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Introduction

Despite more than 150 randomized clinical trials
(RCTs) of multiple potential therapies, the only inter-
ventions for acute respiratory distress syndrome
(ARDS) that reduce mortality are those that minimize
ventilator-induced lung injury [1]. This ‘translational
failure’ may have a number of explanations. Firstly,
ARDS is a syndrome, and interventional trials in ARDS
generally include a heterogenous patient group with a
wide spectrum of disease etiology and disease severity.
Second, deficits exist in our understanding of key
aspects of the pathogenesis of ARDS. Notwithstanding
these challenges, a number of promising therapies are
currently under investigation for ARDS, and offer hope
for the future.

Future therapies for ARDS

Aspirin

Platelets are important in ARDS pathogenesis. In pre-
clinical studies, aspirin reduces thromboxane A2,
P-selectin, and platelet-derived chemokine (e.g., CCL5
and CXCL4) production, reduces platelet–neutrophil
aggregates and neutrophil extracellular traps, and enhan-
ces anti-inflammatory lipid mediators such as 15-epi-
lipoxin A4. Aspirin reduces the risk of developing ARDS
in critically ill patients [2]. A clinical study of aspirin in
human volunteers undergoing endotoxin inhalation
(ARENA NCT01659307) and a RCT of aspirin for ARDS
prevention [3] are ongoing (Table 1).

Statins

HMG CoA-reductase inhibitors (statins) exert diverse
‘pleiotropic’ effects beyond their ‘pharmacologic’ effect
in cholesterol reduction, including anti-inflammatory and
endothelial protective effects. Results from both pre-
clinical and observational studies support a potential role
for statins in ARDS. Simvastatin improved pulmonary
and systemic organ function in a phase 1/2 RCT in ARDS
[4], but two larger phase 2/3 trials of statin therapy, car-
ried out in Ireland/UK [5] and the USA [6], respectively,
did not demonstrate benefit. Rosuvastatin, a hydrophilic
statin, did not improve clinical outcomes in sepsis-asso-
ciated ARDS and may have increased hepatic and renal
dysfunction [6]. The lipophilic statin simvastatin did not
worsen hepatic or renal function, it non-significantly
reduced mortality, but it did not increase the number of
ventilator-free days (VFD, the primary outcome) [5]. A
definitive large trial of simvastatin, powered for mortality
as a primary outcome, may be warranted.
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Heparin

Activation of coagulation plays a key role in the patho-
genesis of ARDS, resulting in alveolar fibrin deposition
which impairs gas exchange. In pre-clinical studies,
heparin has been found to reduce alveolar fibrin deposi-
tion and exert anti-inflammatory effects. In one small
RCT, heparin decreased the number of VFD in patients at
risk for ARDS [7]. Further studies investigating the effi-
cacy of nebulized heparin in patients at risk of ARDS
(ACTRN12612000418875) (Table 1) are underway.

Interferon-beta

Interferon beta (IFN-b) increases endothelial expression
of CD73, the rate-limiting enzyme in the conversion of
adenosine monophosphate to adenosine, which in turn
binds to pulmonary A2B receptors and exerts multiple
protective effects in pre-clinical models. In a recent open-
label dose-escalation study, only two (8 %) of 26 ARDS
patients treated with 10 lg per day of IFN-b-1a died by
day 28, compared to a 32 % mortality in a parallel control
group [8]. Although the study was not randomized or
blinded, and there were some baseline differences
between the treated and control cohorts, further investi-
gation of IFN-b for ARDS is warranted.

Tumor necrosis factor receptor 1 blockade

Tumor necrosis factor (TNF) exerts its effects by binding
to one of two TNF receptors, designated TNFR1 and
TNFR2. TNF-activated pro-inflammatory pathways and
the programmed cell death pathways that result in tissue
injury are largely mediated through TNFR1, while
TNFR2 signaling plays a role in tissue repair and angio-
genesis. Promising pre-clinical data support the efficacy
of anti-TNFR1 monoclonal antibodies [9]. In one study,
inhaled anti-TNFR1 antibodies decreased the pulmonary
inflammation induced by endotoxin in healthy volunteers
[10]. Early phase studies in ARDS patients are awaited.

Angiotensin converting enzyme 2

Angiotensin-converting enzyme (ACE) cleaves angio-
tensin-I to generate angiotensin-II, which causes
vasoconstriction, inflammation, and increased vascular
permeability via type 1 (AT1R) and type 2 receptors.
ACE-2, a homolog of ACE, cleaves a single residue from
Ang-II to generate Ang1–7 [11], which blocks many
AT1R-mediated actions. Imai et al. [11] found that ACE,
Ang-II, and AT1R function as lung injury-promoting
factors, whereas ACE-2 protects the lung from injury.
ACE2 is a receptor for severe acute respiratory syndrome-

coronavirus (SARS-CoV), while SARS-CoV induces
downregulation of ACE2, which is an important step in
the development of severe lung failure [12]. In addition,
mortality is increased in patients with ARDS who have
the ACE DD phenotype, which results in greater ACE
activity [13]. A human phase I/II clinical trial of recom-
binant human ACE2 therapy in patients with early ARDS
is in progress (NCT01597635) (Table 1).

Adrenomedullin

Adrenomedullin (AM), an endogenous 52 amino acid
peptide belonging to the calcitonin gene-related peptide
family, is expressed in multiple tissues, including endo-
thelial cells, and plays a crucial role in endothelial barrier
integrity. AM acts via binding of the calcitonin receptor-
like receptor, thereby raising intracellular cAMP levels in
endothelial cells and reducing myosin light chain (MLC)
phosphorylation. Thus, AM may prevent endothelial
contraction and intercellular gap formation [14]. AM
expression is upregulated in inflammatory diseases
including ARDS and sepsis, and endogenous AM may
contribute to the protection of vascular function in
inflammation [14]. AM therapy reduces pulmonary per-
meability injury and decreases inflammation in
experimental ARDS and sepsis. The Committee for
Orphan Medicinal Products of the European Medicines
Agency (EMA) recently recommended AM as an orphan
drug for the treatment of ARDS (EMA/COMP/104704/
2010). Clinical trials with AM are in the planning stage.

Keratinocyte growth factor

Keratinocyte growth factor (KGF) is a fibroblast growth
factor expressed predominantly by mesenchymal cells,
and its receptor (KGFR) is expressed on epithelial cells
and macrophages. Results from pre-clinical studies
suggest that intra-tracheal KGF reduces lung injury
induced by hyperoxia, ventilator-induced lung injury,
and bacterial pneumonia. In a recent study, KGF treat-
ment (Palifermin�) increased markers of type II
alveolar epithelial cell proliferation and increased
alveolar concentrations of reparative proteases and the
anti-inflammatory cytokine IL-1Ra following endotoxin
inhalation by volunteers [15]. A Phase II clinical trial of
palifermin� in ARDS has recently been concluded
(ISRCTN95690673), and the results are awaited
(Table 1).

Mesenchymal stem/stromal cells

Mesenchymal stem/stromal cells (MSCs) can regulate
both the innate and adaptive immune systems and can
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modulate macrophage phenotype, inhibit the production
of inflammatory cytokines by activated CD4 and CD8 T
cells, and stimulate the generation of FoxP3? regulatory
T cells, potentially reducing pro-inflammatory cytokines
in ARDS [16]. MSCs directly attenuate bacterial sepsis,
the commonest and most severe cause of ARDS, by
enhancing macrophage phagocytosis and increasing anti-
microbial peptide secretion, thereby increasing bacterial
clearance [16]. MSCs also repair the injured lung fol-
lowing ventilation-induced lung injury, via paracrine
mechanisms [17, 18]. A recent pilot study of MSC ther-
apy for ARDS demonstrated no adverse effects [19]. A
phase 1/2, open-label, dose-escalation, multi-center clin-
ical trial of allogeneic BM-MSCs in patients with
moderate to severe ARDS is underway in the USA
(NCT01775774) (Table 1).

Conclusions

Although there have been many failed therapies to date, new
therapies based on improved understanding of the mecha-
nisms implicated in the development of ARDS are emerging,
and may provide a treatment option in the near future.
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