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Lanjiao Xu 1*

1Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation

Team, Jiangxi Agricultural University, Nanchang, China, 2Gongqingcheng Element Animal Nutrition

Co., Ltd., Gongqingcheng, China, 3Jilin Academy of Agricultural Sciences, Changchun, China

This study was designed to evaluate the optimum additional level of

coated complex trace minerals (TMs) and its impacts on the growth

performance of broilers through measurement of digestibility of nutrients and

intestinal development. In a 56-day trial, a total of 360 one-day-old male

yellow-feathered broilers were randomly divided into six dietary treatment

groups. Each treatment contained six replicates, with 10 birds. The control

group was supplemented with 1,000 mg/kg of uncoated complex TMs in

the basal diet (UCCTM1000). The remaining 5 treatments were degressively

supplemented with coated complex TMs from 1,000 to 200 mg/kg in the

basal diet, which were considered as (CCTM1000), (CCTM800), (CCTM600),

(CCTM400), (CCTM200), respectively. Results: On comparing the UCCTM1000

supplementation, the CCTM1000 supplementation decreased the feed to

gain ratio (F/G) (P < 0.05), increased digestibility of crude protein (CP)

(P < 0.05), crude fat (CF) (P < 0.05), villus height (VH) of duodenum (P < 0.05),

and the mRNA expression level of occludin in jejunal mucosa (P < 0.05).

In addition, the F/G was lower in the CCTE600 group than that in the

CCTE200 group (P < 0.05). The VH to crypt depth (CD) ratio (V/C) of jejunum

and ileum in the CCTM400 and CCTM600 groups was higher (P < 0.05)

than that in the CCTM1000 group. The serum endotoxin and D-lactate

level and CP digestibility were increased by dietary coated complex TMs

addition level. The mRNA expression levels of claudin-1 and ZO-1 in the

CCTM600 group were higher (P < 0.05) than that in the CCTM1000 group. In

conclusion, adding 600 mg/kg of coated complex TMs showed the minimum

F/G and the maximum crude protein digestibility and intestine development
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of yellow-feathered broilers compared with other treatments. This

supplementation level of coated complex TMs could totally replace 1,000

mg/kg of uncoated complex TMs to further decrease the dose of TMs and

raise economic benefit.

KEYWORDS

yellow-feathered broilers, coated complex trace minerals, growth performance,

nutrient digestibility, intestinal development

Introduction

Trace minerals, mainly copper, iron, manganese, zinc,

and selenium, perform a key role in the growth, nutritional

regulation, and intestinal health of the poultry by participating

in numerous biochemical pathways (1–3). Trace minerals (TMs)

influence appetite, growth performance, bone growth, and

feathering of poultry (4). The minerals deficiency may result

in loss of appetite, growth retardation, anemia, etc., in animals

(5–7). Appropriate using of TMs additives can make up for

the deficiency of some minerals in diets and improve the

performance of poultry (8, 9). Traditionally, inorganic TMs are

added to broilers’ diets to maintain levels of minerals that enable

broilers to reach their growth potential (10–12). Inorganic

TMs have many problems, such as unstable properties, damage

to some nutrients (such as vitamins, amino acids), and poor

palatability (13). In commercial poultry production, inorganic

TMs are used to supply from two to ten times more of

these minerals than NRC recommendations (14). Excessive use

of inorganic salts causes damage to nutrient absorption and

low mineral bioavailability (15). In addition, current excessive

mineral intake causes environmental pollution by higher heavy

mineral excretion (16). Excessive use of feces with high mineral

concentration was used as fertilizer; it will lead to high mineral

concentration in the soil thereby decreasing crop yield (17) with

remaining minerals penetrating into the soil and may pollute

under water supplies (18). Therefore, in order to overcome the

deficiency in the use of inorganic trace elements, coated TMs

may be used as an alternative choice.

Coating technology has been widely used in the field of

feed additives. The so-called coating refers to the material

that can form a protective film on the surface of solid drugs

in a specific instrument and according to a specific process,

after drying, it forms a kind of protective layer that adheres

closely to the surface (19). Coated TMs have the characteristics

of a small impact on the destruction of vitamins and amino

acids in the feed, uniform particles, good dispersibility, high

mixing uniformity, and less dust. It has been found that

supplementation with low concentrations of coated zinc oxide

and high concentrations of zinc oxide had the same effect

on intestinal immunity defense systems in weaned piglets

(20). At present, there are few reports on the application of

coating technology-based complex TMs in poultry production.

Therefore, this study was designed to optimize the level of coated

complex TMs and their impacts on the growth performance

of yellow-feathered broilers through the measurement of

digestibility of nutrients and intestinal development.

Materials and methods

Ethical approval

This study was approved and carried out under the

Institutional Animal Care and Use Committee of Jiangxi

Agricultural University (Nanchang, Jiangxi, China). The

number of the ethics committee-approved protocols for the

animal study was JXAULL-2019-16.

Animals and experimental design

In a 56- day trial, a total of 360 one-day-old (male, BW:

32.61 ± 0.06 g) yellow-feathered broilers was randomly divided

into 6 dietary treatment groups. Each treatment contained 6

replicates, with 10 birds. The control group supplemented with

1,000 mg/kg of uncoated complex TMs (a basal diet pules

copper chloride, ferrous sulfate, zinc sulfate, manganese sulfate,

sodium selenite, and calcium iodate providing commercially

utilized levels in China of 10, 105, 100, 98, 0.9, and 0.575 mg/kg,

respectively) was considered as UCCTM1000. The remaining

five treatments were degressively supplemented with coated

complex TMs from 1,000 to 200 mg/kg in the basal diet, which

were considered as (CCTM1000), (CCTM800), (CCTM600),

(CCTM400), (CCTM200), respectively. The uncoated complex

TMs and coated complex TMs used in the experiment were

provided by Gongqingcheng Element Animal Nutrition Co.,

Ltd. (Gongqingcheng, Jiangxi, China). Supplementary complex

inorganic TMs in the UCCTM1000 group and CCTM1000

group diets were formulated to be typical of those currently used

in the Chinese broiler chickens industry. Dietary treatments

varied in TMs composition are shown in Table 1. Both

coated and uncoated minerals were thoroughly mixed and
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TABLE 1 Supplemental levels of trace minerals (TMs) in experimental diets (mg/kg).

Itemb Experimental treatmentsa

UCCTM1000 CCTM1000 CCTE800 CCTE600 CCTE400 CCTE200

Cu 10 10 8 6 4 2

Fe 105 105 84 63 42 21

Zn 100 100 80 60 40 20

Mn 98 98 78.4 58.8 39.2 19.6

I 0.9 0.9 0.72 0.54 0.36 0.18

Se 0.575 0.575 0.46 0.345 0.23 0.115

aUCCTM1000, supplemented with 1,000 mg/kg of uncoated complex trace minerals; CCTE1000, supplemented with 1,000 mg/kg of coated complex trace minerals; CCTE800,

supplemented with 800 mg/kg of coated complex trace minerals; CCTE600, supplemented with 600 mg/kg of coated complex trace minerals; CCTE400, supplemented with 400 mg/kg of

coated complex trace minerals; CCTE200, supplemented with 200 mg/kg of coated complex trace minerals.
bRaw material composition: a basal diet pules copper chloride, ferrous sulfate, zinc sulfate, manganese sulfate, sodium selenite, and calcium iodate providing commercially utilized levels

in China of 10, 105, 100, 98, 0.9, and 0.575 mg/kg, respectively.

homogenized with premix, respectively, and then blended in a

mixer with soya bean. The composition and nutrient levels of

the experimental diets in two stages are shown in as shown in

Tables 2, 3.

Ten chickens were housed in each cage (length × width ×

height = 100 × 100 × 40 cm). 1 week before feeding, the room

temperature was kept at 34 ± 1◦C, and gradually decreased by

1◦C per day until 24 ± 1◦C. The relative humidity of the room

was controlled at 50–60%. The illumination program used was

24L: 0D during the whole feeding trial. All chickens were having

free access to mash feed and water in the morning and evening,

respectively, and cleaned in the morning to maintain a good

feeding environment in the house.

Sample collection

During the trial, feed intake (FI) was recorded daily on a

cage basis, whereas body weight gain (BWG) was monitored

by weighting the birds at the beginning of the experiment

and subsequently on day 56 (morning of slaughter). Average

daily gain (ADG), average daily feed intake (ADFI), and feed

conversion ratio (feed to gain ratio, F/G) were calculated. The

calculation formula is as follows:

ADG(g/d) = BWG(g)/56d;ADFI(g/d) = FI(g)/56d;

F/G = ADFI/ ADG

During days 52 to 54, the broilers were fed an experimental

diet and complete excreta were collected for 3 days (21). Excreta

were collected thrice per day (07:00, 12:00, and 19:00 h) from

each fecal tray under cages, weighed the weight of chicken

excreta, mixed evenly, collected about 100 g of chicken excreta

samples, and stored at −20◦C. The excreta samples were dried

for about 48 h in an oven at 65◦C. The dried excreta was allowed

to equilibrate to atmospheric conditions for 24 h before being

weighed. Feed and excreta samples were then ground through a

0.425mm screen and kept for further analysis.

At the age of 56 days, one chicken per replicate group

was randomly selected and weighed after fasting for 12 h.

Blood samples were collected through the vein wing into a

vacutainer tube without anticoagulant. The serum was collected

by centrifugation (3,000 g, 10min, 4◦C), and stored at −20◦C

for further analysis. The duodenum, jejunum, and ileum were,

respectively, taken from the middle 3–4 cm segment, gently

rinsed the intestinal contents with phosphate-buffered saline

(PBS) solution, then quickly immersed the samples in a 4%

paraformaldehyde fixed solution, and stored at 4◦C for 24 h

for later use. Samples of the duodenal and jejunal mucosal

were quickly put into liquid nitrogen and stored at −80◦C for

further analysis.

Chemical analysis

Feed and excreta samples were analyzed [AOAC (22),

2005] for dry matter (DM) (method 930.15), crude protein

(CP) (N∗6.25; method 984.13), and crude fat (CF) (method

920.39). Calcium and phosphorus determination was carried out

according to the method of David et al. (23). The levels of serum

endotoxin and D-lactate and serum diamine oxidase (DAO)

activity were determined by assay kits (Shanghai Enzyme-linked

Biotechnology Co., Ltd., Shanghai, China).

Intestinal morphology

Samples of duodenum, jejunum, and ileum were tissue

fixed in 4% paraformaldehyde, embedded in paraffin, sectioned

longitudinally at 4µm, and mounted on microscope slides.

The sections were dewaxed for several times with xylene,

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.982699
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2022.982699

TABLE 2 Composition and nutrient levels of the diets for the starter period (1–28 days).

Items Uncoated Coated

Level (mg/kg) 1,000 1,000 800 600 400 200

Corn 58.88 58.88 58.88 58.88 58.88 58.88

Soybean meal (43%) 29.12 29.12 29.12 29.12 29.12 29.12

Rapeseed meal 5.00 5.00 5.00 5.00 5.00 5.00

Soybean oil 2.00 2.00 2.00 2.00 2.00 2.00

CaHPO4 1.80 1.80 1.80 1.80 1.80 1.80

Limestone 1.17 1.17 1.17 1.17 1.17 1.17

L-Lys 0.30 0.30 0.30 0.30 0.30 0.30

DL-Met 0.15 0.15 0.15 0.15 0.15 0.15

NaCl 0.30 0.30 0.30 0.30 0.30 0.30

Zeolite powder 0.18 0.18 0.20 0.22 0.24 0.26

Vitamin premixa 1.00 1.00 1.00 1.00 1.00 1.00

Trace mineralsb 0.10 0.10 0.08 0.06 0.04 0.02

Total 100.00 100.00 100.00 100.00 100.00 100.00

Calculated nutrient level

Metabolizable energy (MJ/kg) 12.14 12.14 12.14 12.14 12.14 12.14

Crude protein (%) 21.00 21.00 21.00 21.00 21.00 21.00

Calcium (%) 1.22 1.22 1.22 1.22 1.22 1.22

Available P (%) 0.55 0.55 0.55 0.55 0.55 0.55

Lysine (%) 1.38 1.38 1.38 1.38 1.38 1.38

Methionine (%) 0.49 0.49 0.49 0.49 0.49 0.49

Methionine+ Cystine (%) 0.86 0.86 0.86 0.86 0.86 0.86

aThe vitamin premix provided the following per kilogram of diet: vitamin A (retinyl acetate) 12,000 IU, vitamin D3 (cholecalciferol) 3,000 IU, vitamin E 20mg, vitamin K3 1.3mg, thiamine

2.2mg, riboflavin 10mg, Vitamin B3 10mg, choline 400mg, vitamin B5 50mg, pyridoxine 4mg, Biotin 0.40mg, vitamin B11 1mg, and vitamin B12 0.013mg.
bThe trace minerals provided the following per kilogram of diet: Cu 10mg (cupric chloride), Fe 105mg (ferrous sulfate), Zn 100mg (Zinc sulfate), Mn 98mg (manganous sulfate), Se

0.9mg (sodium selenite), I (calcium iodate) 0.575mg.

rehydrated in alcohol, and stained with Haematoxylin/Eosin

(H&E) (24). The villus height (VH) and crypt depth (CD)

were measured using a microscope with VistarImage software

(Olympus, Japan), and the VH to CD ratio (V/C) was calculated.

Real-time PCR

Samples of the duodenal and jejunal mucosal were

homogenized with an appropriate amount of TransZol. Total

RNA was extracted from the duodenal and jejunal mucosal

according to the instructions of TransZol Up Plus RNA kit.

Then, the RNA was reverse transcribed into cDNA according

to the instructions of the cDNA Synthesis SuperMix kit. Finally,

real-time qPCR was performed on a CFX Connect Real-Time

PCR Detect System (Bio-Rad, California, USA) according to the

instructions of PerfectStartTM Green qPCR SuperMix kit. The

above kits were purchased from Beijing TransGen Biotech Co.,

Ltd. (Beijing, China). The primer sequences used in this study,

as shown in Table 4, were designed and synthesized by Shanghai

Generay Biotechnology Co., Ltd. (Shanghai, China). β-actin acts

as the normalization of targeted genes. The 2−11Ct method was

used to calculate the relative mRNA expression.

Statistical analysis

Statistical analysis of all data was used for SPSS 25.0 version

software (SPSS INC., Chicago, USA). Differences between

UCCTM1000 group and CCTM1000 group were analyzed by

two-tailed unpaired t-test, ∗ P < 0.05 for the UCCTM1000

group vs. the CCTM1000 group. The CCTM groups were

analyzed by one-way analysis of variance (ANOVA) followed by

Duncan’s post-hoc tests. Data were expressed as mean value ±

standard error (SE), and significance was set at P < 0.05.

Results

Growth performance

As shown in Figure 1, compared with the UCCTM1000

group, the ADFI and F/G significantly decreased in the
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TABLE 3 Composition and nutrient levels of the diets for the grower period (29–56 days).

Items Uncoated Coated

Level (mg/kg) 1,000 1,000 800 600 400 200

Corn 60.23 60.23 60.23 60.23 60.23 60.23

Soybean meal (43%) 27.41 27.41 27.41 27.41 27.41 27.41

Rapeseed meal 4.00 4.00 4.00 4.00 4.00 4.00

Soybean oil 3.36 3.36 3.36 3.36 3.36 3.36

CaHPO4 1.40 1.40 1.40 1.40 1.40 1.40

Limestone 1.20 1.20 1.20 1.20 1.20 1.20

L-Lys 0.35 0.35 0.35 0.35 0.35 0.35

DL-Met 0.08 0.08 0.08 0.08 0.08 0.08

NaCl 0.30 0.30 0.30 0.30 0.30 0.30

Zeolite powder 0.57 0.57 0.59 0.61 0.63 0.65

Vitamin premixa 1.00 1.00 1.00 1.00 1.00 1.00

Trace mineralsb 0.10 0.10 0.08 0.06 0.04 0.02

Total 100.00 100.00 100.00 100.00 100.00 100.00

Calculated nutrient level

Metabolizable Energy (MJ/kg) 12.54 12.54 12.54 12.54 12.54 12.54

Crude protein (%) 19.91 19.91 19.91 19.91 19.91 19.91

Calcium (%) 1.09 1.09 1.09 1.09 1.09 1.09

Available P (%) 0.46 0.46 0.46 0.46 0.46 0.46

Lysine (%) 1.37 1.37 1.37 1.37 1.37 1.37

Methionine (%) 0.40 0.40 0.40 0.40 0.40 0.40

Methionine+ Cystine (%) 0.76 0.76 0.76 0.76 0.76 0.76

aThe vitamin premix provided the following per kilogram of diet: vitamin A (retinyl acetate) 12,000 IU, vitamin D3 (cholecalciferol) 3,000 IU, vitamin E 20mg, vitamin K3 1.3mg, thiamine

2.2mg, riboflavin 10mg, Vitamin B3 10mg, choline 400mg, vitamin B5 50mg, pyridoxine 4mg, Biotin 0.40mg, vitamin B11 1mg, and vitamin B12 0.013mg.
bThe trace minerals provided the following per kilogram of diet: Cu 10mg (cupric chloride), Fe 105mg (ferrous sulfate), Zn 100mg (Zinc sulfate), Mn 98mg (manganous sulfate), Se

0.9mg (sodium selenite), and I (calcium iodate) 0.575mg.

CCTM1000 group (P < 0.05), but there was no significant

difference in the ADG between the UCCTM1000 and

CCTM1000 groups (P > 0.05). The ADFI had a decreased

tendency with dietary coated complex TMs addition level

increasing (P < 0.05), the F/G was lower in the CCTE600

group than that in the CCTE200 group (P < 0.05), and the

ADG was not affected by dietary coated complex TMs addition

level (P > 0.05).

Nutrients’ digestibility

As shown in Figure 2, compared with the UCCTM1000

group, the digestibility of CP and CF significantly increased in

the CCTM1000 group (P < 0.05). The digestibility of CP was

higher in the CCTE600, CCTE800, and CCTE1000 groups than

that in the CCTE200 group (P < 0.05), and the digestibility of

DM was not affected by dietary coated complex TMs addition

level (P> 0.05). The digestibility of calcium and phosphorus was

not affected (P > 0.05) among treatment groups.

TABLE 4 Information on target genes and primers.

Genes Accession

no.

Primer sequences

(5′to 3′direction)

Occludin NM_205128.1 Forward: GGTCCCAGTAGATGTTGGCT

Reverse: CCTCATCGTCATCCTGCTCT

Claudin-1 NM_001013611.2 Forward: CCAAGAAACAACCACCAGCA

Reverse: TACAGCCCTTGGCCAATACA

ZO-1a XM_040680632.1 Forward: ACTTGTAGCACCATCTGCCT

Reverse: GAGCTCACAAGCTACGCAAA

β-actin NM_205518.1 Forward: AAAGCCATGCCAATCTCGTC

Reverse: ATCAGCAAGCAGGAGTACGA

aZO-1, Zonula occludent1.

Intestinal morphology

As shown in Figure 3, the intestinal tissue section images

(Figure 3A) showed that the villi of the duodenum, jejunum,

and ileum of CCTE400 and CCTE600 groups broilers did not

show obvious fracture and fragmentation injury compared with
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the other groups. Compared with the UCCTM1000 group, the

VH of the duodenum significantly increased in the CCTM1000

group (P < 0.05). The V/C of jejunum and ileum in the

CCTM400 and CCTM600 groups were higher (P < 0.05) than

that in the CCTM1000 group. The VH and CD of duodenum,

jejunum, and ileum were not affected (P > 0.05) among

treatment groups.

Intestinal permeability

As shown in Figure 4, the serum levels of endotoxin and D-

lactate were significantly increased with dietary coated complex

TMs addition level (P < 0.05). The serum activity of DAO was

not affected (P > 0.05) among treatment groups.

Relative mRNA expressions of occludin,
claudin-1, and ZO-1

As shown in Figure 5, the mRNA expression levels of

occludin, claudin-1, and ZO-1 in duodenal mucosa were not

affected (P > 0.05) among treatment groups. Compared with

the UCCTM1000 group, the mRNA expression level of occludin

in jejunal mucosa significantly increased (P < 0.05) in the

CCTM1000 group. The mRNA expression levels of claudin-1

and ZO-1 in the CCTM600 group were higher (P < 0.05) than

that in the CCTM1000 group.

Discussion

Growth performance and nutrient
digestibility

The present study suggested that diets supplemented with

1,000 mg/kg of coated TMs had reduced F/G than the same

level of uncoated TMs. Yin et al. (25) reported that coated

TMs significantly improved the F/G than the uncoated ones.

It is possible that coated TMs have higher digestibility, which

not only reduces the complexation of TMs and anti-nutritional

factors in the diets but also the antagonism between TMs was

alleviated (26). Despite the fact that there is little information

about the effect of coated TMs on broiler performance, it

is possible that controlling the release of trace metals in the

gastrointestinal tract could improve the efficacy of ion metal

absorption (27). Previous reports have found that coating

technology has become a performance enhancer due to its high

bioavailability (20, 27, 28). In this study, the F/G of yellow-

feather broilers fed 600 mg/kg of coated complex TMs in the

diets was the lowest. Yin et al. reported that the F/G of ducks

fed 500 mg/kg coated TMs in the diets was the lowest (28). Rao

et al. (29) reported that the F/G was decreased by supplemented

with low levels of organic TMs of their recommendations

compared with those supplemented with 100% inorganic TMs.

The cause behind the observed decrease in F/G associated with

feeding coated TMs appears to be improved mineral utilization.

Alternatively, it has been reported that the positive effect of

coated TMs supplementation on broiler performance might be

associated with the improvement of appetite and altered growth

hormone production (20, 30).

The apparent digestibility of CP in this study was slightly

lower compared with the values reported in other studies (31),

likely due to the composition of the diet. Previous studies have

shown that the fat to carbohydrate ratio (F/C) is the main

factor affecting the digestibility of nutrients (32). Alimohamady

et al. found that diets supplemented with inorganic zinc sulfate

decreased the digestibility of crude protein (33). In this study,

diets supplemented with 1,000 mg/kg of coated TMs could

enhance the CP and CF digestibility when compared to the same

level of uncoated TMs. The main functions of TMs are to be

part of a host of coenzymes for various biological processes

(34, 35). In addition, previous studies have shown that TMs such

as zinc, iron, and manganese play a crucial role in the digestive

enzyme activity of pancreatic tissue and the small intestine (30).

Bile can promote fat digestion (36), while copper and zinc can

affect bile secretion (37). Therefore, it is possible that dietary

coated TMs may improve the growth of broilers by stimulating

the enzyme activity of pancreatic tissue and small intestine and

bile secretion involved in CP and CF digestibility. In the current

study, the CP digestibility was greatly improved with increasing

dietary coated complex TMs level, which is consistent with the

Yin et al. report on poultry (28). The CF digestibility was not

affected by the increasingly dietary coated TMs levels in this

study, which are consistent with the previously demonstrated

study in poultry (28, 38). But Wu et al. (9) reported that CF

digestibility was increased by increasing dietary copper level.

So far, the mechanism for coated TMs affecting the nutrient

digestibility of poultry is still unclear and needs further study.

Intestinal development

Intestinal morphology is directly related to the ability to

digest and absorb nutrients of poultry (39), higher VH and lower

CD make the intestinal digestion and absorption of nutrients

stronger (40). In this study, diets supplemented with 1,000

mg/kg of coated TMs could enhance the VH in the duodenum

more than the same level of uncoated TMs. The results of Shen

et al. suggested that VH in the duodenum of piglets fed the

coated zinc oxide was higher than that of those fed the zinc

oxide (20). Previous studies have shown that TMs such as zinc,

iron, and manganese are mainly absorbed in the duodenum

(35). The reason behind the observed that supplementation

coated TMs may improve intestinal development is increased
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FIGURE 1

E�ects of dietary coated complex trace minerals (TMs) on the growth performance of yellow-feathered broilers. (A–C) The 1 to 56 days of age

average daily feed intake (ADFI), average daily gain (ADG), and feed to gain ratio (F/G) of yellow-feathered broilers. Results are mean value ±

standard error (SE); n = 6 for each group. *P < 0.05 for the UCCTM1000 group vs. The CCTM1000 group. Mean values with di�erent small

letters denote significant di�erences among CCTM groups (P < 0.05). UCCTM1000, supplemented with 1,000 mg/kg uncoated complex trace

minerals; CCTE1000, supplemented with 1,000 mg/kg of coated complex trace minerals; CCTE800, supplemented with 800 mg/kg of coated

complex trace minerals; CCTE600, supplemented with 600 mg/kg of coated complex trace minerals; CCTE400, supplemented with 400 mg/kg

of coated complex trace minerals; CCTE200, supplemented with 200 mg/kg of coated complex trace minerals.

FIGURE 2

E�ects of dietary coated complex TMs on nutrient digestibility of yellow-feathered broilers. The digestibility of (A) dry matter (DM), crude protein

(CP), crude fat (CF), and (B) Calcium, and phosphorus were examined. Results are mean value ± standard error (SE); n = 6 for each group. *P <

0.05 for the UCCTM1000 group vs. the CCTM1000 group. Mean values with di�erent small letters denote significant di�erences among CCTM

groups (P < 0.05). UCCTM1000, supplemented with 1,000 mg/kg of uncoated complex trace minerals; CCTE1000, supplemented with 1,000

mg/kg of coated complex trace minerals; CCTE800, supplemented with 800 mg/kg of coated complex trace minerals; CCTE600, supplemented

with 600 mg/kg of coated complex trace minerals; CCTE400, supplemented with 400 mg/kg of coated complex trace minerals; CCTE200,

supplemented with 200 mg/kg of coated complex trace minerals.

mineral utilization efficiency. In this study, the broilers fed the

coated complex TMs at the levels of 400 or 600 mg/kg showed

the maximum V/C in the jejunum and ileum. In addition,

the section results of HE staining in this experiment also

showed that the villus of duodenum, jejunum, and ileum in

coated 400 and 600 groups was orderly and complete compared

with coated 200 and 1,000 groups. The results showed that

supplementing with 400 or 600 coated complex TMs was

beneficial to the growth and development of broiler small

intestine tissue and promoted the digestion, absorption, and

utilization of nutrients by increasing the absorption area of small

intestine epithelium.

One of the main functions of the small intestine epithelium

is acting as a barrier, which prevents antigens and pathogens

from entering the mucosal tissues (41). The intestine epithelium

injury may lead to increase intestinal permeability, which will

promote the entering of toxic or allergenic substances from

the gut into the body (42). The serum D-lactate, endotoxin

content, and serum DAO activity were important indexes to

assess intestinal barrier dysfunction, it says that intestinal barrier
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FIGURE 3

E�ects of dietary coated complex TMs on small intestinal morphology of yellow-feathered broilers. (A) Representative hematoxylin/eosin (H&E)

staining was taken at a magnification of x 20 and (B) villus height, (C) cry depth, and (D) ratio of villus height (VH) to crypt depth (CD) were

measured. Scale bar = 1,000µm. Results are mean value ± SE; n = 6 for each group. *P < 0.05 for the UCCTM1000 group vs. the CCTM1000

group. Mean values with di�erent small letters denote significant di�erences among CCTM groups (P < 0.05). UCCTM1000, supplemented with

1,000 mg/kg of uncoated complex trace minerals; CCTE1000, supplemented with 1,000 mg/kg of coated complex trace minerals; CCTE800,

supplemented with 800 mg/kg of coated complex trace minerals; CCTE600, supplemented with 600 mg/kg of coated complex trace minerals;

CCTE400, supplemented with 400 mg/kg of coated complex trace minerals; CCTE200, supplemented with 200 mg/kg of coated complex trace

minerals.

FIGURE 4

E�ects of dietary coated complex TMs on intestinal permeability of yellow-feathered broilers. Serum (A) endotoxin concentration, (B) D-lactate

level, and (C) diamine oxidase (DAO) activity were measured. Results are mean value ± SE; n = 6 for each group. Mean values with di�erent

small letters denote significant di�erences among CCTM groups (P < 0.05). UCCTM1000, supplemented with 1,000 mg/kg uncoated complex

trace minerals; CCTE1000, supplemented with 1,000 mg/kg of coated complex trace minerals; CCTE800, supplemented with 800 mg/kg of

coated complex trace minerals; CCTE600, supplemented with 600 mg/kg of coated complex trace minerals; CCTE400, supplemented with 400

mg/kg of coated complex trace minerals; CCTE200, supplemented with 200 mg/kg of coated complex trace minerals.
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FIGURE 5

E�ects of dietary coated complex TMs on the expression of tight junction protein mRNA in the duodenal and jejunal mucosa of

yellow-feathered broilers. RT-PCR quantification of occludin, claudin-1, and zonula occludens-1 in (A) duodenal and (B) jejunal mucosa. Results

are mean value ± SE; n = 6 for each group. *P < 0.05 for the UCCTM1000 group vs. the CCTM1000 group. Mean values with di�erent small

letters denote significant di�erences among CCTM groups (P < 0.05). UCCTM1000, supplemented with 1,000 mg/kg of uncoated complex

trace minerals; CCTE1000, supplemented with 1,000 mg/kg of coated complex trace minerals; CCTE800, supplemented with 800 mg/kg of

coated complex trace minerals; CCTE600, supplemented with 600 mg/kg of coated complex trace minerals; CCTE400, supplemented with 400

mg/kg of coated complex trace minerals; CCTE200, supplemented with 200 mg/kg of coated complex trace minerals.

injury may lead to the increase of serum D-lactate content

and DAO activity (43, 44). We observed that the levels of

serum endotoxin and D-lactate were increased with increasing

dietary coated complex TMs supplementation. It is possible that

coated TMs have the characteristics of slow-release, which may

increase the deposition of TMs in the body, and lead to intestinal

tissue damage. Meanwhile, tight junctions (TJ) are complex

structures composed of transmembrane proteins, which play a

crucial role in maintaining the gut barrier function. The gene

expression of tight junction proteins, including ZO-1, occludin,

and claudin-1 protected intestinal barrier function (45, 46). In

this study, diets supplemented with 1,000 mg/kg of coated TMs

enhanced the expression levels of occludin mRNA in jejunal

mucosa when compared to the same level of uncoated TMs.

The addition of 600 mg/kg of coated Tes showed the maximum

expression level of occludin, ZO-1, and claudin-1 mRNA in

jejunal mucosa.

Conclusion

In conclusion, the present study showed that coated complex

TMs improved the growth and digestibility of crude protein

and crude fat in yellow feather broilers. The addition of 600

mg/kg of coated complex TMs showed the minimum F/G

and the maximum crude protein digestibility and intestine

development of yellow-feathered broilers when compared

with other treatments. This supplementation level of coated

complex TMs could totally replace 1,000 mg/kg of uncoated

complex TMs to further decrease the dose of TMs and raise

economic benefit.
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