY 2021/22
(Alexander et al., 2021).
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