
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42000-021-00300-7

REVIEW ARTICLE

The role of estradiol in the immune response against COVID‑19

Adrián Ramírez‑de‑Arellano1  · Jorge Gutiérrez‑Franco2  · Erick Sierra‑Diaz3  · Ana Laura Pereira‑Suárez1,4

Received: 2 February 2021 / Accepted: 11 May 2021 
© Hellenic Endocrine Society 2021

Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen agent causing coronavirus disease (COVID)-
19, which was declared a global pandemic in 2020. The spike protein of this virus and the angiotensin-converter enzyme 
(ACE)-2 in host cells in humans play a vital role in infection and in COVID-19 pathogenesis. Estradiol is known to modulate 
the actions of immune cells, and, therefore, the antiviral mechanisms of these cells could also be modified by this hormone 
stimulus. Even though estradiol is not considered a protective factor, evidence shows that women with high levels of this hor-
mone have a lower risk of developing severe symptoms and an even a lower incidence of death. Understanding the mechanism 
of action of estradiol with regard to viral infections and COVID-19 is essential for the improvement of therapeutic strategies. 
This review aims to describe the effects that estradiol exerts on immune cells during viral infections and COVID-19.
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1. Background

Severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), the pathogen agent causing coronavirus disease 
(COVID)-19, is thought to have originated in Wuhan, China, 
and has caused the current global pandemic which is a major 
public health issue. SARS-CoV-2 is a single-stranded RNA 
virus of 50–200 nm in diameter that presents a pulmonary 
tissue tropism. It belongs to the family Coronaviridae and 

expresses four structural proteins, namely, spike (S), envelope 
(E), membrane (M), and nucleocapsid (N) proteins [1].

The S protein has a high affinity for the angiotensin-con-
verter enzyme (ACE)-2, and this is precisely what determines 
the cellular tropism of the virus. Because ACE-2 is highly 
expressed in the lung, heart, ileum, and kidney cells, these 
organs are more affected than others, and it explains the het-
erogeneous symptomatology observed in patients [1, 2].

Some patients suffer from a mild case of the disease with 
light or mild symptoms. However, others can develop a 
series of medical conditions, including pneumonia, myo-
carditis, hypercoagulability, and liver and kidney injury. In 
some severe cases, heart failure, multiorgan failure, septic 
shock, and even death can occur [3].

Even though the incidence of COVID-19 seems to be 
similar in both genders, men are at a higher risk of a worse 
outcome or death, with the odds up to 2.4 times higher than 
those for women. According to information from Global 
Health 50/50, there is a 2:1 ratio worldwide when analyz-
ing how rapidly the infection progresses and the severity of 
symptoms when comparing males with females [4].

Some studies of pregnant women infected with SARS-
CoV-2 show that they did not clinically evolve to a more 
severe condition and outcome, as shown in the following 
two reports. One study reported that nine women diagnosed 
with COVID-19 in the third trimester developed pneumo-
nia, but none needed mechanical ventilation or died [5]. 
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According to another study, pregnant women with COVID-
19 do not have a higher risk of developing severe symptoms 
like pneumonia as compared to non-pregnant women [6]. 
Even though pregnancy cannot be considered a protective 
factor, female hormones could play a protective role against 
SARS-CoV-2 infection at different levels, which is the main 
focus of this review. The present review aims to analyze the 
mechanisms modulated by estradiol that may lead to SARS-
CoV-2 infection.

COVID‑19 and immune response

Many questions are still to be resolved regarding the immune 
response to SARS-CoV-2 However, even though the precise 
mechanisms of innate immunity are yet to be described, it 
is known that cells and molecules belonging to this type of 
immunity play a crucial role in the outcome of COVID-19.

Mucosal surfaces are one of the first barriers that SARS-
CoV-2 encounters on entering the body, mainly via the res-
piratory tract. IgA, which is present on the oral mucosa and 
conjunctival epithelium, may aid in protecting against the 
infection [7]; it has, however, been observed to increase in 
severe cases of SARS-CoV-2 infections [8]. Moreover, the 
response induced by IgA in COVID-19 was observed in 75% 
of the patients during the first week of infection, and was 
even higher and more persistent than an IgM response [7]. 
As for IgG, they are present in 79.8% of patients and may 
appear even earlier than or else at the same time as IgM. 
Lastly, IgM and IgG titers were higher in severe COVID-19 
patients than in those with mild symptoms [9].

An increase in monocytes has been reported in severe 
COVID-19 cases. Moreover, the high neutrophil-to-lym-
phocyte ratio has been associated with a bad prognosis 
[10]. Macrophages are an essential cellular component of 
the immune system, and they have been found to heavily 
infiltrate the bronchial area. SARS-CoV-2-infected mac-
rophages that express ACE2 with increasing IL-6 levels have 
been observed, which contributes to typical inflammation 
in COVID-19, this ultimately leading to a cytokine storm 
[11]. The latter will be discussed later.

Monocytes and macrophages are the primary cells that 
coordinate an inflammatory response by activating NF-kB 
and IFN regulatory factor pathways [12]. In turn, type I IFNs 
are essential in activating NK cells, which are reduced and 
anergic in COVID-19 patients [13]. In addition, RNA in 
SARS-CoV-2 is recognized by intracellular TLRs activat-
ing the production of type I IFNs and other inflammatory 
molecules such as p38MAPK and AP-1 [14].

As for NK cells, evidence shows that their count is lower 
in COVID patients than in healthy subjects, and they present 
an exhausted and more inflammatory profile after SARS-
CoV-2 infection [13]. High expression of NKG2A has been 

reported in NK cells during COVID-19, which prevents 
the expression of IFNγ, IL-2, and TNFα, and reduces the 
levels of granzyme B. Tim-3 is expressed in NK cells dur-
ing COVID-19, and has been proven to be associated with 
decreased cytotoxicity [15]. The pulmonary microenviron-
ment is surrounded by chemokines, such as MCP-1 and 
IP-10, which attract NK cells, and cytokines, like IL-6 and 
IL-10, that are known for reducing the cytotoxicity of NK 
cells [16].

Dendritic cells (DC) represent a bridge between innate 
and adaptative immunity because they are professional 
antigen-presenting cells that activate lymphocytes against 
SARS-CoV-2. Some studies have concluded that circulat-
ing  CD1c+,  CD141+, and plasmacytoid DC subpopula-
tions are diminished, which impairs their activity; however, 
CD1c + DC cells are accumulated in the lung [17]. Moreo-
ver, plasmacytoid DC are IFN producers, and because the 
ratio of classical DC/plasmacytoid DC is increased in severe 
acute COVID-19 patients, this could explain the inadequate 
protection mounted against the infection in these patients 
[18]. There is no information as yet about antigen processing 
and presentation by DCs in COVID-19. However, in SARS-
CoV-1, which is the closest infection model in humans, 
infected DCs are prevented from achieving maturation since 
they cannot perform an antigen presentation [19].

Because hormones modulate the maturation of these 
immune cells, it is vital to understand the effect that estro-
gen exerts on them because it could help us understand the 
different outcomes observed in males and females during 
COVID-19.

Cytokine storm has been reported in patients with severe 
symptoms: it is associated with a poor clinical outcome [20] 
and consists in the excessive production of IL-1β, IL-2, IL-6, 
IL-8, and TNF-α [10, 21], which leads to macrophage acti-
vation in acute exacerbation [21]. As the disease advances, 
the proinflammatory cytokine that is produced increases. 
Elevation of IL-6 and the macrophage activation syndrome 
might explain the appearance of C-reactive protein, which 
is usually not expressed in viral infections [22].

Regarding adaptative immunity, as in any other viral 
infection, it is presumed that SARS-CoV-2 leads to a Th1 
type immune response [23].

In severe COVID-19 cases,  CD8+,  CD4+, and regula-
tory T cells decrease, which contrasts with patients with 
only mild symptomatology, where lymphocytic counts were 
higher [24]. However, in the abovementioned cases, lympho-
cyte counts were lower than in healthy donors [13].  CD8+ 
T exhaustion phenotype is expressed with NKG2A, PD-1, 
and TIM-3. This finding correlates with the proinflammatory 
cytokine storm observed in COVID-19 [25]. SARS-CoV-2 
can also induce lymphocyte apoptosis by increasing PD-1, 
which is upregulated during the late phase of the disease 
[26]. Moreover, naïve helper T cells increase in number, 
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while the cytotoxic or suppressor T cells are diminished in 
severe COVID-19 [21]. Another mechanism used by SARS-
CoV-2 to alter T cell function is the deregulation of class I 
and II MHC expression, which reduces antigen presentation 
[13].

A decrease in B cell frequencies has been reported during 
the COVID-19 pandemic. Humoral responses play a role 
in the pathogenesis, but antibodies might not be enough 
for virus neutralization [27]. A particular subpopulation 
of B cells, called B-1a cells, is associated with decreased 
serum IgM and IgD levels [28]. Some studies suggest that 
even when the counts of B-1a cells are lower in COVID-
19 patients, they produce molecules that are important for 
innate immunity, such as IL-10, which could block the 
cytokine storm [29, 30].

In general, it seems that SARS-CoV-2 can exert an exac-
erbated innate response causing innate cell activation and 
uncontrolled inflammation, which could lead to an ineffec-
tive adaptive response [31].

Estradiol, the immune system, and COVID‑19

Broadly speaking, estradiol ensures excellent hydration of 
the mouth by increasing the production of hyaluronic acid, 
which affects the bronchial epithelial cells and improves the 
function of the lower respiratory tract by increasing antivi-
ral molecules. Trials reported that estrogens have a strong 
impact on the nose and the upper respiratory tract, improv-
ing the immune response locally. One of the mechanisms 
involved in the protective effects of estradiol is the increases 
in production of nasal mucus that contains mucins, electro-
lytes, IgA and IgG, lysozyme, lactoferrin, and oligosaccha-
rides. These components are known to have antiviral and 
antibacterial properties which would bring into play funda-
mental mechanisms of action to counteract upper respiratory 
tract infections [32].

The entry of SARS-CoV-2 is highly regulated by S pro-
tein, whose function is to mediate binding to ACE-2 in the 
amino-terminal region and fusion of the viral and cellular 
membranes in the carboxyl-terminal region. Studies have 
revealed that interaction between the S protein of SARS-
CoV-2 and the ACE2-binding site is crucial for infection 
and viral replication [33]. The fusion of membranes relies on 
the action of other proteases, particularly the transmembrane 
protease serine 2 (TMPRSS2). This protease is present on 
the host cell surface and cleaves after binding ACE2. The 
cellular tropism of SARS-CoV-2 is regulated by the expres-
sion of cellular proteases and ACE2 [34].

Even though the precise mechanism underlying the dif-
ferential patterns of infection in men and women is yet to 
be elucidated, current research has strongly indicated that 
ACE2 expression is modulated by estradiol. Bronchial 

epithelial cells treated with estradiol expressed lower ACE2 
mRNA levels compared to control cells [35]. This fact is 
important because the expression of ACE2 has been cor-
related with viral replication and disease severity, playing 
a determinant role in it [34]. However, TMPRSS2 mRNA 
expression was not affected by estradiol stimulus in these 
cells.

Estrogens can also trigger the local immune response by 
activating a plethora of cells such as phagocytes, dendritic 
cells, natural killers, and  CD8+ T cells. Once these cells are 
activated, they can fight the infection by destroying the virus 
and thus preventing its diffusion to the lower respiratory 
tract or by decreasing the viral load [32].

Many innate and adaptive immunity components are 
essential for viral infections. Cells and molecules of the 
immune system play several roles in the mechanisms that 
support viral clearance [36–38]. Because hormones modu-
late the immune system, it is crucial to seek to clarify how 
this modulation may be involved in COVID-19 infections.

Estradiol modulates the immune cells which could play 
an essential role in explaining why a lower incidence of 
COVID-19 is observed among women than in men. Accord-
ing to Global Health 50/50, the number of men and women 
who tested positive for COVID-19 is almost the same. How-
ever, the vast majority of the patients with severe symptoma-
tology belong to the male gender, which appears to strongly 
indicate that female hormones may have a protective role in 
the pathophysiology of COVID-19 [4].

Some reports show that estradiol induces inflammation, 
whereas others propose the opposite. Meanwhile, other stud-
ies have reported that estradiol participates in antiinflam-
mation by downregulating MCP-1, decreasing leukocyte 
adhesion and migration, and inhibiting NF-κB macrophage 
activation through miR-125b [39]; the latter is thought to 
reduce macrophage proinflammatory cytokine release [40]. 
A decrease in the inflammatory reaction leads to a delay 
in neutrophil apoptosis and increases the expression of 
annexin-1 in neutrophils without increasing its activation 
[41].

However, most of the findings in the literature describe 
the immunoenhancing effects of estradiol on the immune 
system. Monocytes, macrophages, and neutrophils are acti-
vated by estradiol, which induces the production of proin-
flammatory cytokines. This in turn leads to the activation of 
lymphocytes and alveolar macrophages, which increases the 
production of type I IFN. It has been proposed that the lat-
ter actions contribute to activating antiviral responses [36].

Interferons are essentially molecules involved in viral 
cycle interference. Estradiol receptor α has been proven 
to have a positive mutual regulation with IFN-α and -γ 
[37]. Since type I IFN is so important in terms of antivi-
ral responses, this outcome is significant because estradiol 
might deregulate viral replication in COVID-19 infection 
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through ERα. A study conducted in mice showed that IFN-β 
levels remained constant throughout the infection. However, 
proinflammatory cytokines and chemokines (such as IL-6, 
CCL-2, and CXCL-1) increased after males had been chal-
lenged with SARS-CoV2, but not in the case of females [42]. 
IFN-α has been proven to help dendritic cell maturation, 
activate humoral immunity, increase antibody production, 
and generate switch class change [43].

The antiviral role of IFNs might be outperformed by 
the production of autoantibodies directed against them. A 
study showed that 101 of 987 patients with life-threatening 
COVID-19 presented IFN-autoantibodies: this phenom-
enon is overrepresented in men and increases with age [44]. 
More studies need to be conducted in order to understand 
the relationship between hormones and IFN-autoantibody 
production.

Estradiol is also known to polarize the Th2 profile by 
modulating the function of B cells. The fact that females are 
more likely to produce higher Th2 responses is a double-
edged-sword since, while they become less susceptible to 
infections, it also makes them prone to developing auto-
immune diseases [45]. In this regard, women have higher 
immune reactivity after viral infections, which may translate 
to higher serum antibody concentrations after vaccination, 
thereby yielding better protection [45]. Studies show that 
adult women can produce more neutralizing antibodies in 
viral infections, such as influenza, and have higher IgG pro-
duction [46]. As for COVID-19 cases, a large majority of 
women react immunologically better and might neutralize 
the virus earlier than men. The discrepancy in SARS-CoV-2 
antibody levels in male and female patients could potentially 
be a leading cause of the different outcomes of the disease 
[47].

The importance of estradiol in humoral immunity has 
been highlighted in some experiments showing that hor-
mone replacement therapy (with estrogen) in menopausal 
women is associated with higher circulating B cells and 
modulation of inflammatory cytokines [48]. Estradiol can 
magnify the activation of IFN-α in B cells. TLRs are essen-
tial for the recognition of pathogens. In particular, B cells 
in females express more TLR-7 than those in males, which 
were increased by IFN type I [49]. Because estradiol pro-
motes IFN type I production, it may indirectly regulate the 
expression of TLR7 in B lymphocytes, thus increasing the 
recognition of SARS-CoV-2 by these cells.

Dendritic cells are also influenced by estradiol. During 
inflammation, estradiol increases the number of DCs in an 
ERα-dependent manner [50]. Plasmacytoid DCs are well 
known for their involvement in antiviral responses. They 
express TLR9, which is vital in detecting viral particles 
that produce up to 100–1000 times more IFN-α than other 
blood cells after viral infections [51]. In this context, estra-
diol increases the production of IFN-α and the expression 

of costimulatory molecules [33]. It has been reported that 
dendritic cells are a key component for disease outcomes 
in several infections. Not only are they able to carry anti-
gen presentation to T cells, but they also modulate their 
responses, leading to Th polarization and priming of naïve 
T cells [52]. Because dendritic cells play important roles 
in the immune response, the increase of dendritic cells in 
COVID-19 is a determinant of disease outcome.

Another vital cell of the immune system is the NK cell. 
These cells are critical for the control of certain viral infec-
tions [53], and are altered in COVID-19 patients, in whom 
they are affected by estrogens that exacerbate disease pro-
gression [13].

In murine models, estrogens decreased NK cytotoxic-
ity in a dose-dependent manner [54]. This effect could be 
attributed to a decrease in the markers NKp46, CD69, 2B4, 
FasL, and granzyme B, STAT4, Fyn, Eat2, and irf1 [55]. 
The concentration of estradiol plays a vital role in cytotoxic-
ity. Roszkowski et al. observed that cytotoxicity increased 
with concentrations < 50 pg/mL in women with mastopathy, 
while cytotoxicity with > 200 pg/mL was decreased [56].

In humans, NK cells are reported to change throughout 
the normal menstrual cycle. In the follicular phase, cyto-
toxicity is higher than in the luteal phase, post-menopausal 
women, or even men [57]. However, Yovel et al. demon-
strated that the NK cells of men show higher cytotoxic-
ity than those of women with regular menstrual cycles or 
women with oral contraceptives [58].

The different concentrations of the hormone might 
explain anti-inflammatory or activation profiles induced by 
estradiol. As in the case of cytokines and certain other hor-
mones, the effects are directly related to the concentration, 
which is why some studies report opposite results regarding 
similar stimuli.

Finally, cytotoxic  CD8+ T lymphocytes are essential 
cells in the immune response against intracellular pathogens 
because they can destroy virus-infected cells. In this con-
text, estradiol may increase the activity of the virus-specific 
 CD8+ cells. Robinson et al. evaluated the effect of estradiol 
in an influenza virus model. They observed that estradiol 
has a protective effect by increasing the virus-specific  CD8+ 
lymphocytes and augmenting the proportion of IFN-γ and 
TNF-α-producing  CD8+ T cells [38] (Table 1 and Fig. 1).

It has been reported that the reduction of  CD4+ and 
 CD8+ T cells is a prognostic factor associated with death in 
COVID-19 patients, and this reduction has been particularly 
evident in severe COVID-19 patients compared to those who 
presented mild symptoms [59].

Unfortunately, to date, little information is available 
about the specific effect that COVID-19 exerts on every 
cell type. Hopefully, further information will be pub-
lished in the near future, leading to a better understand-
ing of the effect of estradiol on this disease. Nevertheless, 
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understanding the general effects estradiol has on the 
immune cells will help identify possible mechanisms 
underlying the hormone’s apparent ability to provide pro-
tection to women. Taking this into account, an approach 

based on the known effects of estradiol for the develop-
ment of a new therapy could be conceived, leading to 
decreasing infectivity or the severity of the disease.

Table 1  Effects of 17β-estradiol 
on different anatomic sites and 
cells

Abbreviations:
ACE-2, angiotensin-converting enzyme 2; NK, natural killer; IFN, interferon; TNF, tumor necrosis factor; 
pg, picogram; mL, mililiter

Anatomic site/cell Effect caused by 17β-estradiol Type of study Reference

Nose Increases the production of nasal mucus Clinical 32
Bronchial epithelial cells Enhances the expression of ACE-2 Experimental 34
Phagocytes Induction of proinflammatory cytokines Experimental 42
B cells Increases circulating B cells

Th2 polarization
Clinical
Experimental

48
52

Dendritic cells Induces IFN-α and IFN-γ
Induces co-stimulatory molecules

Experimental
Experimental

33
33

NK cells Effect dose-dependent
 < 50 pg/mL increased cytotoxicity
 > 200 pg/mL decreased cytotoxicity

Clinical
Clinical

56
56

T lymphocytes  CD8+ Decreased in patients: prognostic factor 
associated with death

Induces IFN-γ and TNF-α production

Clinical
Experimental

59
38

17β-estradiolB cells

Antiviral activity (IFN- and IFN- )

Co-stimulatory molecules

NK 

cells

CD8+ cells

Killing virus-infected cells

Th2 polarization

Antibody production

Circulating B cells

Antigen presentation

Naïve TH priming

TH polarization
Dendritic cell 

maturation

↑ TLR7

SARS-CoV-2 

recognition

Antiviral activity

Virus-specific cells

IFN- and IFN-

Cytotoxicity 

(High amount 17β-Estradiol)

Cytotoxicity

(Low amount 17β-Estradiol)

Dendritic cells

Fig. 1  Regulation of 17β-estradiol on the immune cells. 17β-estradiol has regulatory effects upon B, dendritic, NK, and  CD8+ cells and induces 
their stimulation, leading to an antiviral state and activating the immune response
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Participation of other hormones

Other female hormones, in particular progesterone, have 
been shown to have a combined effect with estradiol by 
enhancing their actions and increasing the expression 
of their receptors. Indeed, during infectious diseases, 
increased use of hormonal contraceptives has been rec-
ommended by the WHO [60].

Progesterone has proven to increase the positive effect 
of estradiol by increasing the expression of the epidermal 
growth factor amphiregulin, which helps promote the lung 
repair process. Progesterone administration in menopausal 
women has also been shown to improve the outcome of 
pulmonary disease [60].

Progesterone was recently found to have an antivi-
ral effect against SARS-CoV-2 in vitro [61]. It has been 
proposed that a possible mechanism of action could be 
the increase of BMP accumulation, which, in combination 
with chloroquine treatment, would lead to impairment of 
the endosomal/lysosomal trafficking of SARS-CoV-2 and 
result in the virus being sequestered in multivesicular bod-
ies [62].

In other viral infections, such as the influenza A virus, 
progesterone plays a pivotal role in the repair of pulmo-
nary tissue and alteration in inflammation by improving 
pulmonary function and preparing the environment for 
pulmonary repair, which, in combination, was shown to 
result in early recovery [60].

Unquestionably, more research focused on NK regula-
tion on COVID-19 must be conducted since these cells 
are especially susceptible to progesterone. Mature NK 
 CD56dimCD16+KIR+ cells overexpress the progesterone 
receptor to an even greater degree than the T and B lym-
phocytes and stimulation with progesterone could lead 
them to apoptosis [63].

Other hormones involved in the functions of the 
immune system are the thyroid hormones (TH), TSH, T3, 
and T4 [64]. It has been reported that patients infected 
by SARS-CoV-2 present disorders in thyroid function 
since follicular thyroid cells express ACE2, which ren-
ders the organ susceptible to SARS-CoV-2 infection [65]. 
This phenomenon was first reported in 2003 during the 
SARS-CoV-1 outbreak. Based on the above, Khoo et al. 
carried out a comparison of clinical outcomes between 
patients with thyroid problems before and after the SARS-
CoV-2 infection: they observed that 86% of patients with 
COVID-19 had thyroid dysfunction characterized by a 
decrease in TSH and T4 levels compared to their levels 
before becoming infected with SARS-CoV-2 in contrast 
to negative patients [66].

On the other hand, different studies have shown a cor-
relation in TH levels with the severity of the disease. Gao 

et al. demonstrated that patients who progressed to severe 
disease had low levels of free T3 [67]. However, Lui et al. 
reported that only 15% of patients with thyroid dysfunc-
tion had mild to moderate symptoms of COVID-19, which 
was associated with a decrease in free T3 [68].

TH imbalance due to SARS-CoV-2 may be involved in 
a dysfunction of the immune system: as in patients with 
Graves’ disease, which is an autoimmune disorder associated 
with an impairment in the production of TH [64]. In con-
trast, in neutrophils, an increase in their inflammatory activ-
ity was observed. Considering the latter, it is very important 
to realize that some endocrine conditions might be related to 
COVID-19. Subacute thyroiditis, an inflammatory disorder, 
has been reported after SARS-CoV-2 infection. All these 
data are crucial for alerting clinicians to the diverse mani-
festations associated with COVID-19 [69].

Treatment and clinical trials

To date, no treatment has been shown to be effective against 
SARS-CoV-2 infection. The necessity to identify molecules 
that can prevent the worsening outcome observed in many 
patients has led some research groups to evaluate how useful 
certain compounds are for treatment of COVID-19. In this 
context, estradiol and progesterone are possible candidates, 
given their essential participation in reducing susceptibility 
to infection.

Natural components are useful in blocking the interaction 
between the virus and target cells by impeding the recogni-
tion site for HSPA5 and competing for the recognition of the 
viral spike protein. In order to identify possible compounds 
capable of supporting the treatment of COVID-19, many 
natural products were tested, among which were estrogen, 
phytoestrogens, and progesterone. Due to their binding 
affinities, they were found to be optimal for the binding the 
HSPA5 protein, which is necessary for the virus to be trans-
mitted. [70].

Based on the importance of estradiol and progesterone 
in intracellular infections and COVID-19, trials are being 
conducted to more accurately evaluate their effects on the 
disease.

The approach adopted by phase 2 of the Stony Brook clin-
ical trial NCT04359329 is to treat patients with an estradiol 
patch. Men over 18 years of age and women over 55 with a 
positive diagnosis of COVID-19, or presumed positive and 
not requiring intubation, were recruited for this trial. They 
will be followed up for 1, 7, 14, and 28 days for clinical 
symptoms and clinical outcomes. It is hypothesized that the 
application of a transdermal patch for 7 days in COVID-19+ 
will reduce the severity of the symptoms when administrated 
before intubation [71].
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Conversely, because progesterone has anti-inflammatory 
properties, which could be extremely helpful during the 
cytokine storm induced by SARS-CoV-2 infection, a clini-
cal trial with this approach was conducted. Patients recruited 
for the Cedars-Sinai NCT04365127 phase 1 clinical trial 
will include hospitalized men positive for COVID-19. After 
being enrolled and informed about the study and its potential 
risks, the patients will be randomized to receive 100 mg of 
progesterone twice a day [72].

Clinical background

The role of estradiol in critically ill patients was a topic of 
interest even before the SARS-CoV-2 pandemic. This hor-
mone is inhibited by class I cytokines and TNF alpha dur-
ing stress. However, its peripheral production by enzyme 
aromatase in adipose tissue is activated regardless of gender 
[73]. Estradiol levels were measured in critically ill patients 
before management in intensive care units (ICUs), and the 
differences were remarkable between survivors and non-sur-
vivors (p < 0.01) in whom the mean levels of estradiol were 
62.2 versus 116 pg/mL, respectively [73]. Another study 
from 2011 reported that high estradiol levels for ICU admis-
sion were associated with high mortality in a cohort of 1408 
critically ill patients (14.1%, 95% CI 12.3–16). The authors 
concluded that estradiol level dynamics during critical stages 
might help in targeted therapies [74]. A prospective cohort 
study performed in ICU patients in 2008 reported that estra-
diol levels were significantly higher in non-survivors regard-
less of gender (40.7 versus 18.7 pg/mL) [75]. In general 
terms, scientific evidence from non-SARS-CoV-2 infected 
patients reveals that abnormally high estradiol levels in criti-
cally ill patients are associated with poor outcomes [73–75].

However, over the past 12 months, new research has been 
developed related to SARS-CoV-2-infected patients. Several 
inflammatory markers have been used to monitor the sever-
ity and progression of infected patients. The most common 
are procalcitonin, serum ferritin, D-dimer, C-reactive pro-
tein, lactate dehydrogenase, and cytokines [76]. Meanwhile, 
the role of other biological markers has been reviewed. Mau-
vais-Jarvis et al. reviewed the effects of hormones regarding 
the outcomes of patients with SARS-CoV-2. They concluded 
that estradiol and progesterone might help mitigate proin-
flammatory responses in infected patients, and that acute 
estradiol treatment would be expected to blunt the cytokine 
storm [77]. Regarding gender, some data have shown a dif-
ferentiation between the immune response based on estra-
diol levels. Specifically, infected SARS-CoV-2 males have 
a higher risk of mortality (RR, 1.4; 95% CI, 1.2–1.7) due to 
estradiol-deprived monocytes and monocyte-derived mac-
rophages. The effect induces higher levels of CD16 as well 
as increases in IL-6, TNF alpha, and IL-1ß [76].

Experimental tests have reported that estradiol can affect 
ACE2 and FURIN expression, with the potential of mitigat-
ing SARS-CoV-2 infection in combination with other com-
pounds [78]. Other authors have reported potential positive 
effects of estradiol against SARS-CoV-2 infection as an 
adjuvant therapeutic option [79, 80].

The role of estradiol and other compounds for the man-
agement of SARS-CoV-2 is still on the table, and, although 
the amount of scientific information is on the increase, it is 
as yet scarce and lacks clinical trials. For the moment, clini-
cians need to bear in mind that we are dealing with a great 
challenge and, as such, must ensure optimal medical care 
based on internationally accepted protocols.

Conclusion

Infection with SARS-CoV-2 leads to COVID-19, which 
presents in several forms, including asymptomatic, mild, or 
severe, and can even lead to death. Even though the mecha-
nism of infection has been described, many questions still 
remain as to the outcome of the disease. Estradiol seems to 
be important in reducing the severity of the disease and the 
intensity of the symptoms; however, its mechanism in the 
context of COVID-19 is not so far well understood. Estradiol 
has been proven to be involved in modulating immune cells 
in several models, these effects elucidating its action to some 
degree. Some of the actions that estradiol performs are acti-
vation of B cells and production of neutralizing antibodies, 
augmentation of dendritic cells, increase in NK cytotoxicity 
at low concentrations, and an increase in the virus-specific 
 CD8+ lymphocytes.

Because estradiol is involved in reducing susceptibility 
to COVID-19 as well as its severity, research is focused on 
utilizing it as a therapeutic target.
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