
sensors

Article

Method to Increase Dependability in a
Cloud-Fog-Edge Environment

Ovidiu Petru Stan 1 , Szilárd Enyedi 1,*, Cosmina Corches 1 , Stelian Flonta 2, Iulia Stefan 1, Dan Gota 1

and Liviu Miclea 1

����������
�������

Citation: Stan, O.P.; Enyedi, S.;

Corches, C.; Flonta, S.; Stefan, I.; Gota,

D.; Miclea, L. Method to Increase

Dependability in a Cloud-Fog-Edge

Environment. Sensors 2021, 21, 4714.

https://doi.org/10.3390/s21144714

Academic Editor: Juan M. Corchado

Received: 11 June 2021

Accepted: 7 July 2021

Published: 9 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Automation, Faculty of Automation and Computer Science, Technical University of
Cluj-Napoca, 400114 Cluj-Napoca, Romania; ovidiu.stan@aut.utcluj.ro (O.P.S.);
cosmina.corches@aut.utcluj.ro (C.C.); iulia.stefan@aut.utcluj.ro (I.S.); dan.gota@aut.utcluj.ro (D.G.);
liviu.miclea@aut.utcluj.ro (L.M.)

2 Technical College “Iuliu Maniu”, 455300 Simleu Silvaniei, Romania; sflonta@colim.ro
* Correspondence: szilard.enyedi@aut.utcluj.ro

Abstract: Robots can be very different, from humanoids to intelligent self-driving cars or just
IoT systems that collect and process local sensors’ information. This paper presents a way to
increase dependability for information exchange and processing in systems with Cloud-Fog-Edge
architectures. In an ideal interconnected world, the recognized and registered robots must be able
to communicate with each other if they are close enough, or through the Fog access points without
overloading the Cloud. In essence, the presented work addresses the Edge area and how the devices
can communicate in a safe and secure environment using cryptographic methods for structured
systems. The presented work emphasizes the importance of security in a system’s dependability
and offers a communication mechanism for several robots without overburdening the Cloud. This
solution is ideal to be used where various monitoring and control aspects demand extra degrees of
safety. The extra private keys employed by this procedure further enhance algorithm complexity,
limiting the probability that the method may be broken by brute force or systemic attacks.

Keywords: dependability; secure group communication; vertical resource management; cloud-fog-
edge; fog-based access control; decentralized environment; edge computing

1. Introduction

The concept of Cloud-Computing has matured a lot in recent years 1. It underlines the
fact that all resources, services, and data hosted on the Internet must be available for use
whenever more sophisticated services are necessary to be developed and to be provided.
Therefore, we can say that omnipresent access, mixed resources, and on demand resource
or service delivery in a safe and secure environment are at the base of Cloud-Computing
features.

At the same time, the concept of Internet of Things (IoT) has emerged, evolved, and
reached reality and maturity. IoT is a concept that defines a world in which all objects
(cars, lighting systems, home appliances, and others) are connected to each other via the
Internet and through heterogeneous access networks that will generate large amounts of
emerging and versatile data as well as many services [1–3]. The connected devices may
be sensors, actuators, and any other device or object that can be connected, monitored,
operated, and controlled. Services will lead to an intelligent, sustainable, and inclusive
society and economy. IoT has become one of the most challenging research topics and
offers an amazing number of opportunities for business. The media generally focus their
attention on the consumer-related Internet segment. There is no doubt that consumer
products have an important place in the IoT universe, but they remain, a niche. However,
the IoT will have profound implications for all levels of business operations, regardless of
the industry type [4,5].

Sensors 2021, 21, 4714. https://doi.org/10.3390/s21144714 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2006-9633
https://orcid.org/0000-0002-0808-5032
https://orcid.org/0000-0003-4152-7469
https://doi.org/10.3390/s21144714
https://doi.org/10.3390/s21144714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144714
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144714?type=check_update&version=2


Sensors 2021, 21, 4714 2 of 17

IoT represents the future and the vision of the near future where all the world is
connected. At the same time, we must realize that if we want to achieve this, account
must be taken of the omnipresent accessibility and connectivity, the management of users
and connected devices, the optimal use of resources, and the customization of the ser-
vices offered based on the users’ preferences and wishes [6]. All these features must be
provided in a reliable and scalable environment. Meanwhile, we can also say that IoT
is critical to Cloud-Computing and that the convergence of these two paradigms offers
huge opportunities for both technologies. Cloud-Computing is based on sharing resources
and maximizing their use regardless of location, two key requirements for IoT solutions.
Additionally, when talking about IoT solutions, these must be accessible from anywhere
and anytime.

In view of the foregoing, we may state that to provide reliable IoT solutions, efficient
and scalable resource delivery where and when necessary, the two paradigms need to
merge, and Cloud-Computing features are critical to IoT. Therefore, new security issues
arise [7,8], but the security research of Cloud-Computing systems is far from being ma-
ture [9]. What should be mentioned is that the specific security features in the Cloud are not
yet known. Many believe that this domain has few specific requirements and the current
security features and existing practices such as encryption, firewalls, digital signatures, can
be easily adapted to solve the Cloud-Computing security aspects [8].

However, many industries’ actors have reported that there are various types of threats
and that mechanisms, other than conventional ones, need to be developed [10]. In fact,
it is unlikely that Cloud-Computing itself will create security problems. These security
issues that may arise are not necessarily only technological, they stem from reliability and
confidence needs, and from lack of clear information about Cloud security [11].

The production and utilization of on-line resources is a unique characteristic of the
Cloud-Computing paradigm. Fog Computing operates on the Edge of the network in order
to conserve bandwidth, while the Edge handles data at the verge of the Cloud. Empowering
the Edge computation in a Cloud-Fog-Edge environment lowers and reduces the distance
data must travel across the network. Therefore, research into this field is necessary due
to the unique connection between Cloud, Fog, and Edge computing. This paper’s major
contributions are to evaluate and to offer a strategy for increasing dependability in this
context. We succeed to clarify how and why the security is an important part of the
dependability concept and how one can obtain a vertical management of system resources
without overloading the Cloud in a safe and secure environment.

The remainder of this paper is structured as follows. Section 2 presents the related
technology, problem finding, and a proposed method to bind security to the dependability
concept. Section 3 introduces the proposed method with its algorithms and design. The
simulation model and numerical results of the proposed method are discussed in Section 4.
Finally, Section 5 concludes the paper.

2. Materials and Methods

With the emergence of IoT, Cloud-Computing, humanoid robots, and intelligent robot
services, more and more studies have been conducted on robot control and on how robotics
have intersected with IoT [12,13]. Two aspects need to be considered for robot control.
The first concerns the limitation of resources managed by the robot’s system due to large
volume data constraints and costs [13]. The second aspect concerns the cost of integrating
robots with IoT.

All IoT devices must be aware, autonomous, and actionable. The awareness refers to
the fact that they have all types of sensors and can sense the surrounding environment.
The autonomous feature refers to the possibility of automatically transmitting data to other
devices, but simultaneously also to the Internet. These features are likewise linked to the
fact that someone/something can monitor all the collected information with respect to the
awareness feature. The last characteristic, the actionable feature, takes into consideration
the fact that these devices must have embedded in them some kind of analysis capability



Sensors 2021, 21, 4714 3 of 17

in order to control their sensors/actuators. The control part can be done automatically or
can be based on the requirements of the supervisors that monitor the data.

Based on all the above-mentioned, we wanted to analyze how Cloud-Computing
processes can be brought to the Edge area as much as possible, but at the same time, in a
safe and secure environment (Figure 1).

Figure 1. Overall Cloud-Fog-Edge architecture.

Robots can range from humanoids to sophisticated self-driving automobiles or IoT
devices which gather and interpret sensor data locally. Each of the robots must be able to
communicate with the others, directly if they are close enough, or through the Fog access
points (AP). These robots generate all sorts of data, such as equipped sensors data (light,
temperature, gas, etc.), localization information, multimedia data, engine data, and others.
In essence, the robots represent the Edge level of our architecture. In the Cloud, all the
information and data generated by the robots are collected and stored, but at the same
time, the Cloud is also used to process the information.

The proposed Cloud-Fog-Edge architecture takes into consideration the fact that
resource awareness must exist vertically [6,14,15]. Through this, the authors desire to
obtain the intelligent reduction of the data amounts transmitted from the Edge areas
(robots, IoT devices, etc.) through the Cloud [15]. Moreover, this architecture is based on
a highly parallelized computing paradigm and needs a decentralization of the analysis
algorithms.

The main focuses of this paper are the Fog and Edge areas because, amongst other
IoT array of devices, a large set of data is produced, and we want to obtain a middle
point between the source of data origin and the top Cloud infrastructure. Through the
proposed infrastructure, we should be able to filter, process, and aggregate the data before
sending them to the Cloud. With this method, we should be able to offer a highly available
compute solution, nevertheless with efficient, reduced resources and in a safe and secure
environment.

2.1. SEcube™ Open Security Platform

The SEcube™ (Secure Environment cube) Open Security Platform (Figure 2) is an open-
source security-oriented hardware and software platform, designed and constructed with
ease of integration and service-orientation in mind. The hardware part of the platform was
designed by Blu5 Group [16], and the software libraries are provided by an international
cooperation within European research institutions [17].



Sensors 2021, 21, 4714 4 of 17

Figure 2. (a) SEcube™ Block Diagram. (b) SEcube™ Devkit.

The major hardware products are the chip, the development board (devkit), and the
USB stick. The SEcube™ chip is the main hardware component, and both the devkit and
USB Stick are designed around it. The Development Board provides several communication
protocols as well as debugging capabilities. For the final product the board would be of
course too inconvenient to carry, and instead the USB Stick is preferred.

The SEcube™ chip integrates three key security elements in a single package: a fast
floating-point Cortex-M4 CPU, a high-performance FPGA, and an EAL5+ certified Security
Controller (Smart Card). These elements, in conjunction with a set of custom software
libraries, allow developers to implement highly reliable security applications [18,19]. The
SEcube™ chip can be easily integrated in any project due to the communication protocols
available (USB, UART, Ethernet, JTAG).

One of the innovating aspects is the fact that the chip also includes a true random
number generator which relies on 240 noise seeds, all physical and therefore unpredictable,
allowing the creation of true random noise. Additionally, the user can choose what type of
noise they want to generate, for instance, white or Fourier noise.

Figure 3 shows the simplified SEcube™ architecture. The development board inte-
grates the SEcube™ chip with several peripherals that allow the user to easily communicate
with, program, and debug the chip. The main peripherals in the SEcube™ devkit are: J1000:
USB 2.0 to UART, J2000: Ethernet 10/100 socket, J4000: SEcube™ embedded FPGA and
CPU GPIOs, J4001: SEcube™ embedded CPU JTAG, J4002: microSD card, J4004: SEcube™
embedded FPGA and CPU GPIOs, J5000: USB 2.0 High Speed, LEDx: Leds, SWx00y:
Switches [20].

Figure 3. The main peripherals in the SEcube™ devkit.



Sensors 2021, 21, 4714 5 of 17

From the developer’s point of view, the APIs have been implemented targeting two
nested environments depending on where the code physically runs. Thus, there is a Device-
Side where the basic functionalities are included and executed on the embedded processor.
The Host-Side environment has all the necessary library functions that need to be executed
on the host PC. Additionally, this layer provides the interface capable of calling the services
and processes residing on the embedded processor.

From architectural point of view, the Host-Side Libraries have been implemented,
targeting four hierarchical abstraction levels. The first one (Level 0) is used for Communica-
tion Protocol and Provisioning APIs. The second level, (Level 1) holds all the basic Security
APIs. The last levels (Level 2 and Level 3) are used for intermediate and, respectively,
advanced Security APIs. At every level, each component represents a “service” for the
upper level and relies on “services” provided by the next lower level, only.

The Device-Side Libraries only have the lower two levels of abstraction, and each of
these levels communicates with its Host-Side counterpart.

2.2. Dependability and Security within Cloud System

The Cloud-Computing paradigm can be viewed as a large, distributed computing
architecture, whose applications must be accessible from anywhere and anytime. Hence, a
Cloud-Computing architecture must provide services complying to a high availability, high
fault tolerance, and a dynamic extensibility feature. All the characteristics stated above
represent the foundations of the dependability property.

The term “dependability” is more and more common in the life cycle of a system. In
the literature, there is not only a singular, unique definition of dependability. The Technical
Committee of the International Organization for Standardization asserts that dependability
is a tool used to measure performance of reliability, maintainability, and maintainability
support [21]. Another widespread definition of dependability states that it is the property
of a system to prevent it from unexpected or catastrophic damage [22] or the fact that it
represents the ability of a system to provide the necessary specific services that can be
reliably trusted [23,24]. To have a general view of dependability, we must consider not
only the attributes of but also the threats to and the means by which the dependability is
attained, as shown in Figure 4.

Figure 4. Dependability tree.

When it comes to analyzing the dependability of a system, we must consider the
following six attributes: reliability, availability, integrity, confidentiality, safety, and main-
tainability [23–25]. As one can see, security is not considered being an attribute of depend-
ability. In fact, security is defined by several factors such as preventing data disclosure to
unauthorized persons, unauthorized modification or deletion of data, destruction of their
integrity. In Figure 5, one can see the link between dependability and security.



Sensors 2021, 21, 4714 6 of 17

Figure 5. Hook-up dependability and security.

To work on dependability of Cloud-Computing systems, we must take into consid-
eration the attributes of recoverability [25], because in this manner, we can quantify the
dependability of a system from different perspectives [24].

In the literature, many others have approached the Cloud security topic, such as
A4Cloud FP7 Project [26], Cloud Broker Architecture [27], or Phantom [28]. Prokhorenko et al.
even though they address the area of data security and trustworthiness, in order to improve
the architectural resilience in Cloud, Fog, and Edge systems, all points of identification,
authorization, and authentication are made in the Cloud. They do not have a mechanism for
extending these resilience mechanisms to the Fog or Edge area of the system [26].

Abderrahim et al. provides a broker architecture with trustworthy qualities committed
to Cloud services in which the fault management is included. That broker is an intermediate
between the customer and supplier, the obligation to negotiate contract terms and the
release of tasks not returned to each of the parties. Therefore, they address the fault
tolerance area of dependability [27].

Inside the Phantom project, the authors have succeeded to ensure the adequacy and
availability of Cloud subsystems. Phantom uses a fault simulation in the regular operation
periods to “disrupt” the Cloud while monitoring and profiling the end user’s availability
of service. When Phantom identifies a problem node or an untrusted node, it stops the
communication process with it. All data processes are carried out in the Cloud and the
resources are thus not vertically handled [28].

As can be seen above, their focus and approach are different from what we propose in
this paper and from our aim. Our goal is to provide a safe and secure environment in which
the Cloud is not overwhelmed by data and to empower the Fog and Edge with computation.

3. Proposed Solution

The chosen solution to validate our concept builds on two previously developed
projects: a smart environment monitoring beacon [29] and a remotely operated mobile robot
with live camera feed [30]. The multimedia data transmitted by the robot is taken to the Fog
by AP and together with the information regarding the PWM and the status of the used
current are forwarded to the Cloud where now they are just stored without being processed.

We have chosen to use the information provided by the beacon installed in different
rooms and, depending on the room temperature, to change the speed of the robot move-
ment without the user choosing this option from the user interface. The value of the room
temperature was sent directly from the beacon to the remotely operated mobile robot using
the method presented in Section 3.2.

To demonstrate the proposed method, we tested the provision of access rights at Edge
and Fog level, without overloading the Cloud with data. After successfully performing the
experiment (the remotely operated mobile robot and the beacon successfully communicate,



Sensors 2021, 21, 4714 7 of 17

the speed of the robot was updated according with the room temperature), we wanted to
see how fast the proposed method of generating access keys is, with various equipment
that can be used in the Fog area. As can be seen in the following experiments, in our tests,
we manage to generate, using the true random generation tool provided by SeCube, prime
numbers of different sizes (from 6 to 10 digits) and to see how long the process of key
generation, encryption, and decryption of messages takes. As we expect and it can be
seen in Tables 1–4, the times increase depending on the size of the randomly chosen prime
number, but, still even at a 10-digit number size, the time required to generate the keys
is sufficient to provide protection in data communication. These keys change at a pre-set
interval, making it impossible or difficult to break it using the brute force-method.

Table 1. Systems’ configuration used for testing the method.

Generic Name

Specifications
RAM OS

CPU

Architecture Model Name Max MHz

Calc_ME 4.6 GB Kali GNU/Linux Rolling 2020.1 x86_64 i7-8550U 1991

AWS 1 GB Amazon Linux 2 x86_64 Xeon E5-2686 v4 2300

Blade HS22 192 GB Debian Linux 10 x64 x86_64 Xeon E5506 2128

Raspberry PI 4 8 GB Raspberry Pi OS 64bit beta
2021-05-07 aarch64 Cortex-A72 1500

Orange PI Zero 512 MB Armbian 21.02.3 Buster armv7l Cortex-A7 1008

MSP432 32 kB N/A armv7E- M ARM Cortex-M4F 48

Table 2. Encryption/decryption elapsed times for using as a prime number p = 400,093.

Number of Keys Calc_ME AWS Blade HS22 Raspberry PI 4 Orange PI Zero MSP432

Encryption
time (seconds)

3 0.003792 0.002950 0.001757 0.002940 0.015715 3.850827

5 0.002207 0.003519 0.010239 0.003187 0.164177 6.107344

7 0.009842 0.005058 0.008657 0.007358 0.141691 7.107184

9 0.006906 0.011490 0.011201 0.006221 0.250919 7.108379

11 0.007129 0.013822 0.007431 0.008118 0.250277 9.108432

29 0.025270 0.027014 0.036156 0.025980 0.633163 24.119451

39 0.034540 0.035821 0.046292 0.038101 0.838590 40.125051

49 0.060920 0.056324 0.060243 0.034095 1.018220 48.132469

59 0.075528 0.053660 0.062004 0.036033 1.266727 55.137456

101 0.141051 0.114034 0.132272 0.091636 2.465663 97.160261

201 0.254484 0.208343 0.219440 0.170360 4.085383 192.057957

999 1.255248 1.061463 1.067896 0.829035 23.410290 891.565563

Decryption
time (seconds)

3 0.008109 0.007238 0.001757 0.006446 0.051843 0.848784

5 0.013275 0.009237 0.017464 0.009023 0.227183 4.118981

7 0.020129 0.015434 0.012378 0.013925 0.310155 4.949387

9 0.015878 0.022096 0.024552 0.015025 0.421439 9.024027

11 0.019475 0.031550 0.021267 0.021742 0.553362 14.033328

29 0.060970 0.064622 0.068585 0.052398 1.171324 25.037525

39 0.080712 0.081997 0.085996 0.064432 2.056169 43.047829

49 0.113780 0.103776 0.117924 0.080060 2.140582 51.052091

59 0.150036 0.118909 0.115510 0.076934 2.352839 54.052200

101 0.263033 0.231263 0.236785 0.176113 4.985249 88.074300

201 0.529267 0.400894 0.432287 0.342664 8.543328 200.108416

999 2.541559 2.105250 2.169411 1.648172 47.411385 950.524400



Sensors 2021, 21, 4714 8 of 17

Table 3. Encryption/decryption times elapsed for generating three keys with different values of the chosen prime number p.

Prime Number Calc_ME AWS Blade HS22 Raspberry PI 4 Orange PI Zero MSP432

Encryption
time

(seconds)

100,003 0.000379 0.000696 0.001292 0.000522 0.036894 1.085995

200,003 0.000636 0.000204 0.001898 0.001654 0.06026 1.196319

300,007 0.001187 0.002765 0.000334 0.000906 0.103421 2.717733

400,093 0.005112 0.00295 0.001757 0.00294 0.026618 4.135892

2,580,647 0.027725 0.023476 0.018371 0.01399 0.794401 22.390173

10,000,019 0.110669 0.086406 0.039759 0.026738 1.519801 17.363993

168,101,891 1.349116 1.584795 1.266459 1.317992 50.734525 852.846315

1,000,000,007 4.161788 2.862598 5.33795 7.058216 208.274955 12192.42917

Decryption
time

(seconds)

100,003 0.002148 0.001267 0.002387 0.001033 0.076179 0.823765

200,003 0.002548 0.002149 0.003434 0.003622 0.138875 1.808158

300,007 0.0065 0.006355 0.004163 0.003488 0.227826 1.517216

400,093 0.010519 0.007238 0.001757 0.006446 0.233285 0.850389

2,580,647 0.078478 0.038323 0.057052 0.039814 1.313003 29.039554

10,000,019 0.249443 0.275652 0.203809 0.096067 3.167932 103.077165

168,101,891 4.94765 2.669504 3.99942 2.76056 117.272115 425.265763

1,000,000,007 9.293838 11.213604 11.526725 11.157354 689.501209 20920.1880

Table 4. Encryption/decryption times elapsed for generating 101 keys with different values of the chosen prime number p.

Prime Number Calc_ME AWS Blade HS22 Raspberry PI 4 Orange PI Zero MSP432

Encryption
time

(seconds)

100,003 0.030563 0.024321 0.031882 0.020362 0.612009 23.112728

200,003 0.057708 0.050566 0.062348 0.040512 1.193771 42.127589

300,007 0.095519 0.0907 0.075618 0.069198 1.910551 59.135877

400,093 0.12032 0.114034 0.132272 0.091636 2.437267 97.149856

2,580,647 0.831227 0.649648 0.725774 0.591443 14.902459 572.404987

10,000,019 3.144726 2.713392 2.766433 1.96131 60.151246 3019.750651

168,101,891 43.450642 45.825378 44.493693 35.974791 1272.355727 N/A

1,000,000,007 261.076881 239.84121 327.192183 220.291081 N/A N/A

Decryption
time

(seconds)

100,003 0.030563 0.048631 0.059284 0.040707 1.183834 18.035483

200,003 0.137199 0.109286 0.116095 0.079779 2.290632 49.049392

300,007 0.173395 0.166254 0.159118 0.130729 3.735541 72.065493

400,093 0.246389 0.231263 0.236785 0.176113 5.036589 88.068507

2,580,647 1.721139 1.281048 1.553726 1.095922 35.489642 663.368155

10,000,019 5.820214 5.394063 5.345031 4.151329 135.340537 2778.43138

168,101,891 86.110151 88.65764 98.976979 68.181818 2752.042902 N/A

1,000,000,007 475.85463 511.402519 653.436455 423.499305 N/A N/A

3.1. Overall Proposed Architecture

As one can observe in Figure 6, we will only address the Fog-Edge area for which we
propose an architecture based on three levels. In the lowest level, the hardware level, there
are the devices that can produce data (sensors) or can receive commands (stepper motors,
motors etc.). The main function of this level is data collection and direct interaction with the
environment. The second layer, the microservices layer is the superior layer of the hardware.
Here, an entity is a microservice able to communicate with the hardware, the Cloud or
the supervisor. The supervisor level has two entities. One is responsible for managing the
microservices on this layer and the ones beneath it and the second one is in charge with



Sensors 2021, 21, 4714 9 of 17

the connection with the SeCube device and with the process of creating/managing the
group key.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

1,000,0
00,007 

261.076881 239.84121 327.192183 220.291081 N/A N/A 

D
ec

ry
pt

io
n 

tim
e 

 
(s

ec
on

ds
) 

100,003 0.030563 0.048631 0.059284 0.040707 1.183834 18.035483 
200,003 0.137199 0.109286 0.116095 0.079779 2.290632 49.049392 
300,007 0.173395 0.166254 0.159118 0.130729 3.735541 72.065493 
400,093 0.246389 0.231263 0.236785 0.176113 5.036589 88.068507 
2,580,6

47 
1.721139 1.281048 1.553726 1.095922 35.489642 663.368155 

10,000,
019 

5.820214 5.394063 5.345031 4.151329 135.340537 2778.43138 

168,101
,891 

86.110151 88.65764 98.976979 68.181818 2752.042902 N/A 

1,000,0
00,007 

475.85463 511.402519 653.436455 423.499305 N/A N/A 

3.1. Overall Proposed Architecture 
As one can observe in Figure 6, we will only address the Fog-Edge area for which we 

propose an architecture based on three levels. In the lowest level, the hardware level, there 
are the devices that can produce data (sensors) or can receive commands (stepper motors, 
motors etc.). The main function of this level is data collection and direct interaction with 
the environment. The second layer, the microservices layer is the superior layer of the 
hardware. Here, an entity is a microservice able to communicate with the hardware, the 
Cloud or the supervisor. The supervisor level has two entities. One is responsible for man-
aging the microservices on this layer and the ones beneath it and the second one is in 
charge with the connection with the SeCube device and with the process of creating/man-
aging the group key. 

The Hardware level devices are named Hardware Components (H) and can be any 
type of hardware equipment from simple sensors to complex devices, like leap-motion 
cameras used for stereo vision input. They can have different shapes, dimensions, specific 
energy consumption requirements, or different communication protocols. These specifi-
cations should be integrated in the embedded systems as efficiently as possible, but with-
out neglecting the high scalability needs and with minimum invasive modifications to the 
drivers and hardware communication software. Usually, most devices offer and API for 
their libraries which allow the high-level software to easily interact with the hardware in 
a safe and secure environment. 

 

(a) 

Sensors 2021, 21, x FOR PEER REVIEW 10 of 18 
 

 

 

(b) 

Figure 6. Multilayer FOG architecture: (a) binding the camera remote operated robot structure to 
the proposed Fog-Edge architecture; (b) Fog-Edge multilayer abstractization. 

The entities or the microservices from the microservices level oversee interaction be-
tween the hardware and the highest layers/levels. We have divided these microservices 
into two categories: the ones in the first category interact directly with the hardware com-
ponent and are named Hardware Monitor (M). These configure and manage the hardware 
components, collect, and preprocess raw data from the devices, they use low level ma-
chine code. Essentially, the monitor is powerfully bound to the I/O because its main at-
tribute is to communicate interoperable with the hardware. 

The second type or microservices within the microservices layer offers a high pro-
cessing power that can do almost everything if the physical resources are available. These 
are named Workers (W) because they are strictly related to the CPU since they are just 
processing data. They do not have any connection with the hardware components. The 
workers process and standardize data from the hardware components and then are re-
sponsible for the communication with the Cloud process in order to permanently store 
the information. Some of the workers could have administrative jobs, like logging or mon-
itoring of resources or even making decisions based on local information/scenario. 

The special microservice that oversees the entire system is the Supervisor. It repre-
sents the highest level with which the robot can communicate. The Supervisor’s main fea-
tures are creating, managing, killing, and restarting the microservices. 

This multi-level architecture imposes for the components in a level to be able to com-
municate only with the adjacent levels. The hardware level can only interact with the mi-
croservices level, especially with the Hardware Monitors, that are responsible for manag-
ing the hardware, collecting data, and translating commands into machine code. 

The microservices cannot directly communicate with each other. They must use the 
Supervisor in order to do so as shown in Figure 7. 

All the above-mentioned functionalities, with respect to the three-layer architecture, 
were deployed in a real-world experimental setup. Area 1 of Figure 7 represents the re-
motely operated mobile robot. Its main components are: 
• Supervisor: Raspberry PI single-board-computer; 
• Microservices Layer: Arduino Nano ATMEGA328p acting as Hardware Monitor; 
• Hardware Layer: camera, rotary encoder, motors and L298N Dual H bridge. 

Area 2 of Figure 7 represents the smart environment monitoring beacon. Its main 
components are: 
• Supervisor: Raspberry PI single-board-computer; 
• Microservices Layer: Raspberry PI acting also as Hardware Monitor; 

Figure 6. Multilayer FOG architecture: (a) binding the camera remote operated robot structure to the
proposed Fog-Edge architecture; (b) Fog-Edge multilayer abstractization.

The Hardware level devices are named Hardware Components (H) and can be any
type of hardware equipment from simple sensors to complex devices, like leap-motion
cameras used for stereo vision input. They can have different shapes, dimensions, specific
energy consumption requirements, or different communication protocols. These specifica-
tions should be integrated in the embedded systems as efficiently as possible, but without
neglecting the high scalability needs and with minimum invasive modifications to the
drivers and hardware communication software. Usually, most devices offer and API for
their libraries which allow the high-level software to easily interact with the hardware in a
safe and secure environment.

The entities or the microservices from the microservices level oversee interaction
between the hardware and the highest layers/levels. We have divided these microservices
into two categories: the ones in the first category interact directly with the hardware
component and are named Hardware Monitor (M). These configure and manage the
hardware components, collect, and preprocess raw data from the devices, they use low



Sensors 2021, 21, 4714 10 of 17

level machine code. Essentially, the monitor is powerfully bound to the I/O because its
main attribute is to communicate interoperable with the hardware.

The second type or microservices within the microservices layer offers a high pro-
cessing power that can do almost everything if the physical resources are available. These
are named Workers (W) because they are strictly related to the CPU since they are just
processing data. They do not have any connection with the hardware components. The
workers process and standardize data from the hardware components and then are re-
sponsible for the communication with the Cloud process in order to permanently store
the information. Some of the workers could have administrative jobs, like logging or
monitoring of resources or even making decisions based on local information/scenario.

The special microservice that oversees the entire system is the Supervisor. It represents
the highest level with which the robot can communicate. The Supervisor’s main features
are creating, managing, killing, and restarting the microservices.

This multi-level architecture imposes for the components in a level to be able to
communicate only with the adjacent levels. The hardware level can only interact with
the microservices level, especially with the Hardware Monitors, that are responsible for
managing the hardware, collecting data, and translating commands into machine code.

The microservices cannot directly communicate with each other. They must use the
Supervisor in order to do so as shown in Figure 7.

All the above-mentioned functionalities, with respect to the three-layer architecture,
were deployed in a real-world experimental setup. Area 1 of Figure 7 represents the
remotely operated mobile robot. Its main components are:

• Supervisor: Raspberry PI single-board-computer;
• Microservices Layer: Arduino Nano ATMEGA328p acting as Hardware Monitor;
• Hardware Layer: camera, rotary encoder, motors and L298N Dual H bridge.

Area 2 of Figure 7 represents the smart environment monitoring beacon. Its main
components are:

• Supervisor: Raspberry PI single-board-computer;
• Microservices Layer: Raspberry PI acting also as Hardware Monitor;
• Hardware Layer: MCP3008 10-bit Analog-to-Digital Converter (ADC), LM393 vibration

pulse sensor, MAX 9814 noise sensor, MQ135 gas sensor, SHT11 temperature and
humidity sensor, TSL2591 light sensor, SI1145 UV sensor, and BMP1080 barometric
sensor.

Figure 7. Normal communication process between supervisors.

The supervisors for each sensor are dictating the operations and steps into measuring
or sending data to the FOG. The microservices layer is the one that contains both the mea-
surement trigger operation component as well as the worker component, which executes
small operations and data processing. We are introducing a new approach that when a data
processing operation is requiring data from other sensors, a supervisor may request data
from another one. The supervisor on the right will trigger the measurement operation, the
microservices layer will get the data, the workers will process it, and the data are sent back
to the left supervisor, which made the data request. The new measurement on the right
part can be avoided if the right-side supervisor contains up-to-date information about the



Sensors 2021, 21, 4714 11 of 17

sensors it supervises. The left supervisor will provide the necessary data to the workers,
and the complete set of results will pe provided by the left supervisor to the Fog. Thus, the
number of requests to the Cloud area is reduced in this case by 50%.

3.2. Access Rights

Usually, the regular form of many cryptosystems operates between two entities. These
entities are the sender and the recipient for the process of encryption. The approach
typically uses private and public keys to offer a safe conduit for information privacy and
confidentiality. The complexity of most cryptosystems is rooted in the problems of Discrete
Logarithm Problem [31,32] or the Integer Factorization Problem [33].

A model that allows a device to pass from the connection with the Fog Access Point
(AP2) originally assigned to another Fog Access Point (AP1) connection is presented as
the following: Figure 8 illustrates layouts, robots access rights, and the event of a robot
migrating to a new access point.

Figure 8. Communication scenario: (a) initial position of each robot; (b) displacement of a robot from
one area of Fog coverage to another area (S1).

To give access to the S1 robot, we modified the classical El Gamal algorithm with a
split private key [34]. The description of this algorithm is further presented. Having

(
Zp, ·

)
as a cyclic group, where the problem of discreet logarithm is difficult to solve [35]. The
notation used below is:

hx def
= hx(mod p), (1)

Key generation: A trust center chosen g ∈ {1, 2, . . . , p− 1} and {x1, x2, . . . , x2n+1} ∈
N∗ distinct, two by two. Following hi = gxi , i = 1, 2n + 1 is calculated.

Thus, the public keys are {p, g, h1, h2, . . . , h2n+1} and the divided private key is
{x1, x2, . . . , x2n+1}, submultiples with one element are called private keys.

Message encryption: To encrypt message m, it is necessary to determine the number
of entities in the group that will decrypt the message together. The number of entities in
the group can be an odd number less than or equal to 2n + 1 (if the number of entities is
even, then an entity receives two private keys). If, by way of example, the chosen number
is 3, then hi, i = 1, 3 is used. The value y ∈ N∗ is chosen randomly and furthermore we
compute c1 = gy, c21 = mhy

1, c22 = mhy
2, c23 = mhy

3, and c2=(c21·c23 )/c22 resulting in the
encrypted message (c1, c2).

Decryption of the message: If chosen, each entity receives x1, x2, x3, which are their
private keys in the key generation phase. Using the encrypted message (c1, c2) together, we
calculate as follows:

(c2·c1
x2)/(c1

x1 ·c1
x3) = m, (2)

and the message is decrypted.
Hereinafter, we describe the protocol to be followed in the context of this algorithm.
The El Gamal encryption algorithm with a split private key involves three steps: generat-

ing the keys by a trusted center, encrypting the message, and decrypting the encrypted
message.



Sensors 2021, 21, 4714 12 of 17

The Trust Center can generate a set of keys (public and private) or multiple sets. It can
assign all group keys to the private keys or a subset of the private key set. Of course, public
keys do not have to be assigned, they are public. Depending on the situation, private keys
can be used individually or in groups by entities. If needed, a trust center can change the
set of keys.

In the concrete situation presented above, AP1 is a trusted center, so it generates
the keys of the algorithm. It is also the entity that encrypts the information m. The
encrypted form of m is (c1, c2), which is issued periodically. When S1 captures the encrypted
information (c1, c2), it sends this message to the R1, R2, R3 components. They stored the
message m in their memory. The components R1, R2, R3, using their private keys x1, x2, and
x3, respectively, receive and decrypt the message (c1, c2) and then compare the result with
the value of m, which they have stored in memory. If the two values coincide, then S1 gets
the group access right, as shown in Figure 9. This right is materialized through the process
in which the AP1 is transmitting key x4 or keys x4, x5, as appropriate, which it uses as a
private key for other information provided by group members. The AP1 can communicate
with all members of the group using a private key that he keeps only by himself.

Figure 9. Group membership validation process.

Of course, the number of components initially assigned may be different from three,
depending on the situation.

It is important that AP1 periodically emits an encrypted message (c1, c2), but choosing
another parameter y from the algorithm for encryption, so the message (c1, c2) will be
different every time. The component S1 periodically validating group membership, through
the protocol described above, retains access rights. If S1 loses connection with AP1, it will
not be able to validate group membership, so it will lose access rights.

4. Results

The proposed method was implemented in C and the SEcube™ board was linked to
different system configurations, as shown in Table 1. These systems were tested at Fog
level in order to check the accuracy and the performance.

4.1. Algorithm Accuracy

In the first proposed scenarios, we chose as a prime number p = 400,093 and we
increased the number of entities in the group starting with three entities until 999 entities,
to check the algorithm’s correctness (the decrypted message must be the same with the
encrypted message). During encryption and decryption, the test code also documented the
time of operations as shown in Table 2.

All the experiments shown in Table 2 were successful and the algorithm accuracy did
not change regardless the number of entities simulated, and every time the message was
successfully encrypted and decrypted. One can see in Figure 10 the fact that the processing



Sensors 2021, 21, 4714 13 of 17

time of the algorithm increases with the number of entities in group. The increase is because
of the extra factors that both in the encryption and decryption process must be considered.

Figure 10. Encryption/decryption elapsed times for p = 400,093.

4.2. Algorithm Performance

In order to evaluate the algorithm performance with regard to the value of the prime
p, an experiment was conducted which injected diverse and growing prime values into a
process with a fixed number of senders (3 and respectively 101). Tables 3 and 4 illustrate
the test result, where the prime number value utilized is noted as well as the encryption
and decryption time.

In the first set of the experiment, where the number of entities within the group is
equal with 3, and when the prime value p is increased, the results from Table 3 indicated a
normal increase in both the encryption and decryption processes. There are other cases
in which, despite the considerable disparity in primes, there are no substantial variations
in processing times of the algorithm. These are rare occurrences, which may occur when
computer processing space is quite minimal in the parameters other than the Prime Modulo.
More specifically, the value of the random keys that senders are used as exponents for the
generator to generate public keys may be ascribed. Random keys exponentially enhance
the processing duration, or reduce the processing period considerably if relatively small as
one can see in Figure 11.

Figure 11. Encryption/decryption elapsed times for three entities in the group.



Sensors 2021, 21, 4714 14 of 17

The second set of experiments was designed to test the performance of the algorithm,
where the number of entities within the group is equal to 101, and when the prime value p
is increased, Table 4 and Figure 12 indicated a dramatic increase in both the encrypting
and decryption process times. Moreover, as the prime number increased, clearly some of
the devices used in the experiments (Orange PI Zero and MSP432) have exceeded their
processing capabilities and there were no longer able to encrypt or decrypt the message.

Figure 12. Encryption/decryption elapsed times for 101 entities in the group.

5. Discussion

One of the most important issues put forward by this research is the scenario through
which resources are vertically partitioned because there are not yet enough algorithms of
data analysis. This leads to the problem of preserving the features and accuracy of the
centralized parts while using decentralization algorithms to efficiently communicate or
process data and resources.

The algorithms used by good password managers are usually standard ones, meaning
they are the state-of-the-art, and therefore sturdy. The weak points of the system may be in
the master password and in the application being corrupted. A hardware-based manager
boosts the security of the system by improving these two points.

The above protocol is not a genuine digital signature because it does not have all the
properties of the electronic signature but can be used to connect to/disconnect to/from
an Access Point. It also gives the ability to communicate in an encrypted manner with the
group members at the same Access Point. Encrypted communication can be done using the
El Gamal asymmetric algorithm, El Gamal with the El Gamal split or combining a private
key with a symmetric algorithm. The advantage of the protocol is that a simple calculation
provides access to the group and at the same time receives a key to communicate in an
encrypted manner.

A hardware-based manager uses a two-factor authentication method. In order to
encrypt/decrypt the data, two elements are required: a master password and a portable and
unique device which is connected to the host machine (the user’s computer, for instance).
Therefore, even if an attacker has access to the encrypted data, without the device they
cannot even start trying to crack the master password.

Regarding the second point, in plenty of cases the portable device is the one doing all
the actual encryption/decryption of data. The host machine is only used to provide the
graphical user interface so the user can enter their master password, and to display their
protected passwords. As the portable device is custom designed to be as secure as possible,
it is much harder to corrupt than an OS or a software application.

Fundamentally, it acts as the password manager’s hardware device, and oversees
authenticating the user and encrypting/decrypting the data.



Sensors 2021, 21, 4714 15 of 17

In our opinion, the main advantage derives from the fact that the proposed method’s
security is predicated on the performance and efficacy of the discrete logarithm prob-
lem [36]. The security issue depends on the size of the first module and the private
keys used by the sender and receiver. In the case of the prime, the bigger it is, the more
complicated the discrete logarithm problem becomes and therefore the more secure the
implementation of our method. Private keys generated for the entities within the group
also improve and increase the security of our method. When these keys are kept secret and
change periodically, the encrypted text will be very difficult to break, and when there are
more private keys, the level of security also increases proportionally.

Another advantage worth mentioning is the capability and versatility of the El Gamal
algorithm to employ Elliptic Curve encryption, which ensures smaller/shorter keys with
the same level of security.

During our experiments, we found that if the prime number is too big its binary
representation might be problematic. This can be considered as a disadvantage and can
be observed in Table 4 where we present the encryption decryption times elapsed for
generating 101 keys with different values of the chosen prime number p. As one can see,
when we used big numbers (e.g., p = 1,000,000,007), the computing capability of Orange
PI Zero and MSP432 was inadequate. However, in our experiments we considered 101
Supervisors, but in a real-world deployment there are considerably fewer.

One notable result is that the single-board computer Raspberry Pi 4 yielded similar or
better times than some servers, the IBM blade HS22, for example. The possible explanation
we found is that although the latter is a high availability, robust system, it was launched in
2009, and its processors—Intel Xeon E5506—are from the same year. The PI’s processor,
Broadcom BCM2711 (Cortex A72), is slower, but is more efficient. Additionally, we used
only one thread for all the calculations, thus the dual-Xeon system’s sixteen thread capabil-
ity did not offer it any advantage. Additionally, the program contains very few conditional
branches, therefore the Xeon’s advanced branch prediction system—arguably better than
the Cortex A72’s—did not help it gain an advantage.

Obviously, there are optimization options for the GCC compiler, for both platforms,
and there also are program code optimizations for best performance, however we used the
default settings everywhere, in order to keep the comparisons fair. As an aside, especially
converting the program into a multi-threaded one (pthread on GCC), or even using a shell
script to run multiple parameterized instances in parallel, for different key calculations, it
would run significantly faster on most of the tested platforms. In our opinion, the biggest
advantage would be the response time on the inexpensive and slowest four-core platform
of the tests, the Orange Pi Zero.

Author Contributions: Conceptualization, O.P.S. and L.M.; methodology, O.P.S. and S.F.; software,
O.P.S., S.E. and C.C.; validation, S.E., C.C. and S.F.; formal analysis, O.P.S., S.E. and C.C.; investigation,
O.P.S., S.E., C.C., S.F. and D.G.; resources, O.P.S., S.E., I.S. and C.C.; writing—original draft prepara-
tion, O.P.S., writing—review and editing, S.E., C.C., L.M., D.G. and I.S.; visualization, O.P.S., D.G.
and C.C.; supervision, O.P.S. and L.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, K.; Wang, J.; Wang, X.; Li, H.; Yang, Y. A secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.

Sensors 2017, 17, 1695. [CrossRef] [PubMed]
2. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]

http://doi.org/10.3390/s17071695
http://www.ncbi.nlm.nih.gov/pubmed/28737733
http://doi.org/10.1016/j.comnet.2010.05.010


Sensors 2021, 21, 4714 16 of 17

3. Grieco, L.A.; Rizzo, A.; Colucci, S.; Sicari, S.; Piro, G.; Paola, D.; Boggia, G. IoT-aided robotics applications: Technological
implications target domains and open issues. Comput. Commun. 2014, 54, 32–47. [CrossRef]

4. Karkoucha, A.; Mousannif, H.; Moatassime, H.; Noel, T. Data quality in internet of things: A state-of-the-art survey. J. Netw.
Comput. Appl. 2016, 73, 57–81. [CrossRef]

5. Weber, R.H.; Weber, R. Internet of Things: Legal Perspectives, 1st ed; Springer: Berlin/Heidelberg, Germany, 2010; pp. 41–68.
6. Atzori, L.; Iera, A.; Morabito, G. Understanding the Internet of Things: Definition, potentials, and societal role of a fast-evolving

paradigm. Ad Hoc Netw. 2017, 56, 122–140. [CrossRef]
7. Corches, C.; Daraban, M.; Stan, O.; Enyedi, S.; Miclea, L. Interconnection of Systems with Cloud-Fog-Edge Architectures: Concept

and Challenges. Control. Eng. Appl. Inform. 2021, 23, 60–71.
8. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020,

20, 6441. [CrossRef]
9. Parikh, S.; Dave, D.; Patel, R.; Doshi, N. Security and Privacy Issues in Cloud, Fog and edge Computing. Procedia Comput. Sci.

2019, 160, 734–739. [CrossRef]
10. Kayes, A.S.M.; Kalaria, R.; Sarker, I.H.; Islam, M.S.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.; Kumara, I. A Survey of

Context-Aware Access Control Mechanisms for Cloud and Fog Networks: Taxonomy and Open Research Issues. Sensors 2020, 20,
2464. [CrossRef] [PubMed]

11. Khan, K.M. Security dynamics of cloud computing. Cut. IT J. 2009, 22, 38–43.
12. Jazdi, N. Cyber Physical Systems in the Context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014.
13. El-laithy, R.A.; Huang, J.; Yeh, M. Study on the use of Microsoft Kinect for robotics applications. In Proceedings of the 2012

IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012.
14. Seiger, R.; Seidl, C.; Aßmann, U.; Schlegel, T. A Capability-based Framework for Programming small Domestic Service Robots.

In Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software Engineering and View-based
Software-Engineering, L’Aquila, Italy, 21 July 2015; pp. 49–54.

15. Mijuskovic, A.; Chiumento, A.; Bemthuis, R.; Aldea, A.; Havinga, P. Resource Management Techniques for Cloud/Fog and Edge
Computing: An Evaluation Framework and Classification. Sensors 2021, 21, 1832. [CrossRef]

16. Dehnavi, S.; Faragardi, H.R.; Kargahi, M.; Fahringer, T. A reliability-aware resource provisioning scheme for real-time industrial
applications in a Fog-integrated smart factory. Microprocess. Microsyst. 2019, 70, 1–14. [CrossRef]

17. Blue5 Group. Available online: http://www.blu5group.com (accessed on 12 December 2020).
18. SEcube SDK. Available online: https://www.secube.eu/resources/ (accessed on 10 January 2020).
19. Farulla, G.A.; Prinetto, P.; Carelli, A.; Somma, G.; Varriale, A. Secube Development Kit:Get-Tingstarted. Available online:

https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf (accessed on 20 December
2020).

20. Farulla, G.A.; Prinetto, P.; Ferri, N.; Carelli, A.; Scalia, G.; Somma, G.; Varriale, A. Secube Development Kit: L2 User Manual.
Available online: https://www.secube.eu/download/SEcube-Development-Kit-L2-manual-PUBLIC-v0.3.pdf (accessed on
14 January 2021).

21. Secube Data Sheet Introduction. Available online: https://www.secube.eu/download/SEcube-Datasheet-R7.pdf (accessed on
14 January 2021).

22. Technical Committee #176 of the International Organization for Standardization, Quality management and quality assurance,
ISO/TC176/SC 1/ Concepts and Terminology. Available online: https://www.iso.org/standard/45481.html?browse=tc (accessed
on 15 January 2020).

23. Al-Kuwaiti, M.; Kyriakopoulos, N.; Hussein, S. A comparative analysis of network dependability, fault-tolerance, reliability,
security, and survivability. IEEE Commun. Surv. Tutor. 2009, 11, 106–124. [CrossRef]

24. Algirdas, A.; Jean-Claude, L.; Brian, R.; Carl, L. Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput. 2004, 1, 11–33.

25. Mesbahi, M.R.; Rahmani, A.M.; Hosseinzadeh, M. Reliability and high availability in cloud computing environments: A reference
roadmap. Humac-Cent. Comput. Inf. Sci. 2018, 8, 20. [CrossRef]

26. Prokhorenko, V.; Babar, M.A. Architectural Resilience in Cloud, Fog and Edge Systems: A Survey. IEEE Access 2020, 8, 28078–28095.
[CrossRef]

27. Abderrahim, W.; Choukair, Z. Trust Assurance in Cloud Services with the Cloud Broker Architecture for Dependability. In Proceed-
ings of the 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, New York, NY, USA, 24–26 August 2015.

28. Hadley, B.; Hume, A.; Lindberg, R.; Obraczka, K. Phantom of the cloud: Towards improved cloud availability and dependability.
In Proceedings of the 2015 IEEE 4th International Conference on Cloud Networking, Niagara Falls, ON, Canada, 5–7 October
2015; pp. 14–19.

29. Bernsmed, K. Accountable Health Care Service Provisioning in the Cloud. In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC), London, UK, 8–11 December 2014; pp. 902–907.

30. Alexandru, P.; Andrei, M.; Mădălina, S.C.; Stan, O. Smart environmental monitoring beacon. In Proceedings of the 2018 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–26 May 2018.

31. Ovidiu, S.; Miclea, L. Remotely Operated Robot with Live Camera Feed. Int. J. Modeling Optim. 2019, 9, 46–50. [CrossRef]

http://doi.org/10.1016/j.comcom.2014.07.013
http://doi.org/10.1016/j.jnca.2016.08.002
http://doi.org/10.1016/j.adhoc.2016.12.004
http://doi.org/10.3390/s20226441
http://doi.org/10.1016/j.procs.2019.11.018
http://doi.org/10.3390/s20092464
http://www.ncbi.nlm.nih.gov/pubmed/32349242
http://doi.org/10.3390/s21051832
http://doi.org/10.1016/j.micpro.2019.05.011
http://www.blu5group.com
https://www.secube.eu/resources/
https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
https://www.secube.eu/download/SEcube-Development-Kit-L2-manual-PUBLIC-v0.3.pdf
https://www.secube.eu/download/SEcube-Datasheet-R7.pdf
https://www.iso.org/standard/45481.html?browse=tc
http://doi.org/10.1109/SURV.2009.090208
http://doi.org/10.1186/s13673-018-0143-8
http://doi.org/10.1109/ACCESS.2020.2971007
http://doi.org/10.7763/IJMO.2019.V9.682


Sensors 2021, 21, 4714 17 of 17

32. Cheon, J.; Kim, T. A new approach to the discrete logarithm problem with auxiliary inputs. LMS J. Comput. Math. 2016, 19, 1–15.
[CrossRef]

33. Shu, H.; Chen, F.; Xie, D.; Sun, L.; Qi, P.; Huang, Y. An Aggregate Signature Scheme Based on a Trapdoor Hash Function for the
Internet of Things. Sensors 2019, 19, 4239. [CrossRef] [PubMed]

34. Wu, L.; Cai, H.J.; Gong, Z. The Integer Factorization Algorithm with Pisano Period. IEEE Access 2019, 7, 167250–167259. [CrossRef]
35. ElGamal, T. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Trans. Inf. Theory 1985, 31,

469–472. [CrossRef]
36. Chowdhary, C.L.; Patel, P.V.; Kathrotia, K.J.; Attique, M.; Perumal, K.; Ijaz, M.F. Analytical Study of Hybrid Techniques for Image

Encryption and Decryption. Sensors 2020, 20, 5162. [CrossRef] [PubMed]

http://doi.org/10.1112/S1461157015000303
http://doi.org/10.3390/s19194239
http://www.ncbi.nlm.nih.gov/pubmed/31569570
http://doi.org/10.1109/ACCESS.2019.2953755
http://doi.org/10.1109/TIT.1985.1057074
http://doi.org/10.3390/s20185162
http://www.ncbi.nlm.nih.gov/pubmed/32927714

	Introduction 
	Materials and Methods 
	SEcube™ Open Security Platform 
	Dependability and Security within Cloud System 

	Proposed Solution 
	Overall Proposed Architecture 
	Access Rights 

	Results 
	Algorithm Accuracy 
	Algorithm Performance 

	Discussion 
	References

