
OB E S I T Y P H A RMA CO TH E R A P Y

The incretin/glucagon system as a target for pharmacotherapy
of obesity

Stefano Del Prato1 | Baptist Gallwitz2,3 | Jens Juul Holst4,5 | Juris J. Meier6

1Department of Clinical and Experimental

Medicine, University of Pisa, Pisa, Italy

2Department of Internal Medicine IV, Eberhard

Karls University, Tübingen, Germany

3Institute for Diabetes Research and Metabolic

Diseases of the Helmholtz Center Munich,

University of Tübingen, Tübingen, Germany

4Department of Biomedical Sciences, Faculty

of Health and Medical Sciences, University of

Copenhagen, Copenhagen, Denmark

5Novo Nordisk Foundation Center for Basic

Metabolic Research, Faculty of Health and

Medical Sciences, University of Copenhagen,

Copenhagen, Denmark

6Division of Diabetology, Katholisches

Klinikum Bochum, St. Josef Hospital, Ruhr

University, Bochum, Germany

Correspondence

Stefano Del Prato, Department of Clinical and

Experimental Medicine, University of Pisa,

Via Paradisa, 2, 56124 Pisa, Italy.

Email: stefano.delprato@med.unipi.it

Funding information

Boehringer Ingelheim

Summary

Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent

lifestyle interventions, including pharmacotherapy, maintaining bodyweight loss is

challenging for many people. The pathophysiology of obesity is complex, and

currently approved pharmacotherapies only target a few of the many pathways

involved; thus, single-targeting agents have limited efficacy. Proglucagon-derived

peptides, glucagon, and the incretin hormones glucagon-like peptide-1 (GLP-1) and

glucose-dependent insulinotropic polypeptide (GIP), represent attractive targets for

managing obesity and metabolic disorders because they may have direct roles in

multiple mechanisms including satiety, energy homeostasis, and lipolytic activity.

Unimolecular dual and triple agonists targeting glucagon and incretin hormone recep-

tors have been shown to promote bodyweight loss, lower glucose levels, and reduce

food intake in animal models of obesity. Multiple dual receptor agonists are in clinical

development for the treatment of obesity, including GLP-1/GIP and GLP-1/glucagon

receptor agonists. The extent to which glucagon contributes to treatment effects

remains to be understood, but it may promote bodyweight loss by reducing food

intake, while concomitant GLP-1 receptor agonism ensures normal glucose control.

Further research is required to fully understand the molecular mechanisms of action

and metabolic effects of both dual and triple receptor agonists.
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1 | INTRODUCTION

The overwhelming increase in the prevalence of obesity and people

who are overweight in recent years represents one of the greatest

global threats to public health. Worldwide, the prevalence of obesity

has tripled since 1975, with over 650 million adults affected in 2016.1

Obesity is now recognized as a multifactorial disease, characterized by

abnormal or excessive fat accumulation that presents a risk to human

health.2 Obesity (body mass index [BMI] ≥30 kg/m2) and being over-

weight (BMI 25–29.9 kg/m2)3 are associated with several health

conditions including diabetes, cardiovascular disease, some forms of

cancer, musculoskeletal disorders (especially osteoarthritis), sleep

apnea, asthma, gallstones, depression, and nonalcoholic

steatohepatitis (NASH).1,2,4–7 Obesity is a complex, chronic, relapsing

disease; weight gain can be progressive, occurring over many years,

and weight loss is difficult to achieve and even more difficult to main-

tain.2,8,9 In a meta-analysis of 29 studies, more than half of lost weight

(56%) was regained within 2 years and 79% of lost weight was

regained by Year 5.9 Furthermore, some people with obesity do not

consider themselves overweight, whereas others who do consider
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themselves overweight have no desire to lose weight.10 Around one

third of people with obesity would like to lose weight but have not

tried to do so within the past year and half have tried to lose weight

without consulting a healthcare professional.10

1.1 | Current treatment landscape

Current guidelines for obesity management recommend determining

the degree to which an individual is overweight or has obesity

and, depending on the severity, applying multicomponent

interventions.11–16 Lifestyle modifications are recommended for all

patients who require weight loss, whereas additional pharmacother-

apy is advised for individuals in whom lifestyle interventions have

failed.11–16 Lifestyle modifications can include reduced energy intake

(typically to achieve an energy deficit of ≥500 kcal/day), increased

aerobic physical activity levels to ≥150 min/week, and behavioral

change strategies to facilitate adherence to diet and physical activity

(self-monitoring and reporting of dietary intake, physical activity, and

weight measurements).11–15 A variety of diets designed to reduce

energy intake may successfully result in weight loss in adults who

are overweight or affected by obesity. Meal plans including

Mediterranean-style or vegetarian/vegan-style diets, which are higher

in plant-based foods including olive oil (rich in monounsaturated oleic

acid) and lower in processed food and meat than typical Western

diets, may promote weight loss and cardiovascular benefits that are

similar to those associated with low-fat diets (25%–30% of calorie

intake from fat).11,14 Notably, in the Dietary Intervention-Randomized

Controlled Trial (DIRECT), a low-fat diet in people with type 2 diabetes

(T2DM) elicited a lower mean weight loss (2.9 kg) compared with a

Mediterranean (4.4 kg) or a low-carbohydrate (4.7 kg) diet.17

Compared with the low-fat diet, the low-carbohydrate diet improved

lipid profiles, whereas the Mediterranean diet decreased fasting

plasma glucose levels in patients with diabetes.17 A recent randomized

controlled trial also showed that a 6-week low-carbohydrate diet, with

high intake of protein and fat and energy intake adjustments to ensure

weight stability, improved glycemic control and reduced liver fat

content in patients with T2DM.18 These observations suggest that it

is not necessarily fat intake that is responsible for increased fat

deposition. Intermittent fasting has also gained interest for the

treatment of obesity and diabetes, and has been recommended to

comprise regular periods of no or very limited calorie intake (<25% of

calorie requirement); for example, a 16-h daily fast or a 24-h fast on

alternate days or two nonconsecutive days in a week.19 On nonfasting

days, calorie intake can be unrestricted. A systematic review of

27 trials of people who were overweight or affected by obesity

demonstrated that intermittent fasting reduces bodyweight by

0.8%–13% in the short term (2–52 weeks), regardless of change in

calorie intake.19 In studies of patients with concurrent obesity and

T2DM, improved glycemic control was also reported with intermittent

fasting.19

With dietary interventions, most patients will reach a plateau in

bodyweight loss at approximately 6–12 months, ranging from 3 to

12 kg, then will slowly regain weight over 2–5 years, with total weight

loss reducing to 0 to 3–4 kg.11,12 This pattern is most likely due to

the progressive reduction of energy expenditure associated with

bodyweight loss and the reduction of lean body mass. Therefore,

long-term bodyweight loss requires adjustment of lifestyle

modifications over time. Adults who are unable to achieve or sustain

bodyweight loss with comprehensive lifestyle modifications, who

have either a BMI ≥30 or ≥27 kg/m2 with one or more comorbidities,

can be considered for adjunct pharmacologic therapy.11–13

US Food and Drug Administration-approved agents for the treat-

ment of obesity include appetite suppressants, such as glucagon-like

peptide-1 receptor (GLP-1R) agonists (liraglutide and semaglutide),

noradrenergic drugs (phentermine/topiramate and naltrexone/

bupropion), and pancreatic lipase inhibitors (orlistat).20,21 Phentermine

stimulates noradrenaline release, which in turn suppresses appetite,

augmented by topiramate, an anticonvulsant.22 Across randomized

controlled trials, a mean bodyweight loss of 9.8 kg was observed with

phentermine/topiramate treatment.23 Naltrexone acts as an opioid

antagonist and bupropion as a dopamine and noradrenaline reuptake

inhibitor, the combination of which promotes satiety and increased

energy expenditure leading to a mean bodyweight loss of 4.4 kg.23,24

Orlistat is a selective pancreatic lipase inhibitor that moderates

intestinal absorption and digestion of fat, with an observed mean

bodyweight loss of 3.1 kg.22,23 A 2-year study showed an additional

bodyweight loss of ≥5% with the GLP-1R agonist liraglutide, which

was significantly greater, by 3.0 kg (p < 0.001), than weight loss with

orlistat.25 In this trial, bodyweight loss stabilized by approximately

36 weeks,25 which was similar to that seen in trials of orlistat or the

noradrenergic drug sibutramine.26,27 Previous pharmacological agents

approved for the treatment of obesity, including amphetamine

derivatives, cannabinoid receptor blockers, and serotonin reuptake

inhibitors, have been withdrawn due to their unfavorable adverse

event (AE) profiles (Table 1).22,28

Bariatric surgery is an option for individuals with a BMI ≥40

kg/m2 or ≥35 kg/m2 and with comorbidities for which appropriate

nonsurgical methods have failed.11–16,31 Roux-en-Y gastric bypass,

often called gastric bypass, has traditionally been considered the gold

standard bariatric procedure for weight loss. The underlying mecha-

nisms are loss of appetite resulting in reduced food intake, most likely

driven by the exaggerated secretion of gut hormones that occurs a

few days after surgery. The increased secretion of these hormones,

including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), is

due to accelerated exposure and absorption of nutrients in the small

intestine.32–34 Changes in anatomy leading to mechanical restriction

of food intake and malabsorption of macronutrients were originally

thought to be responsible for weight loss following bariatric surgery.

However, these effects have since been found to be inappreciable,34

except with less commonly used procedures such as jejunoileal

bypass, biliopancreatic diversion, and duodenal switch, which dramati-

cally reduce intestinal resorption of nutrients. The mode of action of

gastric sleeve operations, now the most widely used procedure to

treat obesity,35 is not fully elucidated, but the accelerated passage of

nutrients into the small intestine, which also leads to exaggerated

gut hormone secretion, is thought to play a role.36 Most surgical
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procedures are, in principle, irreversible and are not without complica-

tions37; moreover, surgical intervention alone is unlikely to manage

obesity in the majority of patients. Therefore, there is a large unmet

medical need for a highly efficacious pharmacological agent with a

favorable benefit–risk profile for the treatment of obesity, especially

in chronically ill patients with concomitant disease (e.g., hypertension,

T2DM, and chronic obstructive pulmonary disease).

1.2 | Rationale for targeting the incretin/glucagon
system in obesity

Energy balance is maintained by an intricate network of interacting

feedback mechanisms involving the hypothalamus, the brainstem,

higher brain centers and, in the periphery, the stomach, gut, liver,

thyroid, endocrine pancreas, and adipose (fat) tissue.38 Hormones

from peripheral tissues such as leptin, ghrelin, cholecystokinin, pancre-

atic polypeptide, PYY (PYY3–36), GLP-1, and oxyntomodulin have

been shown to regulate appetite.39–47 Resistance to the actions of

some of these hormones appears to be associated with common

obesity. For example, leptin is secreted by adipose tissue and is

thought to be a key peptide in reducing food intake based on the

extreme obesity that develops in the absence of leptin signaling.38,48

However, people affected by obesity have chronically elevated leptin

levels and are resistant to its anorexigenic effects39,48—this is thought

to be caused, in part, by downregulation of a feedback loop by the

high leptin levels.49 Food intake is also regulated by the mesolimbic

reward system and has been shown to activate some of the same

circuits involved in drug addiction.38,50–52

TABLE 1 Previous pharmacological agents approved for the treatment of obesity and the AEs resulting in their withdrawal28–30

Agent Mechanism of action Launch date Withdrawal date Reason for withdrawal

Amfepramone (diethylpropion) SNDRA 1957 1975 Cardiotoxicity

Amphetamine SNDRA 1939 1973 Drug abuse/dependence

Aminorex fumarate SRI 1962 1967 Cardiotoxicity

Benfluorex SRI 1976 2009 Cardiotoxicity

Caffeine and ephedra Nonselective adrenergic agonist 1994 2004 Cardiotoxicity, psychiatric

Chlorphentermine SRI 1962 1969 Cardiotoxicity

Clobenzorex SNDRA 1966 2000 Drug abuse, psychiatric

Cloforex SRI 1965 1967 Cardiotoxicity

Cyclovalone + retinol + tiratricol Bile acid secretion 1964 1988 Hepatotoxicity

Dexfenfluramine SRI 1995 1997 Cardiotoxicity

Fenbutrazate NDRA 1957 1969 Drug abuse, psychiatric

Fenfluramine SRI 1973 1997 Cardiotoxicity

Fenproporex (perphoxene) NRA 1966 1999 Drug abuse, psychiatric

Iodinated casein strophanthin Thyroxine analogue 1944 1964 Endocrine, metabolism

Levoamphetamine SNDRA 1944 1973 Drug abuse/dependence

Lorcaserin Serotoninergic agonist 2012 2020 Increased risk of cancer

Mazindol NDRA 1970 1987 Drug abuse, psychiatric

(interaction with lithium)

Mefenorex (methylphenethylamine) SNDRA 1966 1999 Drug abuse, psychiatric

Methamphetamine (desoxyephedrine) SNDRA 1944 1973 Drug abuse/dependence

Phendimetrazine NDRA 1961 1982 Drug abuse

Phenmetrazine NDRA 1956 1982 Drug abuse

Phenterminea NDRA 1959 1981 Drug abuse

Phenylpropanolamine

(norpseudoephedrine)

NDRA 1947 1987 Hemorrhagic stroke

Pipradrol NDRI 1953 1982 Drug abuse

Pyrovalerone NDRA 1974 1979 Drug abuse

Rimonabant Cannabinoid antagonist/inverse

agonist

2006 2007 Psychiatric

Sibutramine SNRI 2001 2002 Cardiotoxicity, psychiatric

Abbreviations: AE, adverse event; NDRA, noradrenaline–dopamine releasing agent; NDRI, noradrenaline–dopamine reuptake inhibitor; NRA, noradrenaline

releasing agent; SNDRA, serotonin–noradrenaline–dopamine releasing agent; SNRI, serotonin–noradrenaline reuptake inhibitor; SRI, serotonin reuptake

inhibitor.
aApproved for use up to 12 weeks.
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The pathophysiology of obesity is complex and currently

approved therapies for obesity only target a few of the many path-

ways involved; thus, single-targeting agents have limited efficacy.22,53

An integrated approach to the treatment of obesity that targets

multiple mechanisms such as feeding circuits, glucose metabolism, and

energy expenditure is therefore assumed to be more effective than

single-targeting agents.53 Proglucagon-derived peptides, glucagon,

and the incretin hormones GLP-1 and glucose-dependent

insulinotropic polypeptide (GIP), represent attractive targets for

managing obesity and metabolic disorders53–56 because they may play

a direct role in multiple mechanisms involved in the disease, including

satiety, energy homeostasis, and lipolytic activity.46,57–59

Dipeptidyl peptidase-4 (DPP-4) inhibitors, approved for use in

T2DM,60 prevent DPP-4 from cleaving various gut peptides including

GLP-1 and GIP22,61; however, levels of GLP-1 activity achieved by

DPP-4 inhibitors alone are not sufficient to stimulate a decrease in

bodyweight.22,61,62 Furthermore, DPP-4 inhibition stops the conver-

sion of PYY 1–36 to PYY 3–36, the molecular form that reduces

appetite and food intake,63 and this may further limit the effects on

bodyweight loss because what is gained with respect to the effects of

GLP-1 (and GIP) is lost with respect to the effects of PYY.32

GLP-1 has a short half-life and is cleaved by DPP-4 and neutral

endopeptidase within 1.5–2 minutes. This has led to the development

of GLP-1R agonists that have higher enzymatic stability towards both

peptidases than endogenous GLP-1, resulting in slower elimination.62

However, because the peptide is also cleared by the kidneys, prolon-

gation techniques have been developed to ensure lasting agonism.

For example, the GLP-1R agonist liraglutide is acylated and its acyl

moiety (palmitic acid) binds to albumin, whereby the peptide survives

in the circulation.64 This agonist has been shown to effectively cause

bodyweight loss in humans and experimental animals, in which suffi-

cient levels of the natural peptide do not remain in the circulation to

account for this effect.65–67 Investigations using rat models demon-

strate that liraglutide may cross the blood–brain barrier via the

circumventricular organs (the area postrema, the subfornical organ,

the choroid plexus, and the median eminence) and reach, for instance,

the arcuate nucleus.67 Here, liraglutide could activate neurons

expressing proopiomelanocortin (POMC) and cocaine- and

amphetamine-regulated transcript (CART), which are key appetite-

regulating neurons, and indirectly inhibit neurotransmission in neurons

expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP)

via GABA-dependent signaling.67 Other long-acting GLP-1R agonists

that target the gastrointestinal (GI) tract and central nervous system

(CNS), including dulaglutide, exenatide extended-release, and

semaglutide, have since been developed and reduce bodyweight to a

similar (�2%–3%) or, in the case of injectable semaglutide, greater

(�4%–6%) extent as liraglutide with a similar tolerability profile in

humans.68

As GLP-1, GIP, and glucagon have related peptide sequences, it is

possible to create analogues with agonist activity at more than one

receptor type, for instance, combining GLP-1R agonist activity with

the effects of glucagon and/or GIP.61 Here, we discuss preclinical and

clinical findings in obesity and other therapeutic areas of interest for

glucagon, the endogenous incretin hormones GIP and GLP-1 and

GLP-1R agonists, as well as their actions when combined as dual and

triple agonists.

2 | GLUCAGON IN OBESITY

Glucagon is a pancreatic hormone, with receptors predominantly

expressed in the liver. There also appear to be receptors expressed in

the kidneys (although the localization is uncertain), while expression in

the heart, adipose tissue, CNS, adrenal gland, and spleen is variable

and may be species dependent (Figure 1).66

Glucagon regulates amino acid metabolism and is released from

alpha cells following amino acid stimulation as part of the liver–alpha

cell axis.69–71 In addition, glucagon has long been recognized to

regulate glucose homeostasis, counteracting the actions of insulin by

stimulating hepatic glucose production (glycogenolysis and gluconeo-

genesis).61 Glucagon, at least at pharmacological doses, may regulate

lipid metabolism, energy expenditure, and food intake in multiple

species.54,58,72–76 In humans, hepatic fat synthesis is suppressed after

glucagon administration.54 Glucagon stimulates beta-oxidation of

fatty acids and inhibits the formation of malonyl-coenzyme A, the first

intermediate of fatty acid synthesis.77 However, the extent to which

glucagon influences whole-body lipid metabolism, particularly in

individuals affected by obesity, remains controversial.58,77 In rodents,

glucagon has been shown to stimulate lipolysis in adipocytes78–80;

however, glucagon receptor expression has not been successfully

demonstrated in human adipocytes.77 The potential lipolytic effect of

glucagon in humans has only been shown in vitro and at concentra-

tions much higher than physiological levels in plasma.77 Glucagon may

also increase energy expenditure by inducing thermogenesis in brown

adipose tissue (BAT), as shown in humans and in animal models.81–83

This thermogenic effect is thought to be mediated through activity of

the sympathetic nervous system, given that inhibiting β-adrenergic

activity impairs the ability of glucagon to increase energy expendi-

ture.84 However, the contribution of thermogenesis to overall energy

expenditure remains unknown, and this effect may be too small to

result in bodyweight loss.75 In animal models, glucagon reduces food

intake when administered peripherally and into the CNS.56,66,85,86

Because of the extremely short half-life of glucagon in rodents,87

long-acting glucagon analogues are likely to be more effective.

Glucagon infused into the hepatic portal vein reduces spontaneous

meal size in rats.85 Conversely, infusion of anti-glucagon antibodies

into the hepatic portal vein increases spontaneous meal size in

rats.85,88 These observations have led to the suggestion that glucagon

may act in the liver to generate a satiety signal that is relayed to the

brain via the hepatic branch of the vagus nerve.85 Glucagon infusion

at pharmacological doses in humans has been demonstrated to

increase, rather than decrease, respiratory quotient and carbohydrate

oxidation.81 However, increases in energy expenditure have been

reported at doses that did not activate the sympathetic nervous

system.89

In patients with diabetes, levels of glucagon are elevated during

fasting and, in response to carbohydrate ingestion, the normal
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suppression is delayed or even briefly reversed. These abnormalities

are important for the development of diabetic hyperglycemia, as

indicated by the results of glucagon receptor (GCGR) antagonist

administration, which may normalize glucose levels.90 However, as a

therapy for T2DM, GCGR antagonists have shown undesirable AEs

including elevated liver enzymes, accumulation of liver triglycerides,

and hyperglucagonemia, which have discouraged further development

of GCGR antagonists in this patient population.61 Inappropriate

glucagon secretion and regulation has been shown in patients with

obesity, as well as those with NASH.71,91–93 The inappropriate

elevation of circulating glucagon is likely the consequence of

increased levels of plasma amino acids, representing a disruption of

the liver–alpha cell axis caused by hepatic fat accumulation.71,94

Hepatic steatosis can lead to glucagon resistance, wherein glucagon-

induced amino acid metabolism is impaired, causing elevated plasma

levels amino acids and hence also glucagon.71 Indeed, it may be that

among patients with T2DM, those with nonalcoholic fatty liver

disease (the vast majority) and hyperaminoacidemia also have hyper-

glucagonemia.92 This disruption of the liver–alpha cell axis is mainly

due to the accumulation of intrahepatic lipid, and may contribute to

the development of T2DM, rather than being a consequence of it.71,92

3 | GLP-1 IN OBESITY

GLP-1, an incretin hormone secreted from the L cells in the small

intestine after food intake, stimulates insulin secretion (in a glucose-

dependent manner) and regulates energy intake.46,95–97 GLP-1 is also

produced in the caudal portion of the nucleus of the solitary tract, a

region receiving afferent input from the GI tract.98,99 GLP-1 acts on

peripheral and central receptors in the gut and brain to delay gastric

emptying, inhibit GI secretion, and decrease food intake through

activation of satiety pathways and efferent pathways regulating GI

function (Figure 2).66,67,95,100,101 GLP-1 also reduces glucagon

secretion by alpha cells, thereby inhibiting hepatic glucose produc-

tion.102,103 The GLP-1R agonist liraglutide has been shown to reduce

bodyweight in patients with prediabetes and in those with obesity,104

and has been approved for weight management in adults with obesity

as an adjunct to a reduced-calorie diet and increased physical

activity.65 In addition, results from the STEP 3 trial demonstrate that

the GLP-1R agonist semaglutide reduces bodyweight in adults with

obesity.105

4 | GIP IN OBESITY

GIP, an incretin hormone secreted from K cells in the upper gut, acts

in concert with GLP-1 to exert “the incretin effect”, resulting in

substantial physiological stimulation of insulin secretion after glucose

administration.62,106–108 In contrast to GLP-1, GIP may stimulate

glucagon secretion at lower glucose levels.62 Although the

insulinotropic activity of GIP has now been confirmed in human

studies involving a GIP receptor (GIPR) antagonist,59,109 whether GIP

contributes to the development of obesity remains controversial.110

F IGURE 1 Physiological and pharmacological actions of glucagon. Glucagon has a number of physiological (blue), pharmacological (green), and
hypothetical (orange) actions in several organs, some of which may be species dependent. GI, gastrointestinal
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Mice lacking the GIPR are protected from diet-induced obesity,

and crossing of GIPR-null mice with obese ob/ob mice reduces

adiposity.111,112 However, other studies have demonstrated a reduc-

tion in calorie intake and bodyweight after both central and peripheral

administration of GIPR agonists.113,114 This effect is potentially

mediated by GIP-recruited neuropeptides linked to regulation of food

intake and energy balance.115 GIP does not appear to have any acute

effects on food intake in humans,116 yet discussions are ongoing on

the role of GIPR agonists and antagonists as weight loss agents.117

5 | DUAL GLP-1R/GCGR AGONISTS

In animal models of obesity, administration of dual GLP-1R/GCGR

agonists resulted in superior weight loss, lower glucose levels,

and reduced food intake compared with pure GLP-1R agonists

alone.118–121 Weight loss with a dual GLP-1R/GCGR agonist was

maintained over 7 days, whereas the effect of a pure GLP-1R agonist

alone plateaued midweek before returning to vehicle control level by

Day 7.119 In humans, dual GLP-1R/GCGR agonism is thought to result

in additive effects of reducing food intake and lowering glucose levels,

making this an attractive approach for weight management in

individuals with diabetes. In a Phase II trial, individuals with T2DM

and who were overweight or affected by obesity treated with the dual

GLP-1R/GCGR agonist cotadutide (MEDI0382) achieved significant

lowering of glucose levels and bodyweight loss compared with

patients receiving placebo over 41 days (p < 0.0001 and p = 0.0008,

respectively).122 Decreased appetite occurred more frequently in

patients receiving cotadutide than those receiving placebo (20%

vs. 0%); however, GI disorders were also more frequent (74%

vs. 40%).122 Overall, the proportion of patients experiencing

treatment-emergent AEs was similar in both groups (88% vs. 88%).122

In a Phase IIb trial of cotadutide in patients with overweight/obesity

and T2DM, significant reductions in glycated hemoglobin levels

(p < 0.001) and percentage of bodyweight (p < 0.001) were observed

at all tested doses (100, 200, or 300 μg) of cotadutide versus placebo,

and significant reductions in the percentage of bodyweight were seen

with 300-μg cotadutide versus liraglutide (p = 0.009).123 In addition,

treatment with cotadutide improved hepatic parameters, with

decreases in alanine aminotransferase, aspartate aminotransferase,

gamma-glutamyl transferase, and procollagen III levels and improve-

ments in nonalcoholic fatty liver disease fibrosis score and Fibrosis-4

index compared with placebo, whereas liraglutide had no notable

F IGURE 2 Incretin/glucagon-targeting agents achieve their weight loss effect through a variety of mechanisms in several organs.
GCG, glucagon; GI, gastrointestinal; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1
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effect.123 The incidence of treatment-emergent AEs was higher across

all doses of cotadutide compared with placebo and liraglutide, with GI

disorders being most commonly reported.123 In overweight individuals

without diabetes, dual GLP-1/glucagon infusion increased energy

expenditure to a similar degree as glucagon alone; however, the

addition of GLP-1 reduced the hyperglycemic effect of glucagon.124

Dual GLP-1/glucagon infusion has been reported to significantly

reduce food intake (�13%, p < 0.05) compared with similar doses of

GLP-1 and glucagon administered separately, although patients

reported postprandial nausea and some vomiting.124 A trend towards

increased pulse rate was also seen with dual GLP-1/glucagon infusion

compared with placebo or GLP-1 alone, although no substantial

change in blood pressure was recorded.81 Thus, concomitant GCGR

and GLP-1R activation provides the beneficial effects of glucagon

(i.e., maintaining a significant reduction in food intake with little effect

on plasma glucose levels; Figure 2).81,124

6 | DUAL GLP-1R/GIPR AGONISTS

Although the lipogenic potential of GIP alone is under debate,

coactivation of GLP-1R and GIPR is an attractive prospect in the

treatment of T2DM and perhaps obesity (Figure 2).125 For example,

GIP analogues that do not alter bodyweight when administered alone

to mice with diet-induced obesity were found to enhance

GLP-1-induced weight loss, reduce food intake, and prevent fat mass

accumulation126,127; however, similar results have also been obtained

with GIP antibodies.128 The dual GLP-1R/GIPR agonist tirzepatide

(LY3298176) has been shown to improve insulin sensitivity indepen-

dently of GLP-1R-induced weight loss in Glp-1r-null mice (i.e., via

GIPR antagonism), but whether this effect is present in humans

remains to be seen.129 Furthermore, a balanced unimolecular GLP-1R

and GIPR agonist reduced bodyweight, food intake, and fat mass in

mice with diet-induced obesity to a greater extent than liraglutide.127

Although the exact mechanisms of GLP-1/GIP synergism are unclear,

it has been hypothesized that GIP could act directly via the CNS by

inhibiting food intake, enhancing the anorexigenic action of GLP-1, or

increasing tolerability to GLP-1R agonists.130 Dual GLP-1R/GIPR

agonism has also shown efficacy in humans. In a Phase II trial of

tirzepatide, more individuals with T2DM achieved weight loss of ≤5%

and ≤10%, and glucose control with the dual GLP-1R/GIPR agonist

than with a GLP-1R agonist (dulaglutide) alone.131 Decreased appetite

(although desirable) was the second most common AE, with dose-

related GI events being the most common but the majority being tran-

sient and mild to moderate in severity.131 In the Phase III SURPASS-2

trial, treatment with tirzepatide was superior to semaglutide at reduc-

ing bodyweight in patients with T2DM at all tested doses (5, 10, or

15 mg), with 34%–57% of patients receiving tirzepatide experiencing

bodyweight reductions of ≥10%, compared with 24% of those

receiving semaglutide (1 mg).132 In the Phase III SURPASS-3 trial of

tirzepatide (5, 10, or 15 mg) in individuals with T2DM (with or without

metformin and/or an SGLT-2 inhibitor), bodyweight reduction ranged

from �9.8 to �15.2 kg.133 The most commonly reported AEs in the

tirzepatide arms were GI related and generally mild to moderate in

severity, with up to �11% of participants in the tirzepatide arms

discontinuing treatment due to AEs.134

7 | TRIPLE GLP-1R/GCGR/GIPR AGONISTS

The synergistic actions of glucagon to reduce food intake and increase

energy expenditure, GLP-1 to reduce calorie intake, and GIP to poten-

tiate bodyweight loss may aid in the treatment of obesity (Figure 2).

The addition of both incretin components to glucagon appear to

better mitigate the hyperglycemic action of glucagon compared with

the presence of GLP-1 or GIP alone, allowing for greater glucagon

dosing and therefore greater potential for weight loss.135 In animal

models of obesity, balanced unimolecular triple agonism proved

superior to existing dual agonists and best-in-class monoagonists in

reducing bodyweight and enhancing glycemic control.136 In a murine

model of diet-induced NASH and fibrosis, the triple combination of

GLP-1R, GCGR, and GIPR monoagonists increased bodyweight loss,

reduced liver triglycerides, and improved histological NASH disease

activity score; weight loss was similar to that obtained with liraglutide

alone, but histological NASH disease activity score was significantly

improved (p < 0.01).137 In addition, HM15211, a long-acting triple

agonist peptide, reduced bodyweight and improved liver function in

cynomolgus monkey models of obesity and NASH.138

8 | BALANCED AGONISM, SPECIFICITY,
AND SELECTIVITY

Activation of multiple receptors can be achieved by either a combina-

tion of two or more different monoagonists or a unimolecular multi-

agonist. A multiagonist may take the form of a multivalent fusion of

monoagonist analogues or a hybridized molecule comprising multiple

epitope regions that has an overall size comparable with the native

peptides.61 The latter approach is favored when targeting GLP-1R,

GCGR, and/or GIPR, because they are the same type of receptor

(class B G-protein coupled) and have a high degree of sequence

homology and native ligands with similar secondary structures.61 The

GCGR, GIPR, and especially GLP-1R exhibit cross-reactivity with each

other's ligands, with glucagon being the most cross-reactive ligand61;

thus, a full investigation and characterization of the interactions at the

relevant receptors is required. For example, LY2409021, originally

developed as a GCGR antagonist, was subsequently found to block

the actions of glucagon at the GCGR and GLP-1R, the actions of

GLP-1 at the GLP-1R, and the actions of GIP at the GIPR in vitro.139

When designing unimolecular dual and triple agonist peptides, it is

important to consider whether the molecule activates all target recep-

tors with equal potency (balanced agonism) or has a higher affinity for

one receptor over the other(s) (preferential agonism).61 An appropri-

ately balanced unimolecular agonist can only occupy a single receptor

at a time, which theoretically reduces the likelihood of preferential

binding at any one type of receptor, as could happen with a multiva-

lent fusion of agonists with different affinities.61 In addition, the selec-

tivity of an agonist for a given receptor has relevance for predicting

and, ultimately, avoiding off-target effects.139
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9 | AGENTS TARGETING THE INCRETIN/
GLUCAGON SYSTEM IN OBESITY

The synergy of dual and triple incretin agonists in increasing

bodyweight loss through decreased appetite and increased energy

expenditure may offer an advanced therapeutic option for patients

with obesity, and several novel unimolecular peptides are in clinical

development (Table 2). Most trials have yet to be fully published,

and the majority of published reports describe early pharmacokinetic

and tolerability studies; nevertheless, trials of GG-co-agonist 1177,

JNJ-6456511, BI 456906, and tirzepatide are currently investigating

bodyweight-related outcomes.

TABLE 2 Summary of clinical trials of agents targeting the incretin/glucagon system under investigation in patients with obesity

Agonist Agent Trial phase Selected outcome measures Trial number

Single agonists

GCGR agonist NN9030 Phase I PK/safety NCT02235961

Phase I PK/safety; Δ HbA1c NCT02870231

Phase I PK/safety; Δ HbA1c NCT02835235

Dual agonists

GLP-1R/GCGR agonists GG-co-agonist 1177 Phase I PK/safety; Δ bodyweight NCT02941042

Phase I PK/safety NCT03308721

JNJ-6456511 Phase I PK/safety NCT03586843

Phase II (T2DM) Δ bodyweight; ≥5% bodyweight loss NCT03586830

Phase II Δ bodyweight; ≥5% and ≥10% bodyweight loss NCT03486392

MOD 6031 Phase I PK/safety NCT02692781

BI 456906 Phase I PK/safety NCT03591718

Phase I PK/safety NCT04384081

Phase II Δ bodyweight; ≥5%, ≥10%, and ≥15% bodyweight

loss

NCT04667377

Phase II (T2DM) Δ HbA1c; Δ bodyweight; ≥5% and ≥10% bodyweight

loss

NCT04153929

GLP-1R/GIPR agonists Tirzepatide

(LY3298176)

Phase I Δ food intake; Δ EE; Δ RQ; Δ % body fat; Δ FFA;

Δ postmeal glucose

NCT04081337

Phase I Δ energy intake; Δ appetite VAS NCT04311411

Phase I (±T2DM) PK; Δ HbA1c NCT04407234

Phase III (T2DM) Δ bodyweight; ≥5%, ≥10%, and ≥15% bodyweight

loss; Δ WC; Δ BMI; Δ fasting glucose and insulin;

Δ HbA1c; Δ lipids; Δ BP; Δ QOL

NCT04657003

Phase III Δ bodyweight; ≥5%, ≥10%, and ≥15% bodyweight

loss; Δ WC; Δ BMI; Δ fasting glucose and insulin;

Δ HbA1c; Δ lipids; Δ BP; Δ QOL

NCT04657016

Phase III Δ bodyweight; ≥5% and ≥10% bodyweight loss;

Δ WC; Δ BMI; Δ fasting glucose and insulin;

Δ HbA1c, Δ lipids; Δ BP; Δ QOL

NCT04660643

Phase III MACE NCT04255433

Phase III Δ bodyweight; ≥5%, ≥10%, and ≥15% bodyweight

loss; Δ WC; Δ BMI; Δ fasting glucose and insulin;

time to T2DM onset; Δ HbA1c; Δ lipids; Δ BP;

Δ QOL

NCT04184622

Triple agonists

GLP-1R/GCGR/GIPR

agonists

Triagonist 1706 Phase I PK/safety NCT03095807

Phase I PK/safety NCT03661879

HM15211 Phase I Safety NCT03374241

Phase I Safety NCT03744182

Abbreviations: BMI, body mass index; BP, blood pressure; EE, energy expenditure; FFF, free fatty acids; HbA1c, glycated hemoglobin; MACE, major

adverse cardiac event; PK, pharmacokinetics; QOL, quality of life; RQ, respiratory quotient; T2DM, type 2 diabetes; VAS, visual analogue score; WC, waist

circumference.
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10 | SAFETY

Glucagon and related peptides have a multitude of hormonal and

metabolic effects and not all are desirable when targeting the receptors

therapeutically.66 Some unwanted effects are usually classified as GI,

although it is likely that they are mainly due to interactions with central

receptors. Whereas delayed gastric emptying may be sensed as fullness,

one consequence of the interaction with area postrema receptors

triggered by GLP-1 and glucagon appears to be mild-to-moderate tran-

sient nausea,46,124,131 which has also been reported in studies of single

GLP-1 agonists in patients with diabetes.25,104 Additional GI AEs

(vomiting and diarrhea) have been observed in trials of GLP-1R/GCGR

dual agonists.122,131 Cardiovascular AEs are of potential concern, and a

number of cardiovascular outcomes trials will be required as develop-

ment continues, such as the ongoing SURPASS-CVOT of tirzepatide.140

Completed trials of the GLP-1R agonists liraglutide, semaglutide, and

dulaglutide have demonstrated superiority with respect to rates of

adverse cardiac outcomes in comparison with placebo.141–143

11 | CONCLUSIONS

Obesity is associated with a considerable and progressive disease

burden, and an effective pharmacological intervention is lacking.

Glucagon is an attractive target for bodyweight management in

individuals with obesity due to its ability to reduce food intake and

stimulate energy expenditure, potentially without cardiovascular AEs.

However, its action may need to be counterbalanced by concomitant

use of incretin hormones (i.e., preventing hyperglycemia and

enhancing the central effects of glucagon). The incretin hormone

GLP-1 is also an attractive target because it suppresses appetite and

reduces food intake, although the role of the incretin hormone GIP in

bodyweight reduction is under debate. GIPR agonism alone has been

shown to reduce bodyweight in mice with obesity, as observed with

GIPR agonists with a longer half-life than endogenous GIP. However,

these agents alone may have limited efficacy. It is reasonable to

assume that the dual and triple combinations of glucagon and

incretin hormone receptor agonists could provide superiority in maxi-

mizing bodyweight loss. Unimolecular dual and triple agonists that

target glucagon and incretin hormone receptors have been shown to

improve bodyweight loss, lower glucose levels, and reduce food

intake in animal models of obesity and NASH, and multiple dual

agonists are in clinical development for the treatment of obesity and

diabetes. Phase II clinical data have established that the dual

GLP-1R/GIPR agonist tirzepatide has superior antidiabetic efficacy

compared with the GLP-1R agonist dulaglutide, alongside reductions

in bodyweight and the induction of satiety. Reductions in

bodyweight and glucose levels have also been demonstrated with

dual GLP-1R/GCGR agonists. The extent to which glucagon contrib-

utes to such treatment effects remains to be understood, but it may

contribute to weight loss by reducing appetite and food intake, while

concomitant GLP-1R agonism ensures normal glucose control.

Further research is required to fully understand the molecular

mechanisms of action that underpin the efficacy of both dual and

triple receptor agonists and the respective metabolic effects.
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