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Abstract 

The androgen receptor (AR) plays an essential role in the development of pros-
tate cancer, and androgen-deprivation therapy is used as a first-line treatment for 
prostate cancer. However, under androgen-deprivation therapy, castration-resistant 
prostate cancer inevitably arises, suggesting that the interacting transcriptional 
coregulators of AR are promising targets for developing novel therapeutics. In 
this study, we used novel proteomic techniques to evaluate the AR interactome, 
including biochemically labile binding proteins, which might go undetected by 
conventional purification methods. Using rapid immunoprecipitation mass spec-
trometry of endogenous proteins, we identified enhanced at puberty 1 (EAP1) as a 
novel AR coregulator, whereas its interaction with AR could not be detected under 
standard biochemical conditions. EAP1 enhanced the transcriptional activity of AR 
via the E3 ubiquitin ligase activity, and its ubiquitination substrate proteins included 
AR and HDAC1. Furthermore, in prostate cancer specimens, EAP1 expression was 
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significantly correlated with AR expression as well as a poor prognosis of prostate 
cancer. Together, these results suggest that EAP1 is a novel AR coregulator that pro-
motes AR activity and potentially plays a role in prostate cancer progression.

Key Words: AR, androgen, nuclear receptor, coactivator, EAP1, IRF2BPL

The androgen receptor (AR) is a prime transcription factor 
involved in the development and progression of pros-
tate cancer [1-4]. Activation of AR via its cognate ligand, 
androgen, leads to its nuclear translocation and, as a 
chromatin-binding nuclear receptor (NR), binding to DNA 
elements known as AR response elements [5, 6]. On chro-
matin binding, AR recruits a series of proteins known as 
NR coregulators that reorganize chromatin structure to 
enable AR transcriptional regulation of its target genes [7-
9]. Furthermore, biochemical approaches have shown that 
NR coregulators often act as multisubunit complexes pos-
sessing distinct enzymatic activities such as histone modi-
fication, chromatin remodeling, and histone binding [10]. 
Sequential interactions of various NR coregulator com-
plexes with NRs are assumed to promote dynamic changes 
in chromatin structure that facilitate appropriate transcrip-
tional control [11].

The current therapies for advanced prostate cancer 
were designed to target AR activation processes such as 
androgen production, androgen binding to AR, and AR 
nuclear localization [1, 12]. However, despite these ther-
apies, progression to castration-resistant prostate cancer, 
which exhibits resistance to AR-targeted therapies and loss 
of androgen dependency, is inevitable [13]. From this view-
point, AR coregulators are attracting attention as novel and 
promising therapeutic targets for prostate cancer [14, 15].

To date, hundreds of AR coregulators have been iden-
tified via various methodologies such as yeast-two hy-
brid assays, glutathione S-transferase pull-down assays, 
and Tag-based purification [7, 16-18]. Most of these 
methods are based on detection of biochemically stable 
protein-protein interactions, and therefore coregulators 
that associate with the target protein via labile, transient, 
or indirect interactions are likely not detected by these 
techniques.

Materials and Methods

In the present study, we used a recently developed prote-
omic method, rapid immunoprecipitation mass spectrom-
etry of endogenous proteins (RIME) [19, 20], to evaluate 
the AR interactome. We identified enhanced at puberty 
1 (EAP1/IRF2BPL) as a novel AR coregulator that pro-
motes AR activity and might play a role in prostate cancer 
progression.

Cell Culture and Transfection

LNCaP cells were obtained from the American Type Culture 
Collection and maintained in Roswell Park Memorial Institute 
(RPMI) 1640 medium (Fujifilm Wako Pure Chemical) sup-
plemented with 10% fetal bovine serum (FBS; Nichirei 
Biosciences), 100-U/mL penicillin G, and 100-μg/mL strepto-
mycin (Fujifilm Wako Pure Chemical) at 37 °C in 5% CO2. 
We maintained 293F cells in Dulbecco’s modified Eagle’s 
medium (DMEM, Nissui Pharmaceutical) supplemented 
with 10% FBS and antibiotics. To establish short hairpin 
RNA (shRNA)-expressing LNCaP cells, cells were infected 
with retrovirus carrying an shRNA-expressing cassette and 
then selected with RPMI 1640 medium containing 1-μg/mL 
puromycin. For transfection, we used the Lipofectamine2000 
(Invitrogen) according to the manufacturer’s guidance. 
shRNA-expressing retroviruses were generated using 
PLAT-A cells. The PLAT-A cells were kindly provided by Dr 
Toshio Kitamura (University of Tokyo). For dihydrotestos-
terone (DHT) treatment, the culture medium was replaced 
by phenol red-free RPMI-1640 medium containing 5% 
charcoal-stripped FBS. The cells were maintained for about 
48 hours in the medium and subsequently exposed to DHT 
(10 nM) or vehicle (methanol) for indicated time.

Plasmids, Antibodies, and Short Hairpin RNAs

Full-length human AR and EAP1 complementary DNA 
(cDNA) were amplified by polymerase chain reaction 
(PCR) from an LNCaP cell cDNA library and were cloned 
in-frame into the pcDNA3.1-FLAG vector and pcDNA3.1-
hemagglutinin (HA) vector, respectively. HA-tagged lysine-
specific demethylase 1 (LSD1) was described previously [26, 
43]. The EAP1 C715A point mutation were introduced using 
the PrimeSTAR Mutagenesis Basal Kit (Takara Bio) according 
to the manufacturer’s instructions. To generate the shRNA 
expression plasmid, the following shRNA sequences were 
inserted into the pSUPER.retro.puro vector (Oligoengine): 
human EAP1_1, 5′-GCCTATCCTCGGGTTTC-3′; human 
EAP1_2, 5′-GGAGGATACGCATTTCG-3′; and Escherichia 
coli LacZ shRNA, 5′-gcccatctacaccaacgtaac-3′ [26]. For 
trypsin-resistant tandem-repeat ubiquitin-binding entity 
(TR-TUBE)-fused EAP1, FLAG TR-TUBE was amplified 
from pcDNA-FLAG TR-TUBE (a gift from Dr Yukiko 
Yoshida, Tokyo Metropolitan Institute of Medical Science 
[49]) and cloned in-frame into pQCXIP vector with EAP1. 
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For negative control of TR-TUBE-EAP1, FLAG-TR-TUBE 
was cloned into pRetroX-Tight-Pur vector. The antibodies 
used for immunoblot analysis and RIME were anti-AR 
(sc-816 (N-20, RRID:AB_1563391), sc-13062 (H-280, 
RRID:AB_633881); Santa Cruz Biotechnology), anti-FLAG 
(F1804; Sigma-Aldrich, RRID:AB_262044), and anti-HA tag 
(RHGT-45A-Z; ICL, RRID:AB_2861135). The antibodies 
used for immunohistochemistry and immunofluorescence 
were anti-AR (GTX29474; GeneTex, RRID:AB_367520) 
and anti-IRF2BPL (HPA050862; Atlas, RRID:AB_2681258). 
The antibodies used for PLA were anti-AR (sc-109500 
(G-13), Santa Cruz Biotechnology, RRID:AB_1563387) and 
anti-IRF2BPL (Atlas, RRID:AB_2681258).

Rapid Immunoprecipitation Mass Spectrometry 
of Endogenous Proteins

The RIME experiments were performed as reported previ-
ously [50]. Briefly, 5 × 107 cells were stimulated with DHT 
for 8 hours and then fixed in 1% formalin for 8 minutes at 
37 °C. Cell lysates were mixed with an anti-AR antibody 
(N-20 or H-280) or rabbit immunoglobulin G (IgG)-coated 
Dynabeads and incubated at 4  °C overnight. Antibody-
Dynabead complexes were then washed and mixed with 
10 µL 10 ng/µL Trypsin Gold (Promega) and incubated at 
37 °C overnight. Digested peptides were cleaned up using 
the Pierce Detergent Removal Spin Column (Thermo Fisher 
Scientific) and analyzed using the LTQ-Orbitrap Velos 
(Thermo Fisher Scientific) [43, 51]. For protein identifica-
tion, spectra were processed using Proteome Discoverer, 
version 1.3 (Thermo Fisher Scientific) with the Mascot 
algorithm against the human protein database from 
SwissProt. Peptide data were filtered using a Mascot signifi-
cance threshold of less than .05. Raw data were deposited 
in the jPOST Repository (JPST001080) [52].

Immunoprecipitation

293F cell lysates transfected with FLAG-AR and/or 
HA-tagged proteins were prepared in TNE buffer (20-
mM Tris-HCl pH 7.9, 150-mM NaCl, 2-mM EDTA, 1% 
NP-40, and protease inhibitor). The extracts were in-
cubated with FLAG M2 beads (Sigma-Aldrich) at 4  °C. 
Immunoprecipitants were washed and boiled with Laemmli 
sample buffer, and then subjected to sodium dodecyl sul-
fate (SDS)–polyacrylamide gel electrophoresis and Western 
blotting with indicated antibodies.

Proximity Ligation Assay

Cells were fixed in 10% formalin and permeabilized with 
0.1% Triton X-100. Then, proximity ligation assay (PLA) 

was performed according to the manufacturer’s instruc-
tions (Sigma-Aldrich) using the same antibodies as those 
used for immunofluorescence staining.

RNA Isolation, Complementary DNA Synthesis, 
and Quantitative Reverse Transcriptase–
Polymerase Chain Reaction

Total RNA was extracted by Sepasol RNA I  Super 
G (Nacalai Tesque) and cDNA synthesized using 
ReverTra AceR quantitative polymerase chain reac-
tion (qPCR) reverse transcriptase (RT) Master Mix 
(TOYOBO). qPCR was performed with the Thermal 
Cycler Dice Real Time System II (Takara Bio) ac-
cording to the manufacturer’s instructions. The primer 
sequences for each gene were as follows: EAP1 (forward, 
5′-tcgcttcaagaaggaccact-3′ and reverse, 5′-ccgtggggtactc
aatgaac-3′); PSA (forward, 5′-ggcagcattgaaccagaggag-3′ 
and reverse, 5′-gcatgaacttggtcaccttctg-3′); and 
KLK2 (forward, 5′-tcatccagtctcggattgtg-3′ and re-
verse, 5′-cttctttaggcaatgggcag-3′); and Nkx3.1 (for-
ward, 5′-gccaagaacctcaagctcac-3′ and reverse, 
5′-agaaggcctcctctttcagg-3′); and Rplp0 (forward, 
5′-tcgacaatggcagcatctac-3′ and reverse, 5′-tgatgcaaca
gttgggtagc-3′). RNA levels were normalized using the 
Rplp0 gene as an internal control.

Chromatin Immunoprecipitation

LNCaP cells were cross-linked for 10 minutes at room 
temperature with 0.75% formaldehyde-containing 
phosphate-buffered saline; cross-linking was stopped 
with phosphate-buffered saline–glycine (0.3 M final). 
Cells were resuspended in cell lysis buffer (50-mM 
Tris, pH 8.1, 1% SDS, 10-mM EDTA) and incubated 
for 10 minutes on ice. Lysates were then sonicated to 
obtain DNA fragments averaging 200 to 500  bp in 
length. Sonicated lysates were cleared by centrifuga-
tion and diluted in dilution buffer (0.01% SDS, 1.1% 
Triton X-100, 1.2-mM EDTA, 20  mM Tris-HCl, pH 
8.1, 167-mM NaCl) and immunoprecipitated overnight 
with 2 μg of indicated antibodies. Immunoprecipitated 
DNA was analyzed by qPCR (KAPA SYBR FAST 
Universal 2X qPCR Master Mix) together with 1% 
of the input chromatin. Specific primer pairs were 
designed to amplify the promoter region of the 
human androgen response element of the PSA gene: 
(5’-AACAGACCTACTCTGGAGGAACA -3’ and 
5’-TCCAGGCTTGCTTACTGTCC-3’), and Nkx3.1 
gene: (5’-ATCTGGGAGACTGGCAAAGA-3’ and 
5’-GGCACTTCCTGAGCAAACTT-3’), which were de-
signed to amplify one of the AR peak regions [53].
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Detection of Ubiquitination Substrates of 
Enhanced at Puberty 1

LNCaP cells were infected with retrovirus carrying FLAG-
TR-TUBE-fused EAP1 gene and selected in a medium 
containing 1-μg/mL puromycin. As a control, LNCaP 
cells were infected with retrovirus carrying Dox-inducible 
FLAG-TR-TUBE. Established cells (1.0 × 106 cells) were 
lysed and ubiquitinated peptides were purified as previ-
ously described [36]. Briefly, the cell lysates were incubated 
with anti-DYKDDDDK tag antibody agarose (Fujifilm 
Wako Pure Chemical) for 2 hours at 4 ºC. The resin was 
washed and subjected to Western blot.

Preparation of Clinical Prostate Cancer Samples

Human prostate cancer samples (needle biopsy samples col-
lected from patients who provided informed consent) were 
obtained from the tumor tissue bank of Miyagi Cancer 
Center. The study was reviewed and approved by the eth-
ical committee of Tohoku University School of Medicine 
(2019-1-311) and Miyagi Cancer Center (2018-031).

Immunohistochemistry

Formalin-fixed paraffin-embedded blocks from pros-
tate cancer tissues were sectioned at 3-μm thickness and 
mounted onto Superfrost Plus slides. Immunohistochemistry 
was performed using the BenchMark ULTRA IHC/ISH 
staining system (Roche Diagnostics). Sections underwent 
dewaxing, heat-incubated antigen retrieval, and primary 
and secondary antibody incubations using the aforemen-
tioned antibodies. The sections were counterstained with 
hematoxylin.

Immunohistochemistry Scoring and Statistical 
Analyses

The Gleason score was categorized into 3 groups (score of 
6, 7, and 8 + 9) according to a previous report [54]. EAP1 
and AR immunoreactivities were detected in the nucleus of 
carcinoma cells and were semiquantified using a modified 
labeling index system according to Mehta et al [55] with 
some modifications. In this system, immunoreactivity was 
categorized as 0 (no expression), 10 (0%-10%), 20 (11%-
20%)…100 (91%-100%) according to the percentage of 
positive immunoreactivity [Labeling index (LI)]. Statistical 
analysis was performed using regression analysis to cal-
culate correlation coefficients. All other values were stat-
istically evaluated using one-way analysis of variance and 
Fisher protected least significant difference. P less than .05 
was considered to indicate significance.

Results

Rapid Immunoprecipitation Mass Spectrometry 
of Endogenous Protein Purification of 
Coregulators Associated With Androgen 
Receptors

Endogenous AR was purified from 6-hour DHT-treated 
LNCaP prostate cancer cells using RIME technology. To 
exclude antibody-specific background proteins, we used 
2  distinct antibodies to purify AR (N20 and H280). We 
considered only the proteins identified by both antibodies 
and excluded any proteins that appeared in IgG control 
(Fig. 1A). The 195 extracted proteins were plotted ac-
cording to their Mascot score and functionally classified 
into 4 groups: chromatin remodelers, histone modifiers, 
known nonenzymatic NR coregulators, and others (Fig. 
1B-1D, Supplementary Table 1 [21]). AR was the top pro-
tein identified by both antibodies, corroborating the validity 
of our approach. Both antibodies also copurified chromatin 
remodelers such as BRG1 and BAFs [22] (Fig. 1B), histone 
modifiers including p300, CBP, and LSD1/KDM1A, which 
are well-characterized AR coregulators [23-26] (Fig. 1C), 
as well as nonenzymatic NR coregulators such as FOXA1, 
TIF1A, and NCOR2 [27-29] (Fig. 1D). These results in-
dicated that AR-interacting coregulators were successfully 
isolated in our RIME experiment. Among the identified 
proteins, more than 25% (49 proteins) have been previ-
ously reported to interact with NRs. Among the 75% of 
newly identified proteins, EAP1 was chosen for further 
analysis because of its uncharacterized function in tran-
scriptional regulation [7-9] (Fig. 1E and 1F). EAP1 belongs 
to the IRF2BP protein family, which comprises IRF2BP1, 
IRF2BP2, and EAP1 [30, 31] (Fig. 1G). All of these pro-
teins harbor a RING finger motif and are thought to be E3 
ubiquitin ligases, although their substrates remain elusive.

Colocalization of Androgen Receptors and 
Enhanced at Puberty 1 in the Nucleus

To examine the biochemical interaction between AR 
and EAP1, we conducted an immunoprecipitation ex-
periment using lysates from DHT-treated 293F cells 
ectopically expressing FLAG-tagged AR and/or HA-tagged 
EAP1. Immunoblot analysis revealed that AR did not 
coimmunoprecipitate with EAP1, whereas LSD1, a known 
AR-interacting protein used as the positive control [24], 
did coimmunoprecipitate with AR (Fig. 2A). This suggests 
that the interaction between AR and EAP1 could not be de-
tected by a conventional biochemical method, presumably 
because of their biochemically labile interaction.

To observe intracellular localization of AR and EAP1 in 
LNCaP cells, we performed immunofluorescence staining 
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and found that the signals of both proteins overlapped in 
the nucleus in DHT-treated cells, implying that AR and 
EAP1 interact in the nucleus (Fig. 2B). This EAP1 staining 
was abolished in EAP1 knocked-down cells (shEAP1_2; 
see also Fig. 3C and 3D), indicating specificity of the anti-
body used here (Fig. 2C). The interaction between EAP1 
and AR observed in the RIME experiment was further con-
firmed by the PLA, which is used for in situ detection of 
protein-protein interactions [32]. As shown in Fig. 2D and 
2E, the PLA-positive cells were detected in the nucleus of 
LNCaP cells. Furthermore, PLA signals were significantly 
increased in a DHT-dependent manner (Fig. 2E), suggesting 

DHT-dependent complex formation of an EAP1-AR com-
plex. Finally, this PLA signals were decreased in EAP1 
knocked-down cells, supporting the validity of this assay 
(Fig. 2F).

Enhanced at Puberty 1 Acts as a Coactivator of 
Androgen Receptor–mediated Transcription

Next, we investigated the biological significance of the 
interaction between AR and EAP1. Reporter analysis using 
the PSA-Luc construct containing the full-length 6-kb up-
stream regulatory region of PSA gene reporter plasmid was 
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biochemical condition. A, 293F cell lysates exogenously expressing FLAG-tagged AR and/or hemagglutinin (HA)-tagged EAP1 and stimulated with 
10-nM dihydrotestosterone (DHT) for 8 hours were subjected to immunoprecipitation followed by immunoblot analysis using anti-FLAG and anti-HA 
antibodies. HA-tagged lysine-specific demethylase 1 (LSD1) was used as a positive control for coimmunoprecipitation. The molecular weights of the 
marker proteins are indicated on the right. B, LNCaP cells treated with 10-nM DHT for 6 hours were stained with anti-AR and anti-EAP1 antibodies 
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by one-way analysis of variance (ANOVA) with a post hoc Tukey-Kramer test (n = 10) Error bars indicate SDs. *P less than .05; **P less than .01; ***P 
less than .001. F, PLA was performed using 10-nM DHT–treated LNCaP cells (6 hours) that expressed either shLacZ or shEAP1. Quantification of the 
number of PLA dot–positive cells are shown. Data were analyzed by one-way ANOVA, with a post hoc Tukey-Kramer test (n = 10) Error bars indicate 
SDs. ***P less than .001.
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Figure 3. Enhanced at puberty 1 (EAP1) is an androgen receptor (AR) coactivator. A, LNCaP cells were transiently transfected with the pGL4.1-PSA-
Luc reporter (500 ng) and pcDNA3.1-hemagglutinin (HA)-EAP1 expression vectors at the indicated amounts (ng). After 24 hours of incubation, the 
cells were stimulated with vehicle (ethanol) or 10-nM dihydrotestosterone (DHT) for 24 hours. Data were analyzed by one-way analysis of variance 
(ANOVA) with a post hoc Tukey-Kramer test (n = 4) Error bars indicate SDs. *P less than .05; **P less than .01; ***P less than .001. HA-tagged lysine-
specific demethylase 1 (LSD1), as an AR coactivator, was used as the positive control. B, LNCaP cells were transiently transfected with the pGL4.1-
PSA-Luc reporter vector (500 ng) and pcDNA3.1 expressing either HA-tagged wild-type EAP1 or HA-tagged EAP1 C715A mutant at the indicated 
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performed [33, 34]. As shown in Fig. 3A, EAP1 increased 
the DHT-induced transcriptional activity of AR dose de-
pendently. However, when a construct containing EAP1 
with the C715A mutation, in which the conserved cyst-
eine critical for E3 ubiquitin ligase activity [35] was mu-
tated to alanine, was used in the analysis, EAP1 showed 
loss of AR coactivator activity (Fig. 3B), suggesting that 
EAP1 promotes the transcriptional activity of AR via its 
E3 ubiquitin ligase activity. Furthermore, we used quan-
titative reverse transcriptase–polymerase chain reaction 
(qRT-PCR) analysis to verify that EAP1 regulated the mes-
senger RNA expression of AR target genes in LNCaP cells. 
Consistent with the aforementioned findings, the expres-
sion of DHT-induced AR target genes, such as PSA and 
KLK2, was downregulated when EAP1 was knocked down 
by shRNA specific for EAP1, but not for LacZ (Fig. 3C-3E). 
On the other hand, the AR target gene Nkx3.1 was not 
downregulated, suggesting that EAP1 might regulate a 
specific subset of AR target genes. Supporting this finding, 
chromatin immunoprecipitation assay revealed that EAP1 
was recruited to the androgen response element of the 
PSA gene promoter but not to Nkx3.1 gene promoter in a 
DHT-dependent manner (Fig. 3F). Furthermore, the EAP1-
specific shRNA significantly inhibited LNCaP cell prolifer-
ation (Fig. 3G). Together, these data suggest that EAP1 is a 
novel AR coactivator.

Next, we further examined the mechanism underlying 
E3 ubiquitin-ligase activity-dependent AR coactivation 
function of EAP1. To address ubiquitination substrates 
of EAP1, we applied a novel E3 ligase substrate-trapping 
strategy by fusing a trypsin-resistant–tandem ubiquitin-
binding entity (TR-TUBE) with EAP1. In this method, 
polyubiquitinated substrates can be captured by TR-TUBE 
and protected from degradation or deubiquitination and, 
therefore, substrates can be detected with high sensitivity 
[36] (Fig. 4A). Because EAP1 acted as an AR coactivator, 
we reasoned that EAP1 might target corepressor proteins 
for ubiquitination. To evaluate this hypothesis, we tested a 

series of transcriptional corepressors identified in our RIME 
experiments (see Fig. 1) as candidate EAP1 substrates.

First, we established LNCaP cells stably expressing 
FLAG-TR-TUBE–fused EAP1 and doxycycline (Dox)-
inducible FLAG-TR-TUBE as a negative control (Fig. 4B). 
Using anti-FLAG immunoprecipitation product from these 
cells, we could detect self-ubiquitination of EAP1 by mass 
spectrometry (data not shown), showing E3 ubiquitin 
ligase activity of EAP1 and validating this experimental 
system. Next, cells were transfected with HA-tagged in-
dicated proteins, and then proteins were extracted and 
immunoprecipitated with anti-FLAG antibody. Purified 
proteins were assessed by Western blot. As shown in 
Fig. 4C, among selected proteins, AR and HDAC1 were 
polyubiquitinated by EAP1, suggesting that EAP1 is an E3 
ubiquitin ligase for AR and HDAC1 protein. This result im-
plies that EAP1 regulates AR-HDAC1 complex levels via 
ubiquitin-proteasome pathways to activate transcriptional 
activity of AR.

Enhanced at Puberty 1 Is Overexpressed, 
and Correlated With Poor Outcome, in 
Prostate Cancer

Finally, to assess the clinical relevance of EAP1 in prostate 
cancer, we performed immunohistochemical analyses to 
examine the localization of EAP1 in human prostate tumor 
tissues obtained by needle biopsy. As shown in represen-
tative tissue sections with varying Gleason scores, EAP1 
was expressed in the nucleus both of normal prostate and 
prostate tumor luminal epithelial cells (Fig. 5). Importantly, 
these cells also expressed AR in the nucleus, supporting 
the formation of an AR-EAP1 complex in human prostate 
cancer cells. Furthermore, the EAP1 expression level was 
significantly correlated with the AR expression level, and 
also with Gleason scores and TMN classification (Table 1), 
indicating that EAP1 is a key AR coactivator in prostate 
cancer progression.

amounts. After 24 hours’ incubation, cells were stimulated with vehicle (ethanol) or 10-nM DHT for 24 hours. Data were analyzed by one-way ANOVA 
with a post hoc Tukey-Kramer test (n = 4) Error bars indicate SDs. **P less than .01; n.s., not significant. C, Knockdown of EAP1 by short hairpin RNA 
(shRNA). Quantitative polymerase chain reaction (qPCR) analysis for EAP1 was performed. LNCaP cells expressing shLacZ were used as a negative 
control. Gene expression was normalized to that of Rplp0 and presented as the fold change in expression relative to the expression level in cells not 
treated with DHT. Data were analyzed by one-way ANOVA with a post hoc Tukey-Kramer test (n = 4) Error bars indicate SDs. *P less than .05; **P less 
than .01. E, Knockdown of EAP1 by shRNA and its effect on the transcriptional activity of AR. Cells were treated with 10-nM DHT for 12 hours, and 
qPCR analysis of AR target genes was performed. Gene expression was normalized to that of Rplp0 and presented as the fold change in expression 
relative to the expression level in cells not treated with DHT. Data were analyzed by one-way ANOVA with a post hoc Tukey-Kramer test (n = 4) Error 
bars indicate SDs. *P less than .05; **P less than .01; ***P less than .001; n.s., not significant. F, Chromatin immunoprecipitation analysis of EAP1 and 
AR at the indicated gene enhancers. DNA fragments in LNCaP cells were precipitated with anti-EAP1 and anti-AR; rabbit immunoglobulin G (IgG) 
was used as a negative control for the immunoprecipitation. Precipitated DNA fragments were assessed by qPCR. The error bars indicate SDs. Data 
were analyzed by one-way ANOVA with a post hoc Tukey-Kramer test (n = 3) Error bars indicate SDs. *P less than .05; ***P less than .001; n.s., not 
significant. G, Cell proliferation assays were performed using the WST-8 cell proliferation assay. The relative absorbance of each cell at the indicated 
time points is shown. Data were analyzed by one-way ANOVA with a post hoc Tukey-Kramer test (n = 5) Error bars indicate SDs. ***P less than .001.

Figure 3: continued
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are indicated on the right. C, Cells were transfected with HA-tagged indicated proteins. For negative control, Dox-inducible FLAG-TR-TUBE–bearing 
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Discussion

By applying RIME to isolate AR coregulators, we have 
unveiled protein-protein interaction networks involving 
this major driving transcription factor in a prostate 
cancer cell line. Of note, the identified proteins included 
labile binding coregulators such as EAP1, which presum-
ably go undetected by conventional biochemical identifi-
cation methods. Furthermore, using 2 distinct antibodies 
against AR, as well as rabbit IgG as a negative control to 
exclude nonspecific binding proteins, we were able to dis-
tinguish true interactions with AR from antibody-specific 
background interactions. Thus, the RIME data provided 
here contain more confident and reproducible proteins 
compared with experiments using a single antibody. This 
strategy can be applied to identify proteins associated 
with any transcription factor, with less risk of detecting 
nonspecific proteins.

Among the identified AR-associated factors, we focused 
on EAP1 for further study because of its uncharacterized 
function in transcriptional regulation, although a role of 
this protein in neural development has been reported [37]. 
We observed colocalization of AR and EAP1 in the nu-
cleus of LNCaP cells and prostate cancer/normal prostate 
specimens. EAP1 enhanced the transcriptional activity of 
AR, which was dependent on the E3 ubiquitin ligase ac-
tivity of EAP1. EAP1 belongs to the IRF2BP family, and 
another member of this family, IRF2BP1, has been reported 

to function as a transcriptional corepressor [30, 38, 39]. 
Recently, Lempiäinen et al [40, 41] reported that IRF2BP2 
acts as a coactivator of NRs such as the glucocorticoid re-
ceptor and AR. This suggests that IRF2BP2 family proteins 
have dichotomous functions in gene regulation depending 
on chromatin context or their binding partner, similar to 
the dual function of LSD1 in transcriptional regulation 
[24, 26, 42, 43]. Furthermore, CG11138, the Drosophila 
counterpart of EAP1, colocalized with the Drosophila ec-
dysone receptor, an NR, in ecdysone-induced puffs (eu-
chromatin region) within the larval salivary gland (data not 
shown, personal communication from Dr Sawatsubashi, 
Tokushima University [44], 2017), suggesting that 
EAP1 might be a highly conserved NR coregulator from 
Drosophila to humans.

The precise mechanism of EAP1-mediated coactivation 
of AR transcription still remains unclear. From the data pro-
vided here, the function of EAP1 as a coactivator requires 
its ubiquitin ligase activity, implying that EAP1 coactivates 
AR transcriptional activity via ubiquitin-proteasomal deg-
radation of certain proteins. Several ubiquitin ligases have 
been reported to regulate AR transcriptional activity via dis-
tinct mechanisms, including regulation of local turnover of 
AR chromatin complexes, recruitment of AR coactivators, 
and global AR stability [45-48]. Taking the role of EAP1 
as an AR coactivator into account, AR corepressor pro-
teins including AR and HDAC1 are candidate targets of 

Tumor
Gleason 
Score 9

Tumor
Gleason 
Score 6

Normal 
Prostate

EAP1ARHE

Figure 5. Enhanced at puberty 1 (EAP1) and androgen receptor (AR) colocalized in the nuclei of human prostate cells in vivo. Immunohistochemical 
staining of AR and EAP1 in human normal and tumor prostate specimens with different Gleason scores. AR (middle column) and EAP1 (right column) 
immunoreactivities were detected in the same cell nuclei. Hematoxylin and eosin–stained images are shown in the left column. All sections were 
taken from the same continuous specimen, and images were acquired at 40× magnification.
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EAP1-mediated ubiquitination to be tested in the future. 
Furthermore, target gene preference of EAP1 also remains 
elusive and chromatin immunoprecipitation sequencing 
using next-generation sequencing might solve this 
limitation.

Given the key role of AR in prostate cancer progression, 
the findings from the present study provide new insight 
into the transcriptional machinery underlying AR-mediated 
gene regulation. We found that EAP1 expression was sig-
nificantly correlated with AR expression, the Gleason score, 
and TMN classification. Although it is unclear why EAP1 is 
upregulated during cancer progression, as supported by the 
finding that EAP1 contributed to LNCaP cell proliferation, 
this protein is a potentially promising target for the treat-
ment of prostate cancers.

Taken together, our work identifies EAP1 as an im-
portant coregulator of AR in prostate cancer cells. EAP1 
coactivated AR via E3 ubiquitin ligase activity though 
overview of the targeted proteins of the ubiquitination is to 
be identified. If transcription factors have labile interacting 
coregulators like EAP1 adding to their conventional 
coregulators, there might be a requirement for reconsid-
eration of transcriptional interactomes, leading to identifi-
cation of novel mechanisms for transcriptional regulation. 
And from those processes, important drug target proteins 
might be discovered in the future.
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