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Abstract: High-grade Gastroenteropancreatic Neuroendocrine neoplasms (H-NENs) comprehend
well-differentiated tumors (NET G3) and poorly differentiated carcinomas (NEC) with proliferative
activity indexes as mitotic count (MC) >20 mitoses/10 HPF and Ki-67 >20%. At present, no specific
therapy for H-NENSs exists and the several evidences of microenvironment involvement in their
pathogenesis pave the way for tailored therapies. Forty-five consecutive cases, with available
information about T-cell, immune, and non-immune markers, from surgical pathology and clinical
databases of 2 Italian institutions were immunostained for Arginase, CD33, CD163 and CD66 myeloid
markers. The association between features was assessed by Spearman’s correlation coefficient. A
unsupervised K-means algorithm was used to identify clusters of patients according to inputs of
microenvironment features and the relationship between clusters and clinicopathological features,
including cancer-specific survival (CSS), was analyzed. The H-NEN population was composed of 6
(13.3%) NET G3 and 39 (86.7%) NEC. Overall, significant positive associations were found between
myeloid (CD33, CD163 and Arginase) and T/immune markers (CD3, CD4, CD8, PD-1 and HLA-I).
Myeloid and T-cell markers CD3 and CD8 identified two clusters of patients from unsupervised K-
means analysis. Cases grouped in cluster 1 with more myeloid infiltrates, T cell, HLA and expression
of inhibitory receptors and ligands in the stroma (PD-1, PD-L1) had significantly better CSS than
patients in cluster 2. Multivariable analysis showed that Ki-67 (>55 vs. <55, HR 8.60, CI 95% 2.61—
28.33, p < 0.0001) and cluster (1 vs. 2, HR 0.43, CI 95% 0.20-0.93, p = 0.03) were significantly associated
with survival. High grade gastroenteropancreatic neuroendocrine neoplasms can be further classified
into two prognostic sub-populations of tumors driven by different tumor microenvironments and
immune features able to generate the framework for evaluating new therapeutic strategies.
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1. Introduction

According to World Health Organization (WHO) 2019, High-Grade Gastroenteropan-
creatic neuroendocrine neoplasms (H-NENs) comprehend tumors with a Ki-67 index
>20% distinguished in NET-G3, when Well-Differentiated (WD), or NEC-G3, when Poorly-
Differentiated (PD) [1]. Among these, NEC-G3s are characterized by the worst prognosis [2].
Accurate diagnosis of these diseases is critical for correct prognosis and clinical manage-
ment. High-grade G3 NET and NEC need a complex therapeutic approach due to a lack of
clinical data and low response to treatments; to date, there are no consensus guidelines
for the management of these rare and aggressive neoplasms [3-5]. Moreover, NECs are
often diagnosed at a later stage and treated with platinum-etoposide chemotherapy with
fractional efficacy [6-8]. To the best of our knowledge, no reliable prognostic marker, able
to predict clinical outcome, has been definitively validated to date. Therefore, clinical
management of these neoplasms is still controversial.

The tumor microenvironment (TME) is a dynamic compartment that develops dur-
ing cancer evolution, constituted by tumor, immune, stromal and inflammatory cells,
cancer-associated fibroblasts (CAFs), vasculature and extracellular matrix (ECM) [9,10].
TME has been on the spotlight of cancer research in recent years for its pivotal role in
tumorigenesis and cancer progression as well as in regulating the efficacy of the therapeutic
response in neuroendocrine neoplasms [11-14]. In our recent work, we demonstrated that
microenvironment-related immune and inflammatory markers can improve prognostic
prediction in GEP-NENs, when combined with the established Ki-67 and morphology
parameters [15]. The aim of this study is to further evaluate the tumor microenvironment
of high-grade neuroendocrine neoplasms, by expanding the immune profiling to myeloid
markers Arginase, CD33, CD163 and CD66.

2. Materials and Methods
2.1. Cases

Forty-five consecutive patients among the prospectively maintained clinical databases
of 2 Italian institutions (Fondazione IRCCS Istituto Nazionale dei Tumori and Humanitas
Research Hospital Rozzano) were retrospectively selected. Formalin-fixed and paraffin-
embedded (FFPE) specimens collected by these patients were reviewed according to the
rules described in the following paragraph. In order to correlate and investigate myeloid
markers with the content of tumor microenvironment, we used data regarding T-cell (CD3,
CD4, CD8), immune (PD-1, PD-L1, HLA-I, HLA-DR) and non-immune markers (COX-2,
pS6, B-catenin, NGFR, «-SMA, CD31) of our previous work [15].

The study was performed according to the clinical standards of the 1975 and 1983
Declaration of Helsinki and was approved by the Ethics Committee of Fondazione IRCCS
INT (No. INT 21/16, 28 January 2016).

2.2. Immunohistochemistry

Arginase, CD33, CD163 and CD66 were investigated by IHC methods. Briefly, sections
2.5/3 micron-thick were deparaffinized and rehydrated. The antigen unmasking technique
was carried out using Novocastra Epitope Retrieval Solutions, pH 6 EDTA-based (Leica
Biosystems, Wetzlar, Germany) in a thermostatic bath at 98° for 30 min. Sections were then
brought to room temperature and washed in PBS. After neutralization of the endogenous
peroxidase with 3% v/v, HyO, and Fc blocking by a specific protein block (Novocastra,
Leica Biosystems), the samples were incubated with primary antibodies listed in Supple-
mentary Table S1. Staining was revealed using a Novolink Polymer Detection System
(Novocastra) and AEC (3-Amino-9-ethylcarbazole) as a substrate-chromogen, following the
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manufacturer’s instructions. Slides were counterstained with Harris Hematoxylin (Novo-
castra, Leica Biosystems). Slides were analyzed under the Axio Scope A1l optical microscope
(Zeiss Oberkochen, Germany) and microphotographs were collected through the Axiocam
503 color digital camera (Zeiss) using the Zen2 software (Supplementary Figure S1).

IHC was assessed first by two expert pathologists, one in a neuroendocrine (M.M.)
and one in a microenvironment (C.T.) field. As previously described, to minimize the
variability of the evaluation, IHC was evaluated with a semi-quantitative approach, by
adopting a scoring system that takes into account both the intensity and extent of the
staining marker (% of positive cells) [15,16]. Briefly, the intensity (I) was ranked as low (1+;
fainter than internal controls), normal (2+; as faint as controls), or strong (3+; more intense
than controls). The expression (E) was defined as follows: up to 25% cells, 1+; 26-50%, 2+;
51-75%, 3+; 76-100%, 4+. I and E were combined into a single score (S), calculated as I x E,
ranging from 0 to 12. Specimens were directly included only in the case of full consensus
by both aforementioned expert pathologists; furthermore, in cases in which consensus was
not reached, a majority decision was adopted during panel consensus meetings composed
of five additional pathologists (A.P; B.B.; L.C.; P.S;; T.B.). The evaluation of myeloid
markers was carried out specifically in the stromal cells and median cut-offs were used for
survival analysis.

2.3. Statistical Analysis

The association between all the investigated features was assessed by Spearman’s
correlation coefficient. Unsupervised K-means algorithm [17] was used to identify clusters
of patients according to inputs of microenvironment stromal features. Briefly, the algorithm
works first by randomly assigning centroids and then by calculating the distance of each
data point to its nearest centroid using the Euclidean distance. Subsequently, it finds the
new value of centroids by calculating the mean distance of all points belonging to the cen-
troid. Each data point is grouped into a cluster with the minimum distance to the centroid of
the cluster and maximum inter-cluster distance by an iterative process. The data were also
subjected to principal component analysis (PCA) and a biplot was produced to investigate
the relationships between two principal components and microenvironment features.

The association between morphological and immunophenotypical features and clus-
ters was assessed using Fisher’s exact test for categorical variables and Wilcoxon’s rank
sum test for continuous variables. Cancer-specific survival (CSS) was assessed from the
time of the diagnosis to the time of disease-related death or last follow-up, whichever
occurred first. CSS curves were drawn using the Kaplan-Meier method. The log-rank
test was used to assess the survival difference between the patient groups. Cox propor-
tional regression analysis was used to assess the association between morphological and
immunophenotypical features and survival. Hazard ratios (HRs) are presented with respec-
tive 95% confidence interval (CI). Data analysis were performed using the R environment
for statistical computing and graphics (R Foundation, Vienna, Austria-Version 3.6.2). All
tests were two-sided and p-values <0.05 were considered statistically significant.

3. Results
3.1. Patient Characteristics and Myeloid Profile

Table 1 summarizes the clinico-pathological features of the 45 patients included in
the study. Overall, the cohort comprised 28 (62.2%) males and 17 (37.8%) females with
a median age of 61 years with a range 33-78. The most represented tumor site was the
pancreas (n = 15, 33.3%), followed by rectum (1 = 10, 22.2%), colon (n = 8, 17.8%), ileum
(n=7,15.6%) and stomach (n = 5, 11.1%). A pathological review, using both morphology
and Ki-67 55% cut-off, classified them in 6 (13.3%) NET G3, 8 (17.8%) NEC Ki-67 <55 and
31 (68.9%) NEC Ki-67 >55%.
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Table 1. Clinicopathological features of the 45 patients included in the study.

Features All Patients
Total 45 (100)
Gender
M 28 (62.2)
F 17 (37.8)
Years
Median (range) 61 (33-78)
Morphology
NET G3 6 (13.3)
NEC-Ki67 <55 8 (17.8)
NEC-Ki67 >55 31 (68.9)
Stage
I-II 3(6.7)
111 14 (31.1)
v 28 (62.2)
Site
Colon 8 (17.8)
Ileum 7 (15.6)
Pancreas 15 (33.3)
Rectum 10 (22.2)
Stomach 5(11.1)

Abbreviations: NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; Ki-67, Ki-67 proliferative index.

Myeloid markers CD33%, CD163° and Arginase® expressions showed a significant
positive association with T-cell markers (CD3%, CD45, CD8%), PD-1° and HLA-IS (Figure 1).
In particular, CD33° showed a strong positive association (p < 0.001) with T-cell CD3%
(r=0.48), CD45 (r = 0.63) and CD8® (r = 0.57) and PD-1° (r = 0.55) and mild (p-value
from 0.05 to 0.02) with COX-2° (r = 0.31), HLA-I® (r = 0.33), HLA-DRS (r = 0.37) and PD-
L1 (r = 0.33). Moreover, CD163° showed a strong positive association (p < 0.001) with
CD4® (r = 0.53), while moderate associations (p-value from 0.05 to 0.002) were observed
between CD163° and Arginase® with CD3° (r = 0.35 and 0.30), CD8® (r = 0.38 and 0.35),
PD-15 (r = 0.40 and 0.38) and HLA-I® (r = 0.30 and 0.32). Interestingly, we observed also a
mild positive association between CD33° and CD163° with tumor PD-L1T (r = 0.34 and
0.33) and a negative association between CD66° with COX-2T (r = —0.40) expressed in
neoplastic cells.
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Figure 1. Binary associations of all investigated markers by Spearman correlation analysis. Only
significant r values (either positive or negative) are shown. Expression of each marker was evaluated
in the tumor (superscript T) or in the stroma (superscript S). On the bottom left: a representative
scatter plot of CD8% and CD33% marker expression.
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3.2. Clustering

Myeloid markers (Arginase®, CD33° and CD66°) and T-cell markers CD3° and CD8°
identified two clusters of patients by unsupervised K-means analysis with different fea-
tures in the tumor microenvironment (Figure 2). Specifically, cluster 1 showed both higher
myeloid and T-cell markers compared to cluster 2. PCA showed that the first two compo-
nents explain about 75.9% of overall variability. First principal component (PC1) explained
51.8% and was significantly correlated mainly with CD8%, CD33°% and CD3® while the
second (PC2) explained 24.1% and correlated mainly with ArginaseS and CD66°.

Cluster 1 —*~ Cluster2

PC2 (24.1% explained var.)
//
1z

9

S &
o}
@
8

:2 DPC1 (51.8% explained var.)
Figure 2. The biplot of unsupervised K-means analysis for myeloid ArginaseS, CD33° and CD66°
and T-cell CD3° and CD8S.

In-depth analysis of the two clusters revealed further specific differences in the ex-
pression of several markers (Figure 3, Supplementary Table S2). Cases grouped in cluster 1
included 5 (22. 7%) NET G3, 5 (22.7%) NEC Ki-67 <55 and 12 (54.6%) NEC Ki-67>55
while cluster 2 included 1 NET G3 (4.4%), 3 (13.0%) NEC Ki-67 <55 and 19 NEC Ki-67 >55
(82.6%). Overall, cases in cluster 1 showed more myeloid infiltrates, lymphoid T cell, HLA
antigens and inhibitory receptors and ligands in the stroma compared to cluster 2 (Figure 3,
Supplementary Table S2). Specifically, a significant increase in score estimated for myeloid
ArginaseS (mean 5.95 (3-12) vs. 3.87 (0-9), p = 0.002), CD33% (mean 3.90 (1-9) vs. 1.57
(0—4), p < 0.0001) and CD163° (mean 5.64 (3-12) vs. 3.87 (2-6), p = 0.008) were observed in
cluster 1. Moreover, CD66° showed an increase (mean 1.77 (0-6) vs. 0.96 (0-3) p=0.11), but
without statistical differences.

A similar trend was observed in the estimated score for lymphoid T-cell, immune
checkpoint and HLA markers: CD3° (6.95 (1-12) vs. 0.83 (0—4), p < 0.0001), CD4° (1.73
(0-9) vs. 0 (0-1), p = 0.001), CD8° (3.73 (1-6) vs. 0.39 (0-2), p < 0.0001), PD-L1° (1.95
(0-6) vs. 0.7 (0-6), p = 0.01), PD-15 (4.82 (0-9) vs. 1.13 (0-6), p = 0.0002), HLA-IS (4.27
(0-12) vs. 1.48 (0-9), p = 0.01) and HLA-DRS (9.05 (2-12) vs. 6.43 (0-12), p = 0.02) were
enriched in cluster 1 compared to cluster 2. On the other hand, no significant changes were
observed between clusters for non-immune markers in the stroma and tumor markers
(Supplementary Table S2). Thus, for all significant differences, expression of the informa-
tive markers was higher in cluster 1 than in cluster 2.
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Figure 3. Barplots of immunohistochemistry Score Expression of Myeloid, T-cells, Inmune checkpoint and HLA markers. *
indicates the level of significance.

3.3. Survival Analysis

In the overall cohort Median CSS (mCSS) was 10 months (95% CI 7-24) (Supplemen-
tary Figure 52). In particular, mCSS was 22 (95% CI 10-92) for cluster 1 and 7 (95% CI 5-16)
for cluster 2. Kaplan-Meier analysis patients grouped in cluster 1 had significantly bet-
ter survival than patients in cluster 2 (log-rank p = 0.003; Figure 4A). This suggests that
the more pronounced immune infiltration observed in lesions from cluster 1 reflect an
ongoing immune response that has prognostic significance. Furthermore, cases with
Ki-67 <55% (both NET G3 and NEC), had a better survival compared to Ki-67 >55%
(p = <0.0001; Figure 4B).

A) Cluster B) Ki-67
Cluster + Cluster 1 + Cluster 2 Ki-67 ~ Ki-67<66 ~+ Ki-67>55

1.00 1.00

0.75 0.75
2
3
o
-
2

0.50 a 0.50
B
£
z
3
2]

0.25 0.25

p=0.0032 p<0.0001
0.00 0.00
0 12 24 36 48 60 72 0 12 24 36 48 60 72
Time (Months) Time (Months)
Number at risk Number at risk

Cluster 1 22 14 10 8 6 5 5 Ki-67<55 14 13 1 8 7 5 5

Cluster 2 23 8 3 1 1 0 0 Ki-67>55 31 9 2 1 0 0 0

Figure 4. Cancer-specific survival of patients with high-grade neuroendocrine neoplasms according cluster (A) and Ki-67
55% cut off (B).

Supplementary Table S3 shows results of Cox proportional regression analysis. After
adjustment for tumor site, Ki-67 was strongly associated with survival (>55 vs. <55,
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HR 10.7, 95% CI 3.34-34.26, p < 0.001). However, interestingly, even distinct immune
markers showed a prognostic significance. This included Arginase® (4-12 vs. 0-3, HR
0.40, 95% CI 0.18-0.91, p = 0.03), CD3° (3-12 vs. 1-2, HR 0.31, 95% CI 0.15-0.64, p = 0.001),
CD8® (2-12 vs. 0-1, HR 0.45, 95% CI 0.22-0.92, p = 0.03) and PD-1° (2-12 vs. 0-1, HR
0.33, 95% CI 0.15-0.71, p = 0.005). Patients in cluster 1 decreased significantly the Hazard
Ratio (HR) by factor 0.30 (CI 95% 0.14-0.63, p = 0.001) compared to patients in cluster 2.
Moreover, multivariable analysis showed that Ki-67 (>55 vs. <55, HR 8.60, CI 95% 2.61-
28.33, p < 0.0001) and cluster (1 vs. 2, HR 0.43, CI 95% 0.20-0.93, p = 0.03) were significantly
associated with survival.

4. Discussion

Patients affected by High-grade Neuroendocrine Neoplasms (H-NENSs) represent
an heterogeneous and poorly understood population. We demonstrated that TME mark-
ers were able to further identify among H-NENs two cohorts showing different clinical
outcomes according to HLA-IT, lymphoid markers CD3° and CD8° and PD-L1° immuno-
histochemical expression, [15]. The current study further enriched H-NENs TME charac-
terization through the assessment of myeloid markers Arginase, CD33, CD163 and CD66
expression. The present results showed that both myeloid and T cell markers share their
expression in H-NENs. Furthermore, the aforementioned myeloid markers were capable
to further describe H-NENSs clinical outcome defining two well characterized H-NENs
prognostic classes paving the way to propose the TME role as an independent clinical
outcome predictor in H-NENSs on the basis of the “hot/cold tumor” idea [18,19]. In detail,
H-NENS rich in immune infiltrate should cover different immune subsets belonging to the
innate (such as myeloid cells) and adaptive (such as T cells) arms of the immune system;
on the contrary, cold tumors may be devoid of such an infiltrate [20].

Our results confirmed previous evidence showing that the microenvironment and
immune interactions could be fundamental for a proper H-NENSs prognostic and thera-
peutic overview. Robust T-cell infiltration was frequent in GEP-NENs and associated with
improved recurrence-free and disease specific survival [12,21]. Hot immune microenviron-
ment with abundant TILS was observed in pancreatic NECs compared to NETs although,
in the latter, high intraepithelial PD-1 T cells and PD-L1 Type-II macrophages were ob-
served according to the grade [22]. Moreover, PD-L1 was detected in 10% of H-NENs
patients without correlation to progression-free survival or overall survival [23]. Present
studies showed that cluster 1 is defined by a high expression of lymphoid T-cells, myeloid
infiltrates, HLA antigens and expression of inhibitory receptors and ligands (both PD-1
and PD-L1) in the stroma. T-cell CD3° and CD8%, myeloid Arginase® and PD-1° alone as
well as clusters, were associated with survival. Cluster 1 included more NET G3 and NEC
<55% than cluster 2. Interestingly, survival differences between the two clusters were also
observed even by removing the NET G3 (log-rank p = 0.016, Supplementary Figure S3). We
did not observe a prognostic role for PD-L1. Collectively, our data confirm that innate and
adaptive immune cell infiltration has a fundamental role in H-NENs patients and that our
cluster 1 could identify the so-called “hot lesions”: H-NENs characterized by a prevalent
immune infiltrate cells. Therefore, patients in cluster 1 could potentially be responsive
to immunotherapy treatment strategies while, on the contrary, patients in cluster 2, by
displaying cold tumors, may less suitable for immunotherapy.

Immune-inflammatory cells represent one of the emerging hallmarks of cancer, due
to their role in tumor development [24]. Among the cells of the immune system, the
myeloid compartment has been at the center of attention for its role in cancer development;
myeloid-derived suppressor cells (MDSCs) and M2 macrophages represent key players
in the dynamic process of tumorigenesis [9]. The human MDSCs are characterized by the
CD11b*CD33"HLA-DR" phenotype identifying cell populations with T-cell suppressive
activity [25,26]. MDSCs have been associated with worse prognosis in various solid
tumors, including gastroenteropancreatic neuroendocrine neoplasms, where MDSCs have
been correlated with an advanced cancer stage and the presence of metastasis [27-29].
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Controversially, recent evidence has shown that increased CD33" myeloid cells were
associated with better prognosis in triple negative breast cancer [30]. Moreover, work
carried out by Kervarrec et al. on in Merkel Cell Carcinomas (MCC) has showed that
CD33* and CD163* infiltrates were closely associated with CD8" T-cell infiltrates and that
MCC CD33* CD8* were correlated with improved outcome [31]. The authors showed
that infiltrating CD33 cells expressed HLA-DR and, thus, they were not likely MDSC.
Similarly, in our cohort myeloid markers showed a positive correlation with lymphoid
T-cell markers CD3° and CD8S. Cluster 1 H-NENs showed the highest myeloid, HLA and
lymphoid T-cell markers expression, suggesting that their role could be related to a higher
cancer specific survival than patients with reduced expression. Co-expression of T cell
and myeloid markers in cluster 1 tumors is in agreement with the heterogeneous immune
contexture described to occur in three tumor immune subtypes defined as “would-healing”,
“IFN-g dominant” and “inflammatory”(across several histologies) by Thorsson et al. [20]
These evidences indicate that a “hot tumor” (a lesion where spontaneous development
of immunity has occurred) is not necessarily characterized only/mainly by infiltration
of potentially “anti-tumor” T cells and such tumors are also characterized by the strong
presence of myeloid cells. Interestingly, clusters 1 also showed high levels of HLA-DRS,
compared to cluster 2 (p = 0.02, Figure 3, Supplementary Table S2). Consequently, in
high-grade neuroendocrine neoplasms, the expression of myeloid markers, associated with
high levels of HLA-DRS, HLA-IS, PD-1°, PD-L1° and T-cells markers, most likely, could
not have immunosuppressive effects as they identified a sub-group of patients with better
survival.

We are aware that the present study could be limited by the pure IHC scoring system
that, even if validated by expert pathologists (in emolymphopathology and neuroendocrine
tumors), could be not able to fully describe the biological features of the interaction between
microenvironment and NENs. The current clinical scenario could benefit from this excellent
double tiers method with the appropriate further validations, but IHC as a gross screening
tool for inquiring the microenvironment—tumor relationship could be proposed [15,32].
Furthermore, in order to deeply understand the aforesaid interaction, the precise antibody
co-localization could have been better if evaluated first by digital pathology tools and
then by molecular analysis. Moreover, the present results highlight that the H-NENs
heterogeneity is driven also by the microenvironment role, paving the way to further
distinguishing H-NENs in two clearly defined prognostic sub classes.

In conclusion, due to the aforementioned H-NENSs, heterogeneity and dichotomy,
microenvironment-related immune and inflammatory markers can provide helpful infor-
mation to predict NEN clinical outcomes that could help to select the proper therapeutic
approach and hopefully pave the way to novel ones.
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