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Abstract 

Background:  The decline of habitat for elephants due to expanding human activity is a serious conservation prob-
lem. This has continuously escalated the human–elephant conflict in Africa and Asia. Elephants make extensive use of 
powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited 
for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct 
visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our 
interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system 
for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warn-
ing and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss 
specific challenges and present open future work necessary to build a robust and reliable early warning and monitor-
ing system that is able to operate in situ.

Findings:  We present a method for the automated detection of elephant rumbles that is robust to the diverse noise 
sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field con-
ditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant 
rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) 
is feasible and particularly robust at near distances.

Discussion:  From our project results we draw a number of conclusions that are discussed and summarized. We 
clearly identified the most critical challenges and necessary improvements of the proposed detection methods 
and conclude that our findings have the potential to form the basis for a future automated early warning sys-
tem for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a 
future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods 
in situ using real-time prototypes is the most important next step to transfer the developed methods into practical 
implementation.
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Background
Asian (Elephas maximus) and African (Loxodonta afri-
cana and Loxodonta cyclotis) elephants are the largest 
terrestrial herbivores, requiring considerable areas and a 
diversity of environments to forage [1, 2]. Therefore, their 
ranges are complex and not confined to officially desig-
nated protected areas. Due to the continuous spread of 
human settlements and cultivation areas and the hunting 
for ivory, elephants remain under threat from poaching 
[3, 4] and habitat loss. The resulting human–elephant 
conflict is a tremendous and constantly increasing prob-
lem. In particular, humans living near elephant habitats 
regularly get into serious conflict with migrating and 
crop-raiding elephants, which yields numerous victims 
on both sides each year [5, 6].

The alleviation of the human–elephant conflict as 
well as the fight against poaching requires autonomous 
systems that monitor elephant populations and their 
movements. Such a system might enable the realization 
of an early warning system for people living near ele-
phant habitats to avoid the unexpected confrontation of 
humans and elephants. The foundation for such a system 
is techniques for the automatic detection and tracking of 
elephants. These tasks are challenging, especially when 
detection and tracking must be performed in a non-inva-
sive manner to cover large areas and populations.

Different attempts towards the automatic detection of 
elephants have been made in the past. Techniques such 
as satellite tracking (efficient but also invasive) using 
global positioning system (GPS) [7], or light sensors with 
laser beams [8], and systems based on vibration sensors 
in the ground [9] are cost-intensive and might not scale 
to large populations. Today, non-invasive techniques 
such as acoustic and visual monitoring represent prom-
ising low-cost alternatives to sample populations and to 
obtain reliable estimates of species presence and, poten-
tially, abundance [10, 11]. To approach the challenges of 
non-invasive monitoring, biologists and computer scien-
tists have joined forces in an interdisciplinary research 
project to establish the scientific foundations for a future 
non-invasive early warning and monitoring system for 
elephants.

Elephants make extensive use of powerful low-fre-
quency vocalizations termed “rumbles” with a mean 
fundamental frequency varying from 10 to about 30 Hz 
[12–15]. Elephant rumbles are sounds produced by pas-
sive vocal fold vibration similar to human speech [16]. 
The sound is filtered as it passes through the supra-laryn-
geal vocal tract, shaping the vocal tract resonances or for-
mant frequencies [13, 17]. These low-frequency rumbles 
have been shown to travel distances of up to several kilo-
meters [18]. This qualifies the elephant as a perfect model 
species for acoustic observation because elephants can 

be detected by their vocalizations even if they are out of 
sight [19, 20].

The calling rate of low-frequency elephant vocaliza-
tions was shown to be a useful index of elephant (L. 
cyclotis) numbers [19]. This demonstrates that acous-
tic surveying is a valuable tool for estimating elephant 
abundance as well as for detecting other vocal species; 
it can also help detect anthropogenic noises that may be 
associated with poaching [20–22]. Due to technological 
advances such as the development of autonomous and 
wireless recording devices with low energy consumption, 
the technological basis for acoustic recording in multiple 
locations over long time spans is established [11].

Elephants are the largest terrestrial herbivores and have 
a well-distinguishable visual appearance. Thus, visual 
information may be useful for the automated detection 
of elephants. In this project we investigated the suitabil-
ity of visual cues for the automatic detection of elephants 
in wildlife video recordings and developed a first visual 
detection algorithm.

This project note summarizes results achieved during 
the project period (2011 until 2014), discusses the main 
challenges and contributions, and outlines future direc-
tions for the project team in order to transfer the prom-
ising fundamental results into practical implementation.

In this article we firstly draw the big picture of a non-
invasive monitoring system and identify its necessary 
components. Secondly, we present our developed solu-
tions for the automatic acoustic and visual detection of 
elephants—these represent the basis for all higher-level 
analyses performed by the envisioned system—and dis-
cuss their capabilities and limitations. As our research 
project is of an interdisciplinary nature, its contributions 
and findings have been published in a series of research 
articles across different highly specialized research com-
munities. Thus, an additional contribution of this article 
is to provide an integrated synopsis of our findings for 
researchers of different communities and backgrounds 
(biologists, conservationists, computer scientists). Ulti-
mately, we take the opportunity to present open (mostly 
interdisciplinary) tasks and challenges necessary for the 
establishment of an acoustic and visual early warning sys-
tem to researchers from different domains to stimulate 
further joint research in this field.

The future early warning and monitoring system: the big 
picture
To give the reader an overview and an overall framework, 
we have sketched the architecture of the envisioned 
monitoring system in Fig.  1. The architecture serves as 
a frame for the identification of necessary components 
and open tasks and puts the different components in con-
text. The sketched system consists of three modules: an 
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input module with different sensors, a processing module 
where the sensor data is analyzed and an output mod-
ule that provides analysis results. The sensor input can 
be highly multimodal, consisting of acoustic sensors 
(either individual microphones or microphone arrays 
to enable directional measurements) and different types 
of visual sensors (e.g. video cameras, “V” and thermal 
cameras, “Th”). The central processing module consists 
of a detection layer, where acoustic and visual detec-
tion (and potentially combined audio-visual detection) 
is performed. The detections form the basis for the gen-
eration of early warning messages and furthermore serve 
as an input to higher-level tasks in the overlying analysis 
layer. Higher-level tasks comprise aspects that might be 
relevant for researchers, for example call type classifica-
tion, age and gender identification, arousal or group size 
estimation. Additionally, methods from the analysis layer 
may assist biologists in the annotation of field data based 
on the proposal of annotation tags (semi-automatic 
annotation).

In the following we focus on presenting research and 
results on the acoustic and visual detection of elephants 
(detection layer). We start with the description of data 
collection and annotation that was necessary to build 
evaluation datasets for the developed detectors (Section 
“Data Collection and Annotation”). Next, we present 

the methods developed during the projects and the cor-
responding findings (Section “Methods and Findings”). 
Finally, we discuss remaining challenges and necessary 
future work in the context of automatic elephant detec-
tion (Section “Discussion”).

Data collection and annotation
The collection of acoustic and visual data under natu-
ral field conditions is one important prerequisite for 
the development of robust elephant detection methods. 
A second prerequisite is the precise annotation of the 
recorded material (e.g. temporal annotation of calls in 
acoustic recordings and spatio-temporal annotation of 
individuals in video).

Data collection
We collected elephant vocalizations in two different loca-
tions in South Africa. The aim was to obtain (1) high-
quality recordings and (2) data heterogeneity concerning 
environmental conditions, recording distance, call types, 
contexts, age groups and gender. We performed stereo-
recordings with a directional AKG microphone (AKG 
480 B CK 69, frequency response 8–20,000 Hz ± 0.9 dB) 
and an omni-directional Neumann microphone (KM 
183) modified for recording frequencies below 20  Hz 
(flat recording down to 5 Hz) connected to a 722 Sound 

Fig. 1  Overview of the envisioned elephant early warning and monitoring system. The first step of analysis is the detection of elephants either 
visually through video and thermal cameras or acoustically through a microphone (array). Different detection mechanisms may be combined in 
a multimodal approach. Automatically recognized detections can be directly input to an early warning systems or serve as a basis for higher-level 
tasks. The analysis layer contains the most important higher-level tasks in our context. Highlighted tasks have been investigated and automated in 
the course of the project
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Device HDD recorder. Concurrent video recordings were 
performed using a Sony DHC-SD909 camcorder in HD 
quality to supplement field notes, to assist the subsequent 
acoustic annotation, and to enable the development of 
automated visual detection methods. Acoustic and visual 
recordings were performed at two locations:

1.	 Recordings were collected from three female and 
two male African elephants aged between 9 and 
17 years located at Adventures with Elephants, Bela 
Bela, South Africa. The elephants were fully habitu-
ated to human presence and live in a 300 ha savannah 
reserve. This enabled us to capture high-quality data 
under controlled recording settings within the natu-
ral habitat of African elephants. For detailed descrip-
tions about data collection we refer to [23, 24].

2.	 Free-ranging elephants were recorded at the Addo 
Elephant National Park, Eastern Cape Province, South 
Africa. The South African National Park research 
committee has approved these non-invasive record-
ing activities. In 2008, the elephant population num-
bered 481 individuals with an annual rate of increase of 
5.81 % (between 1976 and 2002), split into seven family 
groups [25]. Data were collected out of a vehicle (with 
the equipment fixed on a custom-built tripod at the 
door of the car) during June and July 2011 and July and 
August 2012, yielding 101.4 h of recordings. The focus 
was on collecting vocalizations of individuals in differ-
ing situations and activities (such as feeding/brows-
ing, at the waterhole and locomotion), and of various 
age classes and gender. The identity of the vocalizing 
elephant was sometimes determined for adult females, 
but could rarely be retrieved for calves and infants. 
Most recorded calls originate from adult females, but 
we have also been able to capture sufficient vocaliza-
tions from infant, calf and juvenile individuals. Only 
few vocalizations of adult males could be recorded. For 
more details on data collection, refer to [26].

The acoustic recordings were—whenever possible—
accompanied by visual recordings from a camera (Sony 
DHC-SD909 camcorder) fixed on a tripod on the car. 
We took close-up videos of individuals to enable identi-
fication of the callers later in the lab, but also performed 
continuous recordings of particular situations. Here we 
avoided zooming to simulate the recording settings of a 
stationary surveillance camera. Pan and tilt movements 
were conducted to observe larger areas and to follow ele-
phant movements. During the field sessions at the Addo 
Elephant National Park a total of 22  h of video mate-
rial (1920 ×  1080 pixels at 25 frames per second) was 
recorded, corresponding to 2 million frames and 150 GB 
of unannotated data.

Data annotation
The acoustic recordings were annotated using the acous-
tic analysis tool STX from the Acoustic Research Insti-
tute at the Austrian Academy of Science. We customized 
the tool to enable the detailed annotation of calls and call 
types together with their social context and information 
about the caller (if known). Each vocalization was iden-
tified based on field notes, videos, by listening, and by 
examining the spectrogram. We also annotated overlap-
ping calls, call combinations and choruses. The start and 
end cues of each vocalization were tagged and the cor-
responding annotations were added. Figure 2 shows the 
annotation interface on a recording from the Addo Ele-
phant National Park.

The annotations were stored in XML format. We devel-
oped an interface that imports the complete annotations 
into MATLAB to generate ground truth data that are 
suitable for the automated evaluation of call detection, 
call segmentation and classification methods.

We annotated 2199 vocalizations (of different call 
types) from free-ranging elephants at the Addo Elephant 
National Park, and 681 vocalizations recorded at Bela 
Bela. 633 of these vocalizations were rumbles (see Table 1 
for a detailed overview on the number of calls recorded 
for each call type during each field session). The complete 
and precise annotation of the recorded data formed the 
basis for objectively evaluating the automatic analysis 
methods developed in the project.

To develop automated acoustic feature extraction 
methods, we identified the characteristic parameters of 
different call types, e.g. observed frequency range, the 
frequency progression over time, the duration, harmonic 
structure, and the range of formant frequencies. As the 
automatic detection of fundamental frequency and for-
mant frequencies is often error prone in noisy (real-
world) recordings and partially requires manually tuning 
the processing parameters, we developed an annotation 
tool during the project to measure basic acoustic param-
eters semi-automatically. This tool enables manually 
labeling frequency contours in the spectrogram of a given 
call and thus enables describing the spectral and tem-
poral characteristics of source- and filter-related attrib-
utes in noisy and acoustically interfered vocalizations. 
To capture the variance of observed parameters under 
real-world conditions, we employed the data recorded in 
Addo Elephant National Park and at Bela Bela [23, 26]. 
Figure 3 shows the annotation interface with some anno-
tated frequency contours.

The automatic evaluation of our acoustic detection 
algorithms required a comprehensive dataset of record-
ings that originated from one geographical location. 
The data recorded at Bela Bela were well-suited for this 
purpose. The dataset captured recordings from different 
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recording sessions, at different times of the day and with 
varying environmental noise levels. With a total of 6  h 
and 635 distinct vocalizations, the set significantly sur-
passed the datasets of other related works in length [27] 
and number of vocalizations [28].

Similarly, for the evaluation of visual detectors it was 
necessary to compile a reference dataset from the col-
lected video material. We selected a representative sub-
set of the entire video collection to speed up subsequent 
annotation and further processing. During selection 

we rejected sequences that were too similar to already 
selected ones to increase the heterogeneity in the dataset. 
The selected sequences contained elephants (groups and 
individual elephants) of different sizes from two distance 
categories (far distance and near distance). Elephants 
were visible in arbitrary poses and ages, performing dif-
ferent activities such as eating, drinking, running, and 
different bonding behaviors. The sequences showed dif-
ferent locations, such as elephants at a water hole, ele-
phants passing a trail, and highly occluded elephants in 
bushes. Selected sequences reflected different times of 
the day and showed different lighting and weather con-
ditions. Furthermore, recording settings varied across 
the sequences (e.g. from almost static camera mounted 
on a tripod to shaking handheld camera). Additionally, 
the subset contained sequences with no elephants at 
all and sequences where elephants entered and left the 
scene. The heterogeneous settings of the selected scenes 
were necessary to reflect the broad variability of real-
world conditions to enable the development of robust 
visual detectors that can cope with a variety of different 
situations.

After creation of the video set, each individual elephant 
was tagged precisely in space and time, i.e. each pixel in 
a frame that showed a (possibly incomplete) body part 
of an elephant was tagged. To create a spatiotemporal 
ground truth for each sequence in our video dataset, 

Fig. 2  The interface for manual annotation. The interface shows the spectrogram of a recording and numerous annotation fields for the detailed 
description of all observed vocalizations

Table 1  List of available data on elephant vocalizations

This table lists the number (N) of calls that have been recorded and annotated 
for each field session

Call type N calls recorded 
at Bela Bela 2011

N calls recorded 
at Addo 2011

N calls recorded 
at Addo 2012

Rumbles 633 925 529

Barks 1 15 1

Noisy roars 18 41 19

Tonal roars 0 34 23

Mixed roars 0 56 20

Trumpet 15 166 137

Snort 3 103 87

Grunt 0 8 7

Unknown 11 22 6

Sum 681 1370 829
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we first extracted all individual frames of the sequence. 
Next, the first frame was semi-automatically labeled by 
an image processing tool such as Gimp or Adobe Pho-
toshop. As subsequent frames were usually highly simi-
lar to the previous ones, we used the initial labeling and 
iteratively adapted it to the subsequent frames. The entire 
ground truth generated covers 715 frames and 1751 man-
ually labeled segments covering elephants. The accurate 
spatio-temporal labeling represented an important pre-
requisite for the objective and precise evaluation of our 
visual detection method.

Methods and findings
In the following we present our approaches for the acous-
tic and visual detection of elephants. For both approaches 
we first provide background information, sketch the 

developed method, and finally present and discuss our 
evaluation results.

Acoustic detection of elephants
Background
The major challenges in the robust detection of elephant 
rumbles are (1) the large number of natural and environ-
mental influences (e.g. wind, rain, other animals, engine 
sounds) and (2) the broad natural variability of elephant 
rumbles. Structural variations of elephant calls arise 
due to differences in vocal production, social contexts, 
states of arousal and motivation, hormonal states and 
maturational effects. In addition, sounds are altered with 
distance and environmental influences [18, 29]. What 
further increases the complexity is that elephant calls are 
rare events in long-term environmental recordings (e.g. 

Fig. 3  The developed semi-automatic sound annotation tool. The user can annotate and label frequency tracks. Features are then computed 
automatically from the contours
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elephant calls represent much less that 1 % of our record-
ings) and show erratic occurrence patterns.

The low-frequency rumble is the most studied elephant 
vocalization with regard to function and production [e.g. 
29–38]. The rich knowledge gained in these investiga-
tions (prior to and also during the project) represents a 
solid basis for developing an automated acoustic elephant 
detection method.

Most research on acoustic (and partly automated) anal-
ysis of elephant vocalizations has addressed highly selec-
tive tasks such as the vocal identification of individual 
elephants [29, 30, 33] or the analysis of particular call 
types [34, 35] and subtypes [23, 26, 32, 36–39] from man-
ually selected and pre-segmented calls. The automated 
detection of elephant vocalizations is much more com-
plex because the calls must be localized and segmented 
out of a complex soundscape.

To date, only little research has been performed on the 
automated detection of elephants. Venter and Hanekom 
[28] detected elephants based on their rumbles in wildlife 
recordings by extracting the characteristic fundamental 
frequency of rumbles using sub-band pitch estimation. 
They defined those audio segments as rumbles in which 
a pitch (in the typical frequency range of rumbles) can be 
tracked robustly for a certain amount of time. A similar 
approach also relying on pitch extraction has recently 
been proposed by Prince and Sugumar [40] for elephant 
detection. Wijayakulasooriya [27] proposed an alterna-
tive rumble detection method that employs the shape of 
formant frequency tracks as a clue. The basic assumption 
of the latter method is that the first and second formants 
are nearly stationary during a rumble. Thus, detecting 
audio sequences with stationary formant frequencies in 
the frequency range of rumbles should provide clues for 
their acoustic detection.

We have investigated related approaches in detail in 
[41] and draw the following conclusions: (1) the detection 
of pitch and formant frequencies is itself a complex audio 
analysis task that often fails in the presence of noise and 
requires prior knowledge about processing parameters 
that are often not available or not constant for uncon-
strained wildlife recordings; (2) pitch and formant fre-
quencies are often masked by low-frequency noise and 
thus hardly visible in the spectrum, which puts their usa-
bility for automated detection under real-life settings into 
question.

Our approach avoids the explicit detection of pitch 
and formant frequencies and instead takes the entire 
spectral distribution (including the harmonic structure 
and implicitly also pitch and formant frequencies) into 
account. This provides additional important information 
for detection. Additionally, we apply machine learning 

to model representative acoustic patterns of elephant 
vocalizations directly from the data instead of assuming 
characteristics (e.g. particular formant contour shapes) to 
apply.

Method
As mentioned above, the major challenge in automati-
cally analyzing vocalizations from field recordings is 
the broad range of uncontrollable noise sources in the 
environment. To account for these influences we have 
developed a method for noise reduction that attenuates 
noise from the environment while retaining the distinct 
frequency patterns originating from elephant rumbles. 
The method applies image processing techniques on the 
spectrogram to enhance well-localized spectro-temporal 
patterns such as frequency contours. At the same time 
our noise reduction technique attenuates the spectral 
energy of weakly localized components, for example nar-
row- and broadband noise from wind and rain [24, 41]. 
This improves the signal-to-noise ratio of recordings 
and thus the “visibility” of rumbles in the spectrogram. 
Figure  4 illustrates the effect of sound enhancement on 
the spectrogram.

The signal enhancement represents only the first step 
of our acoustic detection method. After enhancing the 
spectrogram, we compute short-time spectral features 
(Greenwood-frequency cepstral coefficients, GFCC) to 
parameterize the individual frames of the recorded sig-
nal. The employed frame size is 300 ms with an overlap of 
2/3. GFCC are an adaptation of the more popular MFCCs 
(Mel-Frequency Cepstral Coefficients) from speech rec-
ognition, which explicitly model the critical bands of the 
elephants’ hearing system [42]. To obtain a more expres-
sive (longer-term) audio description, we aggregate the 
GFCC feature vectors of subsequent audio frames by 
computing their mean and average.

The mean and average vectors are finally concatenated 
and used to train a classifier. In our experiments a linear 
SVM classifier (Support Vector Machine, [43]) showed 
good discrimination ability between background sounds 
and elephant rumbles. The SVM was trained from a set 
of positive and negative sound samples (the training set). 
Once trained, the SVM was applied to new, previously 
unseen field recordings from the test set to evaluate the 
detection performance. We refer the interested reader to 
[24] and [41] for more details on the implementation of 
the detection method.

Results
From the captured wildlife recordings, we observe that 
many noise sources corrupt the frequency band where 
rumbles reside. This often masks the characteristic 
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fundamental frequency and parts of the harmonic struc-
ture. The most interfering noise sources are wind and 
rain, as well as engine sounds of cars and airplanes. First 
qualitative evaluations on a set of example sounds indi-
cate that the proposed signal enhancement technique 
improves the signal-to-noise ratio of the rumbles in noisy 
environments. Figure  4 illustrates the effect of sound 
enhancement on an example sound that contains numer-
ous noise sources.

We quantitatively evaluate our method on the dataset 
described in Section “Data Annotation”. For this purpose, 
the dataset is split into a training and test. The training 
set contains 63 randomly selected rumbles (10  % of all 
rumbles in the dataset) and 30 sequences without rum-
bles. The remaining data are used as test set. We perform 
automatic detection on the test set and compute the 
detection rate as well as the false-positive rate. The quan-
titative results are shown in Table 2.

We further compare our results with those of related 
work. The results reported by Wijayakulasooriya [27] 
were obtained from a dataset encompassing a few min-
utes (less than 15  min) of recordings and are thus not 
directly comparable. The dataset used by Venter and 
Hanekom [28] consists of a total of 4 h of recordings with 
28 elephant rumbles. They achieved a detection rate of 
85.7 % with a 14.2 % false-positive rate.

In addition we applied the method by Hao et  al. 
[44] on our dataset. The method is based on spectral 
template matching and was proposed as a general-
purpose approach for the detection of animal sounds. 
While the detection rate is promising, the false posi-
tive rate of 78.6 % shows that a simple template match-
ing is unable to distinguish rumbles robustly in noisy 
conditions. Our developed baseline system without 
signal enhancement yields a detection rate of 88.2  % 
at a false positive rate of 24.4  %. The same system 
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Table 2  Automatic detection results for  different related 
and the proposed method

Signal enhancement strongly influences detection performance, especially the 
false-positive rate

* Results by Venter and Hanekom [28] are not directly comparable as they were 
obtained for a different (smaller) dataset with fewer rumbles

Method Detection rate 
(%)

False-positive 
rate (%)

Hao et al. [44] 78.6 78.6

Venter and Hanekom [28] 85.7* 14.2*

Proposed method without signal 
enhancement

88.2 24.4

Proposed method with signal 
enhancement

88.2 13.7
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with signal enhancement achieves a similar detection 
rate but nearly halves the false positive rate to 13.7 %. 
This demonstrates that signal enhancement strongly 
improves detection performance. Our proposed 
method thus outperforms related ones in detection rate 
and false-positive rate.

A detailed investigation of false detections [24] 
shows that the most interfering noise sources are air-
planes and car engines. This is because they have 
fundamental frequencies and harmonic structures 
similar to elephant rumbles and are thus difficult to 
distinguish. The inspection further reveals that some 
“false detections” actually represent elephant rumbles 
that were for some reason not annotated, for exam-
ple because they were combined or partly masked by 
other calls or because they were overlooked; see [24] 
for details. These results highlight the strong potential 
of the developed method.

Visual detection of elephants
Elephant calls are rare events and, thus, acoustic meth-
ods alone might not be a sufficient solution for a reliable 
detection in all contexts. A promising candidate to com-
plement acoustic detection at certain locations might be 
the visual detection of elephants, due to their body size 
and salient appearance.

Background
At the time the project was started (in 2011) the auto-
matic visual detection of elephants had not been studied 
yet. The detection of animals was addressed mostly in the 
course of object recognition benchmarks [45] based on 
user-generated images of e.g. cats and dogs. The detec-
tion of animals from wildlife data was addressed by only 
a few authors, for example to detect zebras, giraffes, and 
tigers [46–48]. Related literature shows that visual analy-
sis has mostly focused on animals with a well-textured 
skin because the rich texture facilitates visual.

The visual detection of animals such as elephants with-
out a distinct skin texture poses additional challenges 
to visual analysis. Attributes such as color, shape, and 
motion need to be exploited, but plants and trees often 
occlude elephants, revealing only body parts rather than 
the whole elephant. Additionally, elephants appear in 
different postures and sizes, as well as in groups and as 
individuals. Thus the typical shape of an elephant as well 
as its size are generally not useful clues for their visual 
detection. Similarly, motion is a questionable visual clue 
for detection, as elephants often move slowly or rest for 
lengthier times.

During our project we investigated the capabilities of 
visual elephant detection and developed a first method 
for visually detecting and tracking elephants in wildlife 

video recordings. The method exploits color clues as well 
as temporal clues (continuity) and is applicable to videos 
showing complex scenes where vegetation introduces 
extensive occlusions [49].

Method
We proposed a method for elephant detection that 
exploits the color information contained in a given scene. 
In a first step, we learned a color model of elephant skin 
from a set of annotated training images. All pixels associ-
ated to body parts of elephants were used to model the 
skin. The remaining colors surrounding the elephants 
were employed to build a color model of the background. 
A binary Support Vector Machine (SVM, [43]) was 
trained from the color data. The trained SVM was later 
used to predict whether a given color more likely repre-
sents elephant skin or background.

The classification of each individual pixel in a video 
is a computationally demanding task. To accelerate 
the process, we apply image segmentation to the indi-
vidual frames of the video and then perform detection 
based on image segments. Segmentation is performed 
based on Meanshift and takes color and edge informa-
tion into account to find visually consistent segments in 
the input frame [50]. The parameters of the algorithm 
are tuned such that an over-segmentation of the image 
is obtained, i.e. an object is split into multiple segments 
rather than merged with another similarly looking object. 
We account for over-segmented objects during temporal 
analysis in a subsequent processing step.

Given a segmented input frame, we apply the trained 
color model to all segments to identify areas in the video 
frames that are likely to correspond to elephant skin. 
Note that this works even in the case of heavy occlusion, 
as no assumptions about elephant shape and size are 
made. The result is a set of image segments (candidate 
detections) for a given video frame.

In the next step, we track the candidate detections 
over time and merge temporally coherent detections in 
consecutive frames that are likely to belong to the same 
object (see Fig. 5 for an illustration). Details on tracking 
and merging can be found in [49]. The temporal tracking 
of candidate detections yields spatio-temporally consist-
ent detections that provide additional (stronger) clues for 
elephant detection and the rejection of false detections. 
We apply a simple rule to refine the candidate detections: 
segments that can be tracked consistently over a large 
number of frames at a similar location are more likely 
to represent an elephant than a segment that suddenly 
disappears or that changes location abruptly (which is 
often the case for false positive detections). The temporal 
continuity analysis helps to identify false detections and 
noise and improves the detection quality of the method. 
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As a by-product of temporal analysis we obtain all infor-
mation necessary to track the detected elephants in 
image space over time. We refer the interested reader to 
[49] for more details on the developed method.

Results
To evaluate the visual detector, we employed a hetero-
geneous set of video recordings from Addo Elephant 
National Park described in Section “Data Collection and 
Annotation”. As the video sequences in our dataset show 
elephants at different distances, we evaluated our method 
in two different settings: first, for near distances (up to 
approx. 50 m) and, second, for far distances (above 50 m). 
The detections generated by our method were compared 
to the previously generated ground-truth to compute 
performance measures such as detection rate and false 
positive rate.

Figure  6 shows qualitative results for both scenarios. 
Figure  6a demonstrates that elephants of different sizes 
can be detected using the same detection method. The 
depicted frame shows three adults and one calf. The 
adults and the calf are detected successfully. The two 
adults on the right side are reported as one detection by 
our method. This is due to the large overlap of the two 
individuals. We further observe that even elephants that 
are highly occluded by vegetation as shown in Fig. 6b can 
be detected successfully. This scene further demonstrates 
why shape is in many situations not a useful clue for 
detection, as only individual body parts of the elephants 
are visible.

The results of our quantitative evaluation on the entire 
video dataset are summarized in Table 3. For elephants at 
near distances we obtained a detection rate of 91.7 % at a 
false positive rate of only 2.5 %. This means that most ele-
phants are detected successfully (only 8.3 % are missed) 
and the rate of false detections is quite low (only every 
40th detection is actually not an elephant).

With larger distance the detection becomes increas-
ingly difficult. The small area covered by the elephants in 
the image plane requires a much finer image segmenta-
tion of the input images. This results in a stronger over-
segmentation of the image and thus a large number of 

small image patches. The small patches exhibit fewer 
distinctive visual features useful for automated detection 
than larger segments, which impedes automated detec-
tion and results in more detection errors for far-distant 
elephants. Our experiments clearly show the effect of the 
smaller object size on the detection rate and false positive 
rate (Table 3).

Our experiments indicate that a robust detection and 
tracking of elephants in wildlife videos is feasible and 
particularly successful at near distances. We are able, in 
video, to detect and track elephants of different sizes and 
postures and in different activities. Our method is robust 
to occlusions and to the complex structure of wildlife 
scenes. Since the color model for elephant skin and back-
ground can be learned from training data, the method 
can easily be adapted to different backgrounds and light-
ing conditions.

Discussion
The overall goal of the project was to develop automatic 
analysis techniques to establish the foundations for a 
future detection and monitoring system for free-ranging 
elephants. As acoustic detection might not be sufficient 
in certain situations, we further investigated the feasibil-
ity of elephant detection in the visual domain. The devel-
oped acoustic and visual detection methods represent 
two basic building blocks for a future early warning and 
monitoring system illustrated in Fig. 1 and thus represent 
a first step towards this overall goal. In the following we 
draw conclusions from the performed work and sum-
marize challenges and open topics in the context of auto-
matic audio-visual detection.

From our work and experiments on the acoustic detec-
tion of elephant rumbles, we learn that signal enhance-
ment is the key to robust detection. While powerful 
features exist in the literature from related domains such 
as speech recognition, the role of signal enhancement 
has been underestimated so far for detecting elephant 
vocalizations. One potential reason for this is that sound 
enhancement was not necessary in many studies because 
the employed audio recordings were performed under 
controlled settings with a high signal-to-noise ratio. An 

time time

ba

Fig. 5  Spatio-temporal refinement for candidate detections. a Spatially consistent candidate detections are tracked over time. Relations between 
these detections can be used to spatially merge candidate detections. The result b is more robust detections that are consistent over time
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example is the work in [42] where the microphones were 
attached directly to (captive) elephants using special col-
lars. Our investigations have shown that unconstrained 
audio recordings from larger distances, however, call for 
a suitable signal enhancement that improves the signal-
to-noise ratio to achieve robust detection.

We further conclude that an acoustic detector must 
be highly adaptable to the environment it is operating in 
and to the observed population. Different environments 
exhibit different acoustic characteristics and sound-
scapes, e.g. due to nearby roads and railways. Addition-
ally, there are species-specific differences in the vocal 
repertoire of elephants [15]. In Asian elephants, the rum-
ble dominates the repertoire less than in the African spe-
cies. The most remarkable difference is the highly pitched 
(repetitive) vocalizations (chirps or squeaks and squeals), 
which are completely missing in the African species. 
Moreover, elephants have vocal learning capabilities [51, 
52] which further lead to differentiation of populations. 

A future acoustic detection system must be able to adapt 
to the environmental settings and the observed popula-
tion. To take environmental variations into account we 
use powerful machine learning techniques to learn mod-
els of elephant calls as well as the background sound-
scape. An important prerequisite for machine learning 
approaches is the collection of field recordings (together 
with detailed annotations) that reflect the real-world 
complexity of the surrounding soundscape in which the 
detector should operate in the future as well as the rich 
variability of observed elephant calls. Thus, given repre-
sentative training data, an adaptation to a different spe-
cies (e.g. Asian elephants) is possible.

The developed acoustic detector represents a first pro-
totype that was trained and evaluated with field data in 
the laboratory. For future testing and subsequent contin-
uous operation of the detector in the field, a number of 
research and engineering tasks remain that we compactly 
summarize in the following:

• • Major sources for false positive detection are engine 
sounds of cars and airplanes. As both sound sources 
cannot be isolated from elephant territory, the detec-
tor must be made robust against these sound sources. 
Our investigations show that the harmonic struc-
ture of engine sounds is too similar to separate these 
sounds from elephant rumbles. We observe, however, 
a different temporal structure, i.e. a longer duration, 
for engine sounds than for elephant rumbles. Thus, a 

Fig. 6  Results for visual elephant detection. Automatically detected elephants at near distances (a, b, c) and at far distance (d) [49]

Table 3  Quantitative results for visual elephant detection 
at near and far distances

The overall detection performance is especially high at near distances while for 
far distances the problem becomes increasingly complex, which is reflected by 
the high false-positive rate

Range Detection  
rate (%)

False-positive 
rate (%)

Near 91.7 2.5

Far 88.0 39.0
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future direction of research is to extend the detector 
with a multiscale analysis along the temporal dimen-
sion to separate sound events with different temporal 
scale.

• • Another important aspect is that aside from elephant 
rumbles, a number of other elephant calls occur, 
most notably trumpets, snorts, and roars (see also 
Table  1). Existing acoustic detectors concentrate on 
the rumble only. For an early warning system, how-
ever, all call types should be taken into account. As 
each call type is characterized by different spectro-
temporal patterns, a single detector is insufficient 
to recognize all call types. Thus, we suggest to train 
individual detectors for each call type separately and 
to combine them into a detector ensemble. Such an 
ensemble should enable the recognition of many dif-
ferent call types and potentially improve detection 
performance by exploiting dependencies (correla-
tions) between the detector outputs.

• • The training of our detector requires a certain 
amount of field data (calls of interest and background 
sounds). The collection of such field data is time-con-
suming and expensive. To reduce the effort, we pro-
pose using semi-supervised learning strategies in the 
future to incrementally train the detectors in the field. 
In semi-supervised learning the detector starts with a 
small amount of initial training data. In a first online 
learning phase, for every detected vocalization the 
system asks the user (or multiple users) for feedback 
on whether or not this detection is correct. From the 
provided user feedback the detector incrementally 
refines its model. This approach can strongly reduce 
the effort for data collection and annotation and at 
the same time the detector can optimally adapt to its 
operating environment.

• • An important open task for future research (and 
engineering) is implementing an autonomous hard-
ware platform capable of running the detector (or the 
detector ensemble) in real-time and acting as an early 
warning system. Such a hardware platform must be 
computationally strong enough to perform multiple 
spectral analyses and classifications in real-time and, 
at the same time, energy efficient enough to run con-
tinuously supplied by a battery that is continuously 
recharged by, for example, solar energy. Additionally 
the unit must be connected to some network, either a 
cellular network (to issue alarms) or in the absence of 
such a network to some signaling infrastructure such 
as warning lights or sirens that alert nearby people 
[53]. Finally, the device and the microphone(s) must 
be adequately protected from the wind and rain.

A second outcome of the project is a first algorithm 
for the visual detection of elephants that is applicable to 
unconstrained wildlife video. From our investigations we 
learned that the complexity of visual detection is high 
because the target to detect is particularly rare and the 
uncontrollable environment poses numerous challenges 
including occlusions by vegetation, low contrast due to 
shadows, and poor illumination due to front lighting. 
Our experiments show, however, that for limited dis-
tances, elephants can be reliably detected.

A crucial factor for robust visual detection is to mini-
mize assumptions about the environment and target 
objects (e.g. the number of elephants, their posture and 
orientation to the camera, the background). We achieve 
this goal by employing a color model of elephant skin, 
which can be trained adaptively depending on the oper-
ating site and the illumination situation. Similarly to 
acoustic detection, the adaptation to the operating envi-
ronment by learned models is important for robust 
detection.

The temporal processing in our method enables track-
ing individual detections over time in the video. This 
makes the approach a sound basis for higher-level analy-
sis tasks, from the automated estimation of group sizes 
to the automated recognition of different activities and 
potentially behaviors.

From our investigations we conclude that visual detec-
tion is especially useful along corridors and at frequently 
attended sites such as waterholes. In such places cameras 
can be placed close to the elephants, enabling robust vis-
ual detection. The computational complexity of the visual 
detection algorithms developed during the project, how-
ever, significantly exceeds that of acoustic detection and 
poses numerous challenges to the further implementa-
tion of a visual monitoring system:

• • In a first step, the developed algorithms must be 
accelerated to enable real-time processing. The 
computationally most demanding processing steps 
in our detection pipeline are image segmentation 
and motion analysis (optical flow computation). For 
both tasks, efficient algorithms have been proposed 
recently that enable real-time processing on modern 
graphic cards [54, 55].

• • The developed algorithm is able to operate on video 
from moving and also shaking (handheld) cameras. 
For many monitoring settings this is not necessary 
because the camera is fixed and does not change the 
viewing perspective. For such a setting, we recom-
mend to learn background models of the environ-
ment [56] that enable the separation of foreground 
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and background. Different background models can 
be learned for different times of the day to account 
for illumination differences. Once the respective 
model has detected the background, only the fore-
ground must be processed, which strongly reduces 
the computational demands.

• • In the presence of limited processing power, we fur-
ther suggest the development of image-based rather 
than video-based detectors. Although our experi-
ments in [49] have shown that temporal continu-
ity from the video stream significantly improves the 
detection reliability, we believe that in a setting with 
a static camera and learned background models the 
absence of temporal information can be compen-
sated. Such a system can be implemented on low-cost 
hardware platforms such as Raspberry PI [57] in com-
bination with an onboard camera that is triggered at 
regular intervals. The pre-trained background models 
can be applied in real-time on the platform and only 
the detected foreground objects (which usually make 
up only a small fraction of the entire image) must be 
analyzed further (either directly on the hardware plat-
form or on a base station connected through available 
network infrastructure).

In the course of our project, we have investigated the 
detection of elephants in the acoustic and visual domain. 
We believe that detectors from both domains have the 
potential to compensate each other’s weaknesses. Acous-
tic detectors work well even when the elephants are out 
of sight, enable detecting elephants at long distances 
and can operate during day and night. Visual detectors 
in contrast do not require the elephants to vocalize and 
can permanently monitor corridors and places of interest 
during the day.

The future establishment of a reliable early monitoring 
system will require combining multiple complementary 
modalities to compensate the weaknesses of individual 
detectors and thus to improve the overall detection qual-
ity. In addition to acoustic and visual detectors, we pro-
pose to complement a future monitoring system with 
thermal cameras that might provide additional useful 
information for elephant detection. Thermal cameras 
enable visual detection at night and may improve detec-
tion performance of visual detectors during the day 
by adding an additional complementary temperature 
channel to the color information. For the realization 
of the envisioned early warning and monitoring system 
as depicted in Fig.  1 at the beginning of this article, we 
believe that only a combination of multiple orthogonal 
sensors will lead to satisfactory results.

In summary, the scientific foundation for an elephant 
acoustic detection and early warning system for humans 

living near elephant habitats is promising. Numerous 
requests from conservationists in Asia and Africa show 
that such a system is urgently needed, yet funding to fur-
ther improve the detector and evaluate it in the field is 
required in order to transfer the promising research results 
into practical implementation. This would be an important 
step forward in mitigating the human–elephant conflict.
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