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Humans utilize sensory evidence 
of others’ intended action to make 
online decisions
Rakshith Lokesh1, Seth Sullivan1, Jan A. Calalo2, Adam Roth2, Brenden Swanik1, 
Michael J. Carter5,6* & Joshua G. A. Cashaback1,2,3,4,6*

We often acquire sensory information from another person’s actions to make decisions on how to 
move, such as when walking through a crowded hallway. Past interactive decision-making research 
has focused on cognitive tasks that did not allow for sensory information exchange between humans 
prior to a decision. Here, we test the idea that humans accumulate sensory evidence of another 
person’s intended action to decide their own movement. In a competitive sensorimotor task, we 
show that humans exploit time to accumulate sensory evidence of another’s intended action and 
utilize this information to decide how to move. We captured this continuous interactive decision-
making behaviour with a drift-diffusion model. Surprisingly, aligned with a ‘paralysis-by-analysis’ 
phenomenon, we found that humans often waited too long to accumulate sensory evidence and failed 
to make a decision. Understanding how humans engage in interactive and online decision-making has 
broad implications that spans sociology, athletics, interactive technology, and economics.

From playing in an orchestra to dancing to competing in sport, our daily lives are enriched by interactions with 
others. Sensorimotor neuroscience has largely focused on how a single person selects actions. Yet our own evolu-
tion, survival, and neural hardwiring have been shaped by our ability to compete and  collaborate1,2. Following the 
formalism provided by game-theory in the  1950s3,4, research in neuroeconomics and psychology have examined 
decision-making between humans during collaborative and competitive cognitive-based  tasks5. Competitive 
tasks activate different areas of the brain compared to collaborative tasks, suggesting unique neural processes are 
involved during competitive decision-making6. While past work on human interactions has been important to 
better understand the neural basis of decision-making7, it does not consider how the sensorimotor system utilizes 
online sensory information of another person’s actions to make a decision and select an appropriate motor action.

The neuroeconomics and psychology literatures have used classic game-theory tasks, such as the prisoner’s 
dilemma and matching pennies, to study cognitive decision-making strategies of interacting  humans3,5,8–10. In 
these tasks, the Nash equilibrium solution derived from game theory specifies a decision strategy for each individ-
ual, such that no individual gains anything by deviating from that  strategy4,11. Studies that use cognitive decision-
making  tasks10 and continuous sensorimotor versions of classical  games12 report that human decision-making 
behaviour approaches the Nash equilibrium solution. These decision-making scenarios did not account for or 
consider the potential role of online sensory information of another person’s movement when making a deci-
sion. Yet individuals often have online sensory information of another person’s movement that they can utilize 
to make an informed decision, such as while driving a  car13 or playing  sport14. More recently, how two or more 
humans use bidirectional sensorimotor information to interact has been studied from a continuous sensorimotor 
control  perspective15–18 and formally through the framework of optimal feedback  control12,19,20. These human 
sensorimotor interaction studies did not examine the role of online sensory information on decision-making.

Decision-making has been studied extensively in the context of an individual animal or human perform-
ing sensory discrimination  tasks21,22. Decision-making research in  rodents23, non-human  primates24,25 and 
 humans26,27 has linked accumulated sensory evidence and neural activity in prefrontal areas and premotor 
cortex. Both selected decisions and corresponding reaction time distributions have been well explained with 
drift-diffusion  models28,29. Drift-diffusion models rely on accumulating online sensory evidence to appropriately 
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select decisions. Utilizing sensory evidence of another person’s intended action is likely an important feature 
of interactive human  behaviour30,31. An unresolved question is how humans utilize online sensory evidence to 
predict another person’s action and decide how to move.

We designed a two-person, competitive decision-making task where each participant had online sensory 
information (visual feedback) of their opponent’s actions. Participants received points according to symmetrical 
or asymmetrical reward structures of the matching pennies  game10. Across Experiment 1 and 2, we tested the 
idea that participants accumulate sensory evidence of their opponent’s intended action to make a decision. We 
manipulated the available trial time to control the amount of sensory evidence available to the participants. We 
predicted that participants would exploit available time to accumulate sensory evidence when making a decision 
on how to move. Furthermore, we predicted that the participants would be more likely to move in response to 
their opponent’s actions with more available time. In Experiment 2, we also tested whether game theoretic pre-
dictions for target selection would be preserved when the players shared sensory information about each others’ 
actions. Accordingly, in addition to modulating available time, here we also manipulated the reward structure 
experienced by participants. When experiencing an asymmetric reward structure, we predicted that participants 
would not always select targets in a manner that approached the Nash equilibrium solution since they could 
utilize sensory evidence of their opponent’s intended action. Finally, we adapted a drift-diffusion model that 
accumulates sensory evidence to capture online decision-making behaviour of interacting participants.

Results
Experimental design. Here we designed a two-player sensorimotor task where participants had visual 
feedback of their opponent (Fig. 1A). Each participant controlled a visible cursor that was aligned with their 
hand position. They could also see the online position of their opponent’s cursor. Both participants were 
instructed to move from a start position and to select one of two potential targets before the end of the trial. The 
participants were allowed to leave the start position once they heard the first beep and were required to reach 
a target before a second beep. Once a participant entered a target, their cursor would remain stationary at the 

Figure 1.  Experiment 1 and 2 design. (A) Participants from a human pair each controlled a cursor located 
at the position of the robot handle. Each participant could see their opponent’s cursor on their respective 
screens throughout the trial. At the start of each trial, participants placed their cursor in the start position 
(smaller white ring). Then participants heard a first beep and two targets (larger white rings) would appear. 
They were instructed to reach forward and move their cursor into one of the two targets before a second beep. 
Human pairs were randomly assigned to the roles of predator (dark red) and prey (dark blue). The predator 
won a trial by reaching to the same target as the prey, whereas the prey won a trial by reaching to the opposite 
target from that of the predator. (B) For the symmetric reward structure, the winner of a trial received 1 
point and the loser received 0 points. The asymmetric reward structure was similar to the symmetric reward 
condition, with the exception that the predator received 3 points if both the predator and prey selected the 
right target. For Experiment 1 and 2, we controlled available time before the second beep (e.g., short = 500 ms, 
medium = 850 ms, or long = 1500 ms) to manipulate the amount of sensory evidence that a participant could 
accumulate of their opponent. In Experiment 1, participants experienced three different available times and 
were rewarded points according to a symmetric reward structure, resulting in the following conditions: short-
symmetric, medium-symmetric, and long-symmetric. For Experiment 2, we adopted the two different reward 
structures (symmetric and asymmetric) to also test whether participants would select targets in proportions 
that approached the Nash equilibrium solution when they had sensory information of their opponent. Here 
participants experienced two different trial times (short or long) and two reward structures (symmetric or 
asymmetric), resulting in the following conditions: short-symmetric, short-asymmetric, long-symmetric, and 
long-asymmetric. For Experiment 1 and 2, we predicted that participants: (1) would exploit available time 
to accumulate sensory evidence, and (2) utilize sensory evidence and accordingly move in response to their 
opponent’s actions. In Experiment 2, we predicted that participants would not select targets in proportions that 
approached the Nash equilibrium solution in the long-asymmetric condition.
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target entry point until the end of the trial. For Experiments 1 and 2, participants received points according to 
the matching pennies  game3.

In Experiment 1, we tested how humans make informed decisions that rely on sensory evidence of another 
person’s actions. To manipulate the amount of sensory evidence, we used three blocks of trials with different 
amounts of available time: short (500 ms), medium (850 ms) and long (1500 ms). Participants were rewarded 
points according to the symmetric matching pennies game (Fig. 1B) and were assigned fixed roles as either the 
‘predator’ or ‘prey’. The predator received one point by reaching the same target as the prey. Conversely, the prey 
won a point by reaching a target different from the predator. Participants did not receive any points if they did 
not reach a target before the second beep. Additionally, a participant won the trial if they selected a target and 
their opponent did not select a target prior to the second beep. Accordingly, there were three conditions: short-
symmetric, medium-symmetric, and long-symmetric. Participants completed 150 trials in each condition. We 
used a 3 (available time: short, medium, long) × 2 (role: predator, prey) mixed ANOVA to test for main effects 
and interactions separately for each dependent variable.

In Experiment 2, we further tested how humans make decisions that rely on sensory evidence of another per-
son’s actions. We also tested whether participants would approach game theoretic predictions for target selection 
(Eq. 3, 4) when utilizing sensory evidence of their opponent’s actions. Participants performed short (500 ms) and 
long (1500 ms) trial lengths with either a symmetric or asymmetric reward structure (Fig. 1B). The only difference 
between the asymmetric and symmetric reward structure was that the predator received 3 points if the predator 
and prey reached the right target. For the symmetric reward structure, the Nash equilibrium solution suggests 
that both participants should select the right target in a 50% proportion. For the asymmetric reward structure, 
the Nash equilibrium solution suggests that the predator and prey should respectively select the right target in 
50% and 25% proportions. Accordingly, there were four conditions: short-symmetric, short-asymmetric, long-
symmetric, and long-asymmetric. Participants completed 150 trials in each condition. We used a 2 (available 
time: short, long) × 2 (reward condition: symmetric, asymmetric) × 2 (role: predator, prey) mixed ANOVA to 
test for main effects and interactions separately for each dependent variable.

Trial level movement behaviour. With more available time, participants displayed increasingly more 
complex reaching trajectories in the medium and long conditions (Fig. 2A,B). An increase in complexity sug-
gests that participants used a broader array of strategies to react to or mislead their opponent. For short trial con-
ditions, participants did not have much available time and reached directly to one of the two targets. As a proxy 
of the number of movement strategies adopted by the participants, we quantified the complexity of lateral hand 
trajectories using principal component analysis (PCA) for Experiment 1 (Fig. 2C) and Experiment 2 (Fig. 2E). 
We included trials where participants reached a target. For each participant and condition, we counted the num-
ber of principal components that explained more than 5% of the lateral hand trajectory variance (Fig. 2D,F). 
The number of principal components (PC) increased with more available time (p < 0.001, θ̂ > 95.83% for all 
comparisons). A larger number of PCs suggests that participants used more strategies with more available time.

Participants exploited available time. Movement times (Fig. 3A,B), and time of last change in move-
ment direction (Fig. 3C,D) from all participants in Experiment 1 and 2. Here, time of last change in movement 
direction represents when a participant initiated their last movement towards a target. Additionally, we quan-
tified whether participants were exploiting available time by calculating their target choice probability. Target 
choice probability is the probability of a participant’s cursor being on the same side (left or right) of the workspace 
as the eventually selected target. We calculated target choice probability along normalized time for Experiment 1 
(Fig. 3E) and Experiment 2 (Fig. 3G). We then examined the moment in normalized time that the target choice 
probability crossed 75% ( t0.75 ). For t0.75 times, we found a significant main effect of trial length in Experiment 1 
(F[2, 44] = 63.17, p < 0.001) and Experiment 2 (F[1, 30] = 1441.69, p < 0.001). As shown in Fig. 3F,H, t0.75 times 
were significantly greater with an increase in trial time (p < 0.001, θ̂ > 75.00%, for all comparisons). These results 
indicate that participants exploited available time in the trial by remaining unpredictable about their target 
selection.

Participants moved in response to their opponent’s actions with more available time. We 
calculated a metric termed mutual location probability to quantify whether a participant’s movements were based 
on observing their opponent. Mutual location probability is the probability that the cursors of the predator and 
prey were on the same side (left or right) of the workspace. A mutual location probability greater than 0.5 suggests 
that the participant was exhibiting tracking behaviour. Conversely, values less than 0.5 suggests that the partici-
pant was exhibiting avoidance behaviour. We plotted the mutual location probability along normalized time for 
Experiment 1 (Fig. 4A) and Experiment 2 (Fig. 4C). Here, we normalized time from the start of the trial to the 
time when the participant entered a target. In the short conditions, the values were always close to 0.5 indicating 
that the participants did not move in response to their opponent. In the medium and long condition trials, the 
predator increasingly exhibited tracking behaviour as a trial progressed. Conversely, the prey displayed avoid-
ance behaviour. To assess tracking and avoidance behaviour we looked at the average mutual location probability 
between 80-100% of normalized time for Experiment 1 (Fig. 4B) and Experiment 2 (Fig. 4D). We found a signifi-
cant interaction between participant’s role (predator or prey) and trial length in Experiment 1 (F[2, 44] = 27.86, 
p < 0.001) and Experiment 2 (F[1, 30] = 49.66, p < 0.001). In Experiment 1, the predator displayed significantly 
greater tracking behaviour in the long-symmetric compared to medium-symmetric (p < 0.001, θ̂ = 83.33%) and 
short-symmetric (p < 0.001, θ̂ = 91.66%). The prey displayed significantly greater avoidance behaviour in the 
medium-symmetric condition (p = 0.002, θ̂ = 83.33%) and long-symmetric condition (p < 0.001, θ̂ = 100%) 
compared to the short-symmetric condition. Similarly, in Experiment 2, the predator displayed greater track-
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Figure 2.  Individual and group movement behaviour. Sample hand trajectories of an exemplar human 
pair (predator top row, prey bottom row) for all trials within each condition for (A) Experiment 1 and (B) 
Experiment 2. Lateral hand trajectory variance explained (y-axis) by the first five principal components (x-axis) 
for (C) Experiment 1 and (E) Experiment 2. Error bars represent ±1 standard error. Number of principal 
components explaining greater than 5% variance (y-axis) within each condition (y-axis) for (D) Experiment 1 
and (F) Experiment 2. The open gray circles and connecting gray lines correspond to individual participants. 
Box plots show 25th, 50th, and 75th percentiles. Here we see an increase in movement complexity with more 
available time, which suggests participants used an increased number of strategies to mislead and react to an 
opponent.
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ing behaviour in the long conditions compared to the short conditions (p < 0.001, θ̂ = 84.37%). The prey had 
more avoidance behaviour in the long conditions compared to the short conditions (p < 0.001, θ̂ = 81.25%). For 
both experiments, the predator and prey used a random target selection strategy (mutual location probability ≈ 
0.5) that did not rely on observing their opponent in the short conditions (p > 0.1, θ̂ < 60.00% for all compari-
sons). Thus, the predator and prey clearly exhibit tracking and avoidance behaviour before reaching a target in 
accordance to their roles. Differences in mutual location probability between the predator and prey would in 
part indicate that participants utilize sensory evidence of their opponent’s target selection. We also performed a 
cross-correlation analysis between the x-coordinate velocities of the predator and prey to further examine track-

Figure 3.  Target selection timing and choice behavior. Movement time (x-axis) and probability (y-axis) from 
all participants within each condition for (A) Experiment 1 and (B) Experiment 2. Time of last change in 
movement direction (x-axis) and probability (y-axis) for (C) Experiment 1 and (D) Experiment 2. Time of last 
change in movement direction represents when a participant made their final movement towards a target. Target 
choice probability (y-axis) across normalized time (x-axis) for (E) Experiment 1 and (F) Experiment 2. Target 
choice probability is the probability that a participant reaches to the right or the left target given the cursor is 
respectively on the right side or the left side of the workspace. t0.75 times indicate the normalized time when the 
target choice probability crosses 75%. Summary of t0.75 times (y-axis) for (G) Experiment 1 and (H) Experiment 
2. The open gray circles and connecting gray lines correspond to individual participants. Box plots show 25th, 
50th, and 75th percentiles. These results align with the notion that participants exploited available time to 
accumulate sensory evidence of their opponent’s intended action.
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ing and avoidance behaviour. The cross-correlation analysis yielded similar results and the same interpretation 
as mutual location probability (see Supplementary A). The observed tracking and avoidance behaviour suggests 
that with more available time, participants increasingly relied on the sensory evidence of their opponent’s cursor 
before selecting a target.

Correlates of successful performance. We were also interested in quantifying behaviour that resulted 
in successful performance. Across both experiments, participants with a greater t0.75 time relative to their oppo-
nent had a greater win probability in the medium and long conditions (p ≤ 0.001, r ≥ 0.70, for all comparisons; 
Fig. 5A,C). Further, participants that delayed the time of last change in movement direction had a greater win 
probability in the longer trial conditions (p < 0.05, r ≥ 0.64, for all comparisons; Fig. 5B,D). These results suggest 
that successful participants exploited time and delayed their final reach.

Participants selected targets in proportions that approached Nash equilibrium. We looked at 
the proportion that the participants selected the right or left targets. As a reminder, the Nash equilibrium solu-
tion for the symmetric reward structure (Fig. 1B) suggests that both the predator and prey should select the 
two targets in equal proportions. Here, the short-symmetric condition is similar to the cognitive version of the 
matching pennies game. That is, in the short-symmetric condition participants must decide their target selection 
prior to moving because they do not have sufficient time to respond to their opponent’s actions. In the medium-
symmetric and long-symmetric conditions, the participants could utilize sensory evidence of their opponent to 

Figure 4.  Tracking and avoidance behaviour. Mutual location probability (y-axis) across normalized time 
(x-axis) for (A) Experiment 1 and (C) Experiment 2. Average mutual location probability in the 80–100% 
normalized time window (y-axis) for each condition in (B) Experiment 1 and (D) Experiment 2. Mutual 
location probability greater than 0.5 or less than 0.5 represents net tracking or avoidance behaviour, respectively. 
Mutual location probability equal to 0.5 corresponds to random target selection (gray dashed line) and not 
relying on sensory evidence of an opponent’s movement. The open gray circles and connecting gray lines 
correspond to individual participants. Box plots show 25th, 50th, and 75th percentiles. Participants did not 
move in response to their opponent’s movements in the short trial conditions because they had insufficient 
time to utilize sensory evidence. With more available, the predator and prey respectively exhibited tracking and 
avoidance behaviour. Thus, with more available time, participants relied on sensory evidence of their opponent’s 
actions before selecting a target.
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select targets. In Experiment 1, we found no significant effect of the participant’s role (F[1, 22] = 0.24, p = 0.62) 
or trial length (F[2, 44] = 0.87, p = 0.42) on right target selection proportions (Fig. 6A). Further, the right target 
selection proportion did not differ from the Nash equilibrium solution of 0.5 (p > 0.99, θ̂ < 70.00% for all com-
parisons), except for the predator in the medium-symmetric condition (p = 0.003, θ̂ = 91.60%).

For Experiment 2, the Nash equilibrium solution for the asymmetric reward structure (Fig. 1B) suggests 
that the predator and prey should respectively select the right target in proportions of 50% and 25%. Similar to 
Experiment 1, we expected the participants to select targets close to the Nash equilibrium solution in the short-
asymmetric condition because of its similarity to the cognitive version of the matching pennies game. However, 
in Experiment 2 we expected that participants would select targets in different proportions depending on the 
availability of sensory evidence to make decisions. Specifically, we expected that the prey would have a lower 
proportion of right target selections in the long-asymmetric condition relative to the the short-asymmetric condi-
tion. Figure 6B shows the proportion of right target selections for the predator and prey compared to the Nash 
equilibrium solutions. There was a significant interaction between participant roles and reward condition (F[1, 
30] = 19.4, p < 0.001). The predator’s right target selection proportions were similar across the reward conditions 
(p = 0.65, θ̂ = 53.12%), whereas the prey’s right target selection proportions in the asymmetric conditions were 
different from the symmetric conditions (p < 0.001, θ̂ = 93.75%). The predator selected right targets in propor-
tions close to 0.5 in the long-asymmetric condition (p > 0.99, θ̂ = 68.75%). Unexpectedly, we found that the 
prey selected the right target in the long-asymmetric condition in similar proportions to the short-asymmetric 
condition (p > 0.99, θ̂ = 56.25%). With asymmetries in the reward structure, these results do not support the 
notion that target selection proportions would differ depending on whether sensory evidence is available for 
decision-making. It is worthwhile to note that the Nash equilibrium solution analyses do not consider indeci-
sions, which we discuss below.

Participants had more indecisions with more available time. We examined the proportion of inde-
cision trials where participants did not reach a target. We found a significant effect of trial length on indecisions 

Figure 5.  Correlates of successful performance. Relationship between target choice probability t0.75 time 
differences (x-axis) of the predator and prey to the win probability (y-axis) in (A) Experiment 1 and (C) 
Experiment 2. Relationship between time of last change in movement direction differences (x-axis) of the 
predator and prey to win probability (y-axis) in (B) Experiment 1 and (D) Experiment 2. Open circles represent 
pairs of competing participants. Least square regression lines are shown for each condition. With more available 
time, these data suggest the participants that exploited time and delayed their final reach had a greater win 
probability.
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in Experiment 1 (F[2, 44] = 7.91, p = 0.001) and Experiment 2 (F[1, 30] = 53.7, p = 0.002). Surprisingly, we found 
that there were more indecisions in the long-symmetric condition compared to the short-symmetric (p < 0.001, 
θ̂ = 79.16%) and medium-symmetric (p = 0.001, θ̂ = 75.00%) conditions in Experiment 1 (Fig. 7A). This find-
ing was replicated in Experiment 2, where we found that the long conditions had significantly more indecisions 
relative to the short conditions (p <= 0.001, θ̂ = 76.56%). Participants did not reach the target in the short condi-
tions if they did not react in time to the first beep or reach at the necessary speed. Conversely, participants had 
sufficient time to reach a target in the long conditions. More indecisions with more available time may reflect a 
‘paralysis-by-analysis’ phenomenon. That is, indecisions may have resulted from participants waiting too long to 
acquire sensory evidence of their opponent’s intended target selection.

Additionally, in Experiment 2 (Fig. 7B) we found a significant interaction between trial length and partici-
pant role (F[1, 30] = 10.94, p = 0.002). The predator had significantly more indecisions than the prey in the long 
conditions (p < 0.001,θ̂ = 68.75%), but not in the short conditions (p = 0.46, θ̂ = 59.37%). As an exploratory 
analysis, we tested if the increase in the proportion of predator’s indecisions differed depending upon whether 
the prey selected the left target, right target, or had an indecision (Fig. 7C). For the long-symmetric condition, 
the predator’s indecision proportions where the same when the prey selected the left or right target (p = 0.45). 
Conversely, for the long-asymmetric condition we found a greater proportion of predator indecisions when the 
prey selected the left target in comparison to the right target (p < 0.001). That is, the predator was attempting 
to obtain three points and may have been more focused on the prey moving towards the right target, resulting 
in more indecisions when the prey selected the left target. These results suggest that indecisive behaviour is 
influenced by an interplay between sensory evidence and reward structure.

Decision-making model captured successful behaviour by accumulating sensory evidence. A 
central idea in our experiment was that a participant observed their opponent’s cursor to accumulate sensory 
evidence and predict their target selection. Upon predicting an opponent’s intended target selection, a partici-
pant could then select a target appropriate to their role. We tested whether a drift-diffusion model could capture 
the decision-making behaviour of the participants. Sensory evidence was calculated as the probability that the 
opponent would select the right (or left) target given the current position of the opponent’s cursor (Fig. 8A,B). In 
this context, the drift-diffusion model accumulates this sensory evidence to predict a right or left target selection 
for the opponent (Fig. 8C,D), and a target was selected based on the participants assigned role. For each partici-
pant and experimental condition, we calculated the proportion of trials where the model’s predicted target selec-
tion matched the actual target selection. Here, we focus on model prediction accuracy for winning trials since we 
were primarily interested in how utilizing sensory evidence promoted successful decision-making behaviour. 
We also report the overall model prediction accuracy for wins, losses, and indecisions (see Supplementary B). 
There was a significant main effect of trial length on the model prediction accuracy for successful behaviour in 
Experiment 1 (F[2, 44] = 37.91, p < 0.001) and Experiment 2 (F[1, 30] = 61.36, p < 0.001). As expected for the 
short trial conditions, the model predicted at the chance level because there was insufficient time to accumulate 

Figure 6.  Target selection proportions. (A) Average right target proportion (%) of the predator (x-axis) and 
prey (y-axis) in Experiment 1. The right target selection proportions of the predator and prey were close to the 
Nash equilibrium solution for the symmetric reward structure (50% for both predator and prey). (B) Average 
right target proportion (%) of the predator (x-axis) and prey (y-axis) in Experiment 2. The Nash equilibrium 
solution (gray circles) for the symmetric (50% for both predator and prey) and asymmetric (50% for predator 
and 25% for prey) reward structures are shown in (A) and (B). Error bars represent ± 1 standard error. Across 
both experiments, the predator selected the right target in proportions close to 50%. As expected in the short 
asymmetric condition, the prey selected the right target in proportions that approached the Nash equilibrium 
solution. Unexpectedly and against our prediction, the prey target selection approached the Nash equilibrium 
solution in the long-asymmetric condition—even though they were utilizing sensory evidence of their opponent 
to select a target (see Fig. 4B,D).
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sensory evidence of the opponent’s intended target selection. In Experiment 1 and 2 (Fig. 8E,F), the model pre-
diction accuracy was significantly higher with more available time (p < 0.001, θ̂ > 75.00% for all comparisons). 
Thus, with more available time, the model was able to accumulate sensory evidence of the opponent’s action to 
appropriately predict their decision. Our model aligns with the idea that humans accumulate sensory evidence 
to correctly predict the action intention of their opponent.

Taken together, our results suggest that participants who exploited time and relied on sensory evidence of 
their opponent to make decisions were more successful. The drift-diffusion model was able to predict successful 
behaviour by accumulating sensory evidence of an opponent’s actions. Interestingly, with more available time 
participants often failed to reach a target. This finding may arise from a paralysis-by-analysis phenomenon, where 
waiting too long to acquire sensory evidence of an opponent’s intended action was detrimental to performance.

Discussion
During a competitive sensorimotor task, our findings suggest that humans exploit available time to accumulate 
sensory evidence of their opponent’s actions to make decisions. With more available time participants increas-
ingly relied on sensory evidence of their opponent’s movements, which is supported by the observed tracking 
and avoidance behaviour. We also questioned whether sensory information of an opponent’s actions would 
cause participants to shift away from selecting targets in proportions that approach an optimal game theoretic 
prediction (Nash equilibrium solution). Participants selected targets in proportions that approached the Nash 
equilibrium solution, similar to cognitive decision-making  tasks10, despite utilizing online sensory evidence of 
their opponent. Surprisingly, we also found that participants were less likely to select a target with more avail-
able time. This finding may reflect a paralysis-by-analysis phenomenon. That is, participants waited too long to 
accumulate sensory evidence of their opponent’s intended target selection, which resulted in indecisive behaviour. 
We also captured online and interactive decision-making behaviour using a drift-diffusion model.

The different time conditions in our experiment allowed us to manipulate the amount of sensory evidence 
used to make a decision. We found that participants exploited more available time with an increase in trial length. 
Specifically we found with more available time that participants delayed the time of last change in movement 
direction and displayed a greater t0.75 time, both of which correlated with successful performance. Participants 
may have exploited time for two reasons. First, participants may have used this additional time to accumulate 
sensory evidence of their opponent’s actions. Second, participants could also have been simultaneously attempt-
ing to keep their eventual target selection unpredictable for a longer portion of the trial. Our findings suggest 
that humans exploit available time to remain unpredictable and to accumulate sensory evidence of other’s actions 
during competitive interactions.

Figure 7.  Indecisive behaviour. Proportion of trials (y-axis) where participants did not select a target for 
each condition in (A) Experiment 1 and (B) Experiment 2. The open gray circles and connecting gray lines 
correspond to individual participants. Box plots show 25th, 50th, and 75th percentiles. Across both experiments, 
there were a greater proportion of trials where the participants did not select a target (y-axis) in the long 
conditions relative to the other conditions. Participants did not select a target in the short trial conditions if they 
did not react in time to the first beep or reach at the necessary speed. Conversely, participants had sufficient 
time to select a target in the long conditions. More indecisions with more available time may reflect a ‘paralysis-
by-analysis’ phenomenon. That is, indecisions may have arisen from participants waiting too long to acquire 
sensory evidence of their opponent’s intended target selection. Additionally, the predator had higher proportions 
of indecisions in comparison to the prey in the long conditions. (C) Predator indecision proportions (y-axis) 
depending upon the Prey’s target selection or indecision (x-axis). In the long-symmetric condition, there was 
no difference in predator indecision proportions when the prey selected the right or left targets. Conversely, in 
the long-asymmetric condition the predator had significantly greater indecisions when the prey selected the 
left target compared to the right target. These results suggest that indecisive behaviour is also influenced by the 
reward structure.
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Figure 8.  Computational model. The probability of selecting the right target was estimated by discretizing 
the (A) workspace over (B) time. Each discretized area was characterized by a beta distribution that sampled 
the probability an opponent would select the right target ( pright ) given the current location of their cursor. The 
sampled right target selection probability was used as evidence for the drift-diffusion model. (C) Sample hand 
trajectories of a human pair from a trial in the long-symmetric condition. (D) Drift-diffusion model showing 
accumulation of evidence using the hand trajectories shown in (C). The drift-diffusion model accumulates 
sensory evidence of the opponent’s actions to predict the opponent’s target selection. The model predicts a 
right or left target selection once the accumulated sensory evidence respectively crosses the upper or lower 
target decision boundary. A target was selected for the participant based on their role and the predicted target 
selection for their opponent. For the example shown, the predator observed the prey’s cursor [dark blue trace 
in (C)] and accumulated evidence [dark red trace in (D)] that the prey will select the left target (the dark red 
line crossed the left target decision bound). The predator then correctly selected the left target to win the trial. 
Conversely, the prey observed the predator’s cursor [dark red trace in (C)] and accumulated evidence [dark blue 
trace in (D)] that suggested the predator would go to the right target (the dark blue line crossed the right target 
decision bound). The prey made a wrong decision based on early accumulated evidence and incorrectly selected 
the left target in a failed attempt to avoid the predator. Here the drift-diffusion model correctly predicted a left 
target selection for both the predator and prey. Model prediction accuracy (y-axis) for successful decisions in (E) 
Experiment 1 and (F) Experiment 2. Model prediction accuracy is the proportion of trials where the predicted 
decision for a participant matched the observed decision. The open gray circles and connecting gray lines 
correspond to individual participants. Box plots show 25th, 50th, and 75th percentiles. As expected, the model 
made random decision predictions ( ≈ 50%, grey dashed line) in the short trial conditions because there was not 
enough time to accumulate evidence. Conversely, with more available time to accumulate evidence in the longer 
trial conditions, the model predicted a participant’s successful behaviour with greater accuracy.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8806  | https://doi.org/10.1038/s41598-022-12662-y

www.nature.com/scientificreports/

The predator and prey could win a trial by using sensory evidence to respectively track and avoid each other. 
We captured tracking or avoidance behaviour of the participants by considering the relative position of both 
participants. The mutual location probability remained close to 0.5 throughout the short condition trials, and early 
on during the medium and long conditions. In the short conditions, participants could not react to the sensory 
evidence of their opponent’s actions because they did not have sufficient time. Further, as discussed earlier, the 
early sensory evidence during the medium and long conditions was weakly indicative of a participant’s eventual 
target selection. Thus, it would not be useful for participants to react to their opponent’s actions early on in the 
medium and long condition trials. However, as a trial progressed, the mutual location probability showed tracking 
and avoidance behaviour in the medium and long condition trials. The idea that humans increasingly rely on 
sensory information as a trial progresses aligns with past research that showed humans delay their decision onset 
when there is noisy sensory evidence during initial stimulus  presentation32. During collaborative tasks, utilizing 
early sensory evidence of a partner is important for achieving a common  goal17,18,33–35. Observation of other’s 
actions not only provides an understanding of their current goals but aids in the prediction of future  actions30. 
In our study, we found participants reacted to their opponent’s actions that were predictive of target selection.

With more available time the participants used a broader set of movement strategies. Participants could have 
used more complex trajectories to react to their opponent, remain unpredictable, or even mislead their oppo-
nent about their intended target selection. As discussed in the paragraph above, there was clear evidence that 
participants were reacting to their opponent’s actions since they displayed tracking and avoidance behaviour. 
Additionally, movements may have been in part used by a participant to mislead or deceive their opponent about 
their eventual target selection. Such deceptive movements are commonly observed in interactive  sports36,37. In 
the current study, it is unclear to what extent the movements were used to mislead the opponent versus react 
to the opponent’s movements. It would be interesting to study the effect of individual differences on movement 
strategies and the relation to task performance. Further, movement strategies may be influenced by physiologi-
cal factors like age and gender, experiential factors like prior gaming experience and sports experience, and 
socioeconomic factors.

Iterative decision-making during cognitive-based tasks has been studied and characterized extensively from 
a game theoretic  perspective5,7,9. With the symmetric reward structure, we found that the participants selected 
targets in equal proportions that aligned with the Nash equilibrium solution. We then used an asymmetric 
reward structure to further examine decision-making behaviour when participants have sensory evidence of 
one another. During cognitive decision-making tasks, past research using an asymmetric reward structure in 
the matching pennies game have reported that  humans10,  chimpanzees10, and  pigeons38 select decisions that 
approached the Nash equilibrium solution. The short conditions used in our experiment were analogous to 
cognitive decision-making tasks since participants did not have sufficient time to utilize sensory evidence of 
their opponent. Expectedly, we found during short conditions that participants proportionally selected targets 
in a manner that approached the Nash equilibrium solution. However, it is possible that sensory evidence of an 
opponent prior to making a decision might shift decision-making behaviour away from the Nash equilibrium 
solution. Interestingly, we observed that the predator and prey also proportionally selected targets in the long 
conditions in a manner that approached the Nash equilibrium solution—despite clearly utilizing sensory evidence 
to perform tracking and avoidance behaviour. One possibility is that participants relied on sensory evidence when 
their opponents selected a target early, but then resorted to randomly selecting targets when they had insufficient 
sensory evidence of their opponents intended actions. A worthwhile future direction is to further examine the 
interplay of online sensory evidence and optimal decision-making from a game theoretic perspective.

Our study bridges research between perceptual decision-making and human sensorimotor interactions. The 
neuroeconomics and psychology literature have studied human-human decision-making by adopting classical 
cognitive  games5,7,9. Perceptual decision-making studies with individual  rodents23, non-human  primates24,25 and 
 humans26,27 have established a strong link between sensory evidence and neural activity in premotor and prefron-
tal cortices. Past work studying collaborative human-human sensorimotor interactions have addressed communi-
cation of  intentions16,34,35,39, skill  level40,41, interaction  forces18,20 and role  specialization17,42. Researchers have used 
differential game theory to model continuous sensorimotor control during physical human  interactions19,43–46. 
However, these interaction scenarios differ from perceptual decision-making, where each interacting individual 
utilizes sensory evidence to make a decision and select an action. Braun and colleagues used continuous sen-
sorimotor versions of classical cognitive games to study haptic interactions between humans and between trial 
decision  strategies12,47. The focus of these studies was to characterize between trial decision-making strategies 
of the participants, but not the influence of online sensory evidence on within trial decision-making. To our 
knowledge, we are the first to characterize the influence of online sensory evidence on perceptual decision-
making during human-human interactions.

Successful decision-making during interactions with other humans requires the ability to predict the out-
comes of another person’s  actions30. Studies have reported neural activity in premotor areas of the human brain 
when  observing48 or  predicting49,50 others’ actions. Previously, models based on game theory that represent the 
goals and actions of other interacting humans have been implemented for cognitive decision-making  tasks51 
and continuous interaction  tasks19,45. Behaviorally, participants most likely won by chance in the short condi-
tion trials because they did not have sufficient time to accumulate sensory evidence. Accordingly, the model 
predicted winning decisions close to the chance level. However, a participant most likely won in the longer 
trials by observing their opponent’s cursor and correctly predicting their target selection. Accordingly, our 
model predicted a participant’s winning decisions with greater accuracy when there was more time available to 
accumulate sensory evidence.

Our model was motivated by the idea that participants utililze sensory evidence of their opponents actions 
in an attempt to predict their eventual target selection. There are several different proposed models that have 
been used to capture perceptual decision-making: (1) a perfect accumulator model, such as the drift-diffusion 
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model used in this  study28, (2) leaky accumulator  models52, or urgency-gating  models53. Functionally, the drift-
diffusion model accumulates evidence throughout the trial, whereas the urgency-gating models rely more heavily 
on sampled evidence later in time. In this paper, we focused on a drift-diffusion model that has been used exten-
sively to capture decision-making behaviour during perceptual tasks by accumulating sensory  evidence21,29,54. 
Overall, our model did well to capture decision-making behaviour of the participants (see Fig. 8, Supplementary 
B). Additionally, we tested a leaky accumulator and urgency-gating model (Supplementary C). All three models 
did well to capture the data, with the perfect accumulation drift-diffusion model using the least number of free 
parameters (Fig. 8). More recently it has been suggested that both evidence accumulation and urgency-gating are 
used to make  decisions55,56. To what extent the nervous system relies on evidence accumulation, urgency-gating, 
or both remains an open question. It could be interesting to compare the performance of different decision-
making models in predicting “change of minds”, where participants make a change in decision and movement 
just prior to selecting a  target57.

Surprisingly, in both experiments we found a greater proportion of indecisions in the long trials—despite 
participants having ample time to physically reach the target. In the short condition, participants would not reach 
a target if they had a poor reaction time, slow movement, or attempted to select a target based on observing 
their opponent. However, participants had sufficient time to reach a target in the long condition trials, but had 
significantly more indecisions. More indecisions with more available time may reflect a paralysis-by-analysis 
phenomenon. That is, late decisions may have resulted from participants waiting too long to acquire and act upon 
sensory evidence of their opponent’s intended action. Paralysis-by-analysis has been observed in decision-making 
scenarios across various types of social  interactions58 including  sport59 and  economics60,61. Late decisions may 
have resulted from participants waiting too long to acquire and act upon sensory evidence of their opponent’s 
intended action.

We also observed that the predator had more indecisions in comparison to the prey in the long conditions. 
Exploring this result, in the symmetric condition there were no differences in predator indecision when the 
prey selected the right or left target. Yet in the long-asymmetric condition we found that predator indecision 
proportions were greater when the prey selected the left target when compared to the right target in the long-
asymmetric condition, but not in the long-symmetric condition. For the asymmetric reward condition, the 
predator received three points for selecting the right target when the prey also selected the right target. The 
predator was attempting to obtain three points and may have been more focused on the prey selecting the right 
target, resulting in more indecisions when the prey selected the left target. That is, the predator may have been 
waiting longer to accumulate sensory evidence on whether the prey would select the right target, which lead to 
a greater proportion of indecisions. Asymmetries in the reward structure seems to influence the tendency to 
wait for more sensory evidence of another person’s actions when it is linked to greater reward (or loss), which 
may come at the cost of more indecisions.

A limitation of our model is that it did not predict indecisions with good accuracy. Indecisions can result 
from delayed prediction of the opponent’s intended target selection and movement requirements to select a target 
within the available time. While our model accounted for the delays of sensing and predicting the opponent’s 
intended target selection, it did not incorporate delays associated with physically reaching a desired target. 
Nevertheless, the model was generally effective in predicting overall target selection across all trials (Fig. 8, Sup-
plementary B). There may be an optimal time to make interactive decisions that balances acquiring sufficient 
sensory evidence while satisfying time constraints. An interesting direction for future research is understanding 
the tradeoff between using online sensory evidence and indecisions, as well as developing models that better 
predict indecisive behaviour.

How humans make decisions while interacting with other humans is highly relevant in everyday social life, 
sport, machine learning (i.e., multiple ‘agents’), and economics. Our work advances our understanding of how 
two interacting humans jointly make decisions and select actions. Across two experiments, we tested the influ-
ence of available time and reward structure on interactive, decision-making behaviour. We found that humans 
exploit available time to gather sufficient evidence about the action intention of others, and use this information 
to generate an appropriate motor response. We were able to capture decision-making behaviour of competing 
humans using a drift-diffusion model. Insights on how humans utilize sensory evidence to predict the action 
intentions of others may enable more seamless human-machine interfaces, which has important applications for 
augmented reality and robot-guided rehabilitation. Our ability to observe others and make online decisions is 
highly relevant across many domains, spanning sociology, sport, interactive technology, and economics.

Methods
Participants. Twenty-four individuals (12 human pairs, 13 female, age 18–30 years) participated in Experi-
ment 1, and 32 individuals (16 human pairs, 17 female, age 18–30 years) participated in Experiment 2. All par-
ticipants provided informed consent to participate in the experiment and the procedures were approved by the 
University of Delaware’s institutional review board. All methods were performed in accordance with the relevant 
guidelines and regulations.

Apparatus. For both experiments, we used two endpoint KINARM robots (Fig. 1A; BKIN Technologies, 
Kingston, ON) that are able to interact with each other in real-time. Each participant of a human pair was seated 
on an adjustable chair in front of one of the endpoint robots. Each participant grasped the handle of a robotic 
arm and made arm movements in the horizontal plane. A semi-silvered mirror blocked vision of the upper limb 
and displayed virtual images (e.g., targets, cursors) from an LCD screen. Hand position was recorded at 1000 Hz 
and stored offline for data analysis.
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Protocol. Experimental design for Experiment 1 and Experiment 2. We designed a competitive motor task 
based on the matching pennies game. In our task, each participant controlled a circular cursor (1 cm diameter) 
located at the position of the robot handle and hand. The participants saw their cursor and their opponent’s cur-
sor projected on their respective screens during the trial. Each trial began once both participants were in their 
respective start position (1.5 cm diameter). After a short, randomized delay (250–1000 ms), participants heard 
a first beep and two targets appeared. The left and right targets (4 cm diameter rings) were separated by 20 cm 
and were 15 cm forward relative to the start position (Fig. 1A). Participants were instructed to move their cursor 
into a target of their choice before they heard a second beep that indicated the end of the trial. Once a participant 
entered a target, their cursor remained there until the second beep.

For each human pair, participants were randomly assigned as the ‘predator’ or the ‘prey’ before the start of 
the experiment. The predator won the trial by selecting the same target as the prey (e.g., both predator and prey 
selected the right target). Conversely, the prey won the trial by selecting the opposite target of the predator (e.g., 
prey selected the right target but the predator selected the left target). Additionally, a participant won the trial if 
they selected a target and their opponent did not select a target prior to the second beep. Both participants lost 
the trial if they failed to reach a target before the second beep. In addition to a base compensation of $5.00 USD, 
we informed the participants that they would receive a performance-based compensation up to $5.00 USD based 
on the points that they won. Participants received the full $10.00 USD once they completed the experiment, 
irrespective of their performance.

Experiment 1 design. The goal of Experiment 1 was to determine how humans utilize sensory evidence of their 
opponents actions when making decisions. Participants received 1 point for winning a trial and 0 points for los-
ing a trial according to the symmetric reward structure for the matching pennies game (Fig. 1B). To manipulate 
the ability to accumulate sensory evidence, human pairs performed three conditions with differing available 
time: (1) short-symmetric (500 ms), (2) medium-symmetric (850 ms), and (3) long-symmetric (1500 ms). The 
short-symmetric condition did not provide sufficient time to observe an opponent while selecting a target. The 
medium-symmetric and long-symmetric conditions increasingly afforded a participant the ability to observe 
their opponent’s cursor when making a decision to select a target. We informed the participants about the avail-
able time at the start of each condition. Human pairs completed 150 trials per condition. Condition order was 
counterbalanced.

Experiment 2 design. The goal of Experiment 2 was to further test the idea that humans utilize sensory evi-
dence of their opponents actions when making decisions. We also tested a secondary hypothesis that game 
theoretic predictions for target selection would not be preserved when the players have available time to utilize 
sensory evidence of their opponent’s actions. The asymmetric reward condition was similar to the symmetric 
reward condition, with the exception that the predator received 3 points if both the predator and prey selected 
the right target (Fig. 1B). We manipulated both available time and reward structure using the four conditions: (1) 
short-symmetric, (2) long-symmetric, (3) short-asymmetric, and (4) long-asymmetric. The symmetric reward 
structure was the same as that of Experiment 1 (Fig. 1B). We informed the participants about the available time 
and the reward condition at the start of each condition. Human pairs each completed 150 trials of the 4 condition 
combinations. We counterbalanced the order of the reward conditions and available time.

Data analysis. Principal component analysis. For each trial where the participant reached a target, we 
sampled the x-coordinate of the cursor trajectory at 100 equidistant time points. Here, we sampled the trajectory 
from the time the cursor left the start circle to the time when the cursor entered the target. Using the x-coordi-
nate data from all trials within a condition, we used principal component analysis to calculate the percentage of 
variance explained by each orthogonal principal component.

Movement time. For each participant and trial, we measured the time from the start of the trial (first beep) till 
they reached the target (ms).

Time of last change in movement direction. We discretized the cursor trajectory into segments of length 0.5 cm. 
We segmented the trajectory from the start of the trial to the time when the cursor entered the target. We calcu-
lated the direction of each segment in cartesian space. We searched backward in time until a segment was found 
that was 15 degrees different from the last segment. The moment in time of the initial point of this segment was 
considered as the time of last change in movement direction before reaching the target.

Exploiting available time: target choice probability. Here we were interested in quantifying whether participants 
exploited available time. We calculated target choice probability (Eq. 1), which is the probability that a participant 
selects the right or the left target given that the cursor position is respectively on the right side or the left side of 
the workspace. Specifically,

We computed the target choice probability at equidistant time samples in the trial. We then normalized the time 
from the start to the end of the trial. We used trials where a participant reached a target. For each participant, we 

(1)
Target Choice Probability =

p(cursorright | targetright) · p(targetright)+ p(cursorleft | targetleft) · p(targetleft)
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determined the moment in normalized time at when the target choice probability crossed 75% ( t0.75 ). A greater 
t0.75 time suggests participants are exploiting available time before selecting a target.

Tracking and avoidance behaviour of the predator and prey: mutual location probability. Here we were interested 
in whether participants positioned their cursor relative to their opponent’s cursor, which can provide insight into 
tracking and avoidance behaviour. Accordingly, we calculated the probability that the cursor positions of the 
predator and the prey are on the same side of the workspace (Eq. 2):

A participant’s mutual location probability is not defined after the participant selects a target because the partici-
pant’s cursor remained fixed at the selected target. Consequentially, the mutual location probability was different 
for the predator and prey since they most likely reached a target at different times during the trial. Thus, we nor-
malized time from the start of a trial to when the participant entered a target. We calculated the mutual location 
probability at equidistant samples in the trial. A mutual location probability greater than 0.5 suggests tracking 
behaviour by the participant. Conversely, a mutual location probability less than 0.5 suggests avoidance behaviour.

Behaviour related to successful performance. We correlated target choice probability time t0.75 differences of the 
predator and prey to win proportions. We correlated the time of last change in movement direction differences of 
the predator and prey to the win proportions. Pearson’s correlation was performed for each condition.

Target selection proportions and game theoretic predictions. We analyzed the target selection proportions of the 
participants. Here we considered trials where both participants reached a target. We calculated the proportion of 
trials where the predator and prey selected the right target. We calculated the Nash equilibrium solution for the 
symmetric and the asymmetric reward structures of the matching pennies game. The Nash equilibrium solution 
corresponds to randomly selecting the right or left targets in a proportion, such that each participant has nothing 
to gain by deviating from that particular strategy.

To calculate the Nash equilibrium solution, we assume that predator and prey select the right target in pro-
portions Ppredator and Pprey , respectively, in accordance with the Nash equilibrium solution. We also assume a 
general form of the reward structure (Fig. 1B) as follows:

The corresponding va lues  of  the rewards for  the symmetr ic  reward structure are 
a11 = a22 = b12 = b21 = 1; a12 = a21 = b11 = b22 = 0 ,  and the asymmetric reward structure are 
a11 = 3; a22 = b12 = b21 = 1; a12 = a21 = b11 = b22 = 0 . Equating the expected reward for the right and 
left target selection of the predator, we obtain

Similarly, equating the expected reward for the right and left target selection of the prey yields

We substituted reward values for the symmetric reward structure and asymmetric reward structure into (Eq. 3) 
and (Eq. 4) to obtain the corresponding Nash equilibrium solutions. For the symmetric reward structure, the 
Nash equilibrium solution specifies that the prey and predator should respectively select the right target in 
proportions of 50% ( Pprey = 0.5 ) and 50% ( Ppredator = 0.5 ). For the asymmetric reward structure, the Nash 
equilibrium solution specifies that the prey and predator should respectively select the right target in proportions 
of 25% ( Pprey = 0.25 ) and 50% ( Ppredator = 0.5).

Proportion of targets not selected. We calculated the proportion of trials where a participant did not reach a 
target, indicating indecisive behaviour. Here, we were interested in whether sensory evidence of the opponent’s 
cursor would alter the percentage of indecisions.

Decision-making model. We developed a computational model to explain a participant’s decision-making 
process. We posited that each participant observes the opponent’s cursor and accumulates this evidence to pre-
dict their opponent’s target selection. To capture this process, we used a drift-diffusion  model28,29,62.

We adopted a probabilistic approach to compute the evidence based on the opponent’s cursor position. The 
two-dimensional reaching workspace was discretized into smaller spatial areas (Fig. 8A). Collectively, the dis-
cretization of the workspace represented a probability map. Probability maps were maintained at every 10 ms of 
time (Fig. 8B). The probability maps were initialized at the beginning of an experimental condition. Discretized 
areas close to the right target represented higher right target selection probabilities, whereas the discretized areas 
close to the left target represented lower right target selection probabilities.

Each discretized area was represented by a beta distribution with hyperparameters α and β . We updated 
the beta distributions after each trial based on the observed total number of trials where a target was selected 
(n) and the number of trials where the right target was selected (k). From Bayes theorem (Eq. 7), the posterior 

(2)
Mutual Location Probability =

p(preyright | predatorright) · p(predatorright)+ p(preyleft | predatorleft) · p(predatorleft)

(

a11, b11 a12, b12
a21, b21 a22, b2,2

)

(3)Pprey × a11 + (1− Pprey)× a12 = Pprey × a21 + (1− Pprey)× a22

(4)Ppredator × b11 + (1− Ppredator)× b21 = Ppredator × b12 + (1− Ppredator)× b22
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distribution [ p(pright | k, n,αprior ,βprior) ] is given by the product of the likelihood [ L(pright | k, n) ] and the prior 
distribution [ p(pright | αprior ,βprior) ] as follows:

The prior beta distribution (Eq. 8) is

where B represents the Beta function. The likelihood function (Eq. 9) is a binomial distribution of the following 
form

As a reminder, n is the total number of trials and k is the number of trials that a participant selected the right 
target. Given conjugate priors, the posterior distribution is a beta distribution (Eq. 10) with hyperparameters 
(Eqs. 11 and 12) according to

We sampled the probability that the opponent selects the right target using the posterior beta distribution 
(Eq. 10). The sensory evidence based on the opponent’s cursor position (E) was calculated using the right target 
probability ( pright ) according to

A drift-diffusion model was used to accumulate evidence ( Eacc ) and predict target selections for the opponent 
(Fig. 8D). The evidence was accumulated every 10 ms during the trial as follows:

Thus, Eacc represents the accumulating sensory evidence. The parameter µ represents the gain on the drift rate. 
We obtained the best value of µ as 0.007 that maximized model prediction accuracy. Gaussian noise ( ε ) was 
randomly sampled with a zero mean and standard deviation ( σ ) of 0.02. A delay of 200 ms was incorporated into 
the accumulation process to accommodate sensory processing  delays57,63. The evidence was accumulated until 
it reached the top boundary or the bottom boundary to respectively predict that the opponent selects the right 
or left target. These target selection boundaries were modelled with the sigmoidal function,

Here, γ was used to control the time when the boundaries collapse. For each condition, γ was selected such that 
b(t) = 0.5 was aligned with the median time of last change in movement direction. A target was selected for the 
participant based on their role and the predicted target for the opponent.

Model prediction accuracy. We calculated the proportion of trials where the model predicted target selection 
matched the observed target selection. We focus primarily on the model prediction accuracy for wins to capture 
successful decision-making behaviour of participants, but also report model prediction accuracy when consid-
ering wins, losses, and indecisions (see Supplementary B). To obtain the drift rate parameter ( µ = 0.007 ) for the 
drift-diffusion process, we used a brute force grid search method that maximized the overall model prediction 
accuracy. Here, the loss function was the negative of the mean model prediction accuracy across all the partici-
pants. We obtained a single drift rate parameter across conditions to avoid overfitting the data.

Statistical analysis. We used analysis of variance (ANOVA) as omnibus tests to determine whether there 
were main effects and interactions. In Experiment 1, we used a 3 (available time: short, medium, long) × 2 (role: 
predator, prey) mixed ANOVA to test for main effects and interactions separately for each dependent variable. 
For Experiment 2, we used 2 (available time: short, long) × 2 (reward condition: symmetric, asymmetric) × 2 
(role: predator, prey) mixed ANOVA to test for main effects and interactions separately for each dependent vari-
able. We followed up the omnibus tests with mean comparisons using nonparametric bootstrap hypothesis tests 
(n = 1,000,000)64–66. The Holm-Bonferroni procedure was used to account for multiple comparisons. We com-
puted the common language effect sizes ( ̂θ ) for all mean  comparison67. Significance threshold was set at α = 0.05.

(5)p(pright | k, n,αprior ,βprior) ∝ L(pright | k, n) p(pright | αprior ,βprior)

(6)p(pright | αprior ,βprior) =
1

B(αprior ,βprior)
pright

αprior−1 (1− pright)
βprior−1

(7)L(pright | k, n) =
(n)!

k!(n− k)!
pright

k (1− pright)
n−k

(8)p(pright | k, n,αprior ,βprior) =
1

B(αpost ,βpost)
pright

αpost−1 (1− pright)
βpost−1

(9)αpost = k + αprior

(10)βpost = n− k + βprior

(11)E = ln

(

pright

1− pright

)

(12)dEacc = µEdt + ε

(13)b(t) = 1− 0.5(1− e
−

5·t
γ )
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