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Abstract
Background  While stationary links between childhood hand, foot and mouth disease (HFMD) and air pollution are 
known, a comprehensive study on their heterogeneous relationships (nonstationarity), jointly considering numerical, 
temporal and spatial dimensions, has not been reported.

Methods  Monthly HFMD incidence and air pollution data were collected at the county level from Sichuan-
Chongqing, China (2009–2011), alongside meteorological and social environmental covariates. Key influential 
factors were identified using random forest (RF) under the stationary assumption. Factors’ numerically, temporally, 
and spatially heterogeneous relationships with HFMD were assessed using generalized additive model (GAM) and 
geographically and temporally weighted regression (GTWR).

Results  Our findings highlighted the relatively higher stationary contributions of fine particulate matter (PM2.5) and 
ozone (O3) to HFMD incidence across Sichuan-Chongqing counties. We further uncovered heterogeneous impacts of 
PM2.5 and O3 from three nonstationary perspectives. Numerically, PM2.5 showed an inverse ‘V’-shaped relationship with 
HFMD incidence, while O3 exhibited a complex pattern, with increased HFMD incidence at low PM2.5 and moderate 
O3 concentrations. Temporally, PM2.5’s impact peaked in autumn and was weakest in spring, whereas O3’s effect 
was strongest in summer. Spatially, hotspot mapping revealed high-risk clusters for PM2.5 impact across all seasons, 
with notable geographical variations, and for O3 in spring, summer, and autumn, concentrated in specific regions of 
Sichuan-Chongqing.

Conclusions  This study underscores the nuanced and three-perspective heterogeneous influences of air pollution 
on HFMD in small areas, emphasizing the need for differentiated, localized, and time-sensitive prevention and control 
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Introduction
Hand, foot and mouth disease (HFMD) in children was 
initially reported in Canada in 1957 [1] and has since 
evolved into a global infectious disease [2]. HFMD is 
characterized by a diverse pathogen composition, entero-
virus recombination, and co-infection [3], with a primary 
occurrence in children under 5 years old [4]. The trans-
mission of HFMD mainly depends on close contact and 
airborne routes [5, 6]. While most symptoms are mild 
and self-limited [7], clinical manifestations such as fever 
and oral lesions can lead to misdiagnosis, potentially 
worsening the condition [8]. Moreover, a small percent-
age of patients may experience severe complications, 
including encephalitis or even death [9]. During 2004–
2013, HFMD exhibited the highest incidence rate among 
children in China, ranking among the top five infectious 
diseases in terms of mortality and imposing a significant 
disease burden on the country [10]. Enhancing strategies 
for preventing and controlling HFMD can improve chil-
dren’s health and well-being, in line with the targets of 
Sustainable Development Goal (SDG) 3 [11].

The prevalence of HFMD is intricately linked to natural 
and social environmental conditions, making it of signifi-
cant epidemiological research value and practical impor-
tance for prevention and control efforts [12]. Numerous 
studies have established the association between meteo-
rological environmental factors and HFMD, including 
temperature [13], relative humidity [14], precipitation 
[15], wind speed [16], and atmospheric pressure [17]. 
Social environmental factors, such as population den-
sity [18] and regional economic development level [19] 
also influence HFMD occurrence to some extent. Recent 
research has expanded the discussion to include air pol-
lution as a key risk factor for HFMD. Studies document 
that air pollution may elevate infection rates by damaging 
the respiratory system [20] and prolonging the survival 
time of HFMD viruses [21]. Especially, children contrib-
ute significantly to deaths caused by air pollution, likely 
due to their underdeveloped lungs and immune systems, 
coupled with increased outdoor activity and higher air 
intake per unit weight compared to adults [22]. Fur-
thermore, research confirms that enterovirus adheres to 
particulate matter, facilitating long-distance spread [23], 
thereby amplifying the risk of virus exposure. Addition-
ally, exposure to a polluted environment compromises 
the body’s immune resistance, heightening susceptibility 
to infection [24]. Hence, it is crucial to comprehend the 
association between air pollutants and HFMD for effec-
tive disease surveillance.

Due to the advancements in air pollution-related 
ground monitoring systems and the availability of related 
remote sensing product datasets [25], research on the 
impact of air pollutants on HFMD has been extensively 
discussed, including PM2.5 [21], PM10 [26], O3 [27], NO2 
[27], and SO2 [28]. However, there is inconsistency in 
the results regarding the relationships between air pollu-
tion factors and HFMD. For instance, a study conducted 
in Guilin suggested that extremely low levels of PM2.5 
had protective effects on HFMD, whereas high concen-
trations of PM2.5 had the opposite effects [21]. Instead, 
another study conducted in Chengdu revealed that PM2.5 
was not associated with the development of HFMD [28]. 
This disparity in findings may arise from these studies 
not fully considering proven environmental factors such 
as meteorology and socio-economic conditions when 
examining the effects of air pollution on HFMD, resulting 
in misleading associations between these factors.

Furthermore, it is necessary to consider nonstationary 
bias when examining the associations between environ-
mental factors and health outcomes [29]. Nonstationary 
bias implies that the influence of environmental factors 
on health outcomes changes with variations in space, 
time, and numerical values [29]. These variations are 
referred to as spatial nonstationarity, temporal nonsta-
tionarity, and numerical nonstationarity, respectively. For 
large- and fine-scale research on HFMD and environ-
mental factors, the exposure-response relationship might 
be misidentified due to shifts in geographical space, time, 
and numerical size. Presently, many studies on air pollu-
tion and HFMD only focus on numerical nonstationarity, 
overlooking spatiotemporal nonstationarity [30]. Addi-
tionally, a study utilized GAM and time series analysis 
methods, considered both numerical and temporal non-
stationarity, determining that NO2 promoted HFMD 
among infants with the cumulative relative risk peaking 
at lag 9 day [31]. However, no study has yet focused on air 
pollution factors, jointly considering these three forms of 
nonstationarity, to explore the numerical, temporal, and 
spatial heterogeneity of their impacts on HFMD. This 
neglect can lead to uncertain, incomplete or even incor-
rect identification of key risk factors of HFMD [29].

Overall, there is still a research gap in understanding 
the connections between air pollution and HFMD, par-
ticularly when fully accounting for the three-perspective 
nonstationary bias in environmental health research 
and the impact of controlling meteorological and socio-
economic factors in assessing the health risks linked to 
air pollution. To address these issues, we adopted air 

strategies to enhance the precision of dynamic early warnings and predictive models for HFMD and other infectious 
diseases, particularly in the fields of environmental and spatial epidemiology.
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pollution factors as the main independent variables, with 
meteorological and social environmental factors serv-
ing as control variables, to explore the heterogeneous 
relationship between environmental factors and HFMD 
from the perspectives of numerical, temporal, and spa-
tial nonstationarity. We selected the Sichuan-Chongqing 
area in China as our study area, driven by the increasing 
prevalence of HFMD, the severe air pollution problems 
[32], as well as the presence of a complex terrain and cli-
mate system that may manifest distinct epidemiological 
characteristics across time and space [6]. We collected 
county-level HFMD case data spanning 36 months from 
2009 to 2011, along with relevant factors related to air 
pollution, meteorology, and the social environment.

Our study aimed to achieve two primary objectives. 
Firstly, we aimed to determine whether there is an evi-
dent global-scale stationary correlation between air pol-
lution and HFMD. Specifically, we investigated whether 
air pollutants demonstrate relatively high contributions 
in all types of factors. The second objective was to reveal 
the three heterogeneous effects of air pollution factors 
on HFMD. We built GAM, a mainstream method for fit-
ting numerical nonstationarity [33], and GTWR models, 

a common approach for exploring spatiotemporal non-
stationarity [34]. Identifying these three types of non-
stationarity is meaningful as it contributes to a deeper 
understanding of the pathogenesis and spatiotemporal 
patterns. Moreover, it provides crucial support for for-
mulating specific prevention and control measures by 
taking these nonstationary into account to improve chil-
dren’s health to support the successful achievement of 
SDG 3.

Materials and methods
Study area and data
The Sichuan-Chongqing region (east longitude 97°36’ 
∼ 110°19’; north latitude 26°05’ ∼ 34°32’) is located in 
southwest China, featuring higher altitudes in the west 
and lower elevations in the east. It encompasses 178 
county-level cities (Fig.  1). The region experiences a 
subtropical monsoon humid climate characterized by 
high temperatures and abundant rainfall in summer and 
mild winters with minimal rain. The topography of the 
eastern basin hinders the dispersion of air pollutants, 
causing relatively poor air quality in this area. Addition-
ally, the dense population, approximately 116  million in 

Fig. 1  The monthly average incidence of HFMD at the county level in Sichuan-Chongqing, China
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this region, provides essential conditions for the HFMD 
epidemic.

Monthly data on HFMD incidence at the county level 
from 2009 to 2011 were obtained from the China Infor-
mation System for Disease Control and Prevention (CIS-
DCP). The Clinical diagnosis of HFMD aligns with the 
National Guideline on Diagnosis and Treatment of Hand 
Foot Mouth Disease issued by the Chinese Ministry of 
Health. To focus on the demographic most affected, 
namely children, we included cases in individuals aged 
between 0 and 9 years. Rigorous review by profession-
als guarantees the accuracy and reliability of all reported 
data. Figure 1 shows the distribution of monthly average 
incidence of HFMD at the county level in the Sichuan-
Chongqing region.

Air pollution data were sourced from the China-
HighAirPollutants dataset [25, 35–37], with a spatial 
resolution of 1 km. This dataset integrates ground-based 
measurements, satellite remote sensing products and 
atmospheric reanalysis data. The data results indicate 
that the estimated values of pollutants agree well with 
the ground-based measurements (CV-R2 > 0.8). Previ-
ous research has identified O3, PM10, and PM2.5 as the 
primary pollutants in Sichuan-Chongqing, especially in 
the eastern basin, where O3 is the predominant pollutant, 
followed by PM2.5 [38]. Therefore, our study focused on 
O3, PM10 and PM2.5 to investigate their impact on HFMD. 
All data were averaged to the county scale to align with 
HFMD incidence.

Based on previous studies [13–17], we collected mete-
orological and social environment factors that could 
potentially confound the association between air pollu-
tion and HFMD risk. In these factors, temperature, wind 
speed, air pressure, and relative humidity were obtained 
from the Goddard Earth Sciences Data and Information 
Services Center (GESD) (https://giovanni.gsfc.nasa.gov/
giovanni) with a spatial resolution of 0.5 × 0.625°. Pre-
cipitation data were sourced from Precipitation Estima-
tion from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) (http://chrsdata.eng.uci.
edu) with a spatial resolution of 0.25 × 0.25° [39]. Night-
time light data (approximately 1  km), representing the 
social and economic situation of a region [40], were 
retrieved from the global NPP-VIIRS nighttime light 
dataset (https://dataverse.harvard.edu/). Population den-
sity data were derived from the World Population Data 
Set (https://hub.worldpop.org) with a spatial resolution 
of 30 arc-seconds. All covariates were extracted based on 
county level to match the HFMD incidence.

Statistical analysis
Before conducting the statistical analysis, we used Arc-
GIS software to extract the average values of all vari-
ables for each grid based on the county-level map data. 

In this study, the variance inflation factor (VIF) test and 
the random forest method were employed to identify 
explanatory variables with a significant impact on HFMD 
incidence. Both of these methods were implemented in 
R, using the “car” [41] and “randomForest” [42] pack-
ages. The VIF assesses collinearity between variables, 
with higher VIF values indicating more severe collin-
earity. Variables with a VIF exceeding 5 were excluded 
[43, 44]. Additionally, the random forest, known for its 
fast training speed, simple implementation, good per-
formance, and effective anti-overfitting capabilities [45], 
was utilized to measure the influence of these variables 
on HFMD by generating importance indices. We used 
%IncMSE value outputted by the RF model as the impor-
tance measure, with ntree set to 800 and mtry set to 3. A 
higher value for a variable means a greater effect in the 
model. To assure the stability of the importance measure, 
we repeated the RF model 30 times.

Generalized Additive Model (GAM) [33] was used 
to reveal the exposure-response relationship between 
HFMD incidence and its influencing factors due to a lack 
of information about any underlying associations in the 
study area. What’s more, we can identify variations in 
the response of these environmental factors to HFMD 
incidence at different values by GAM and thus capture 
numerical nonstationarity. GAM was implemented using 
the R software with the “mgcv” package [46]. In this 
study, we used a log link function for the HFMD inci-
dence as the outcome variable. A smooth spline function 
with three or four degrees of freedom was applied to cap-
ture the nonlinear relationships [14].

Geographically and Temporally Weighted Regression 
(GTWR) is a local spatiotemporal model that consid-
ers both spatial and temporal nonstationarity, offering a 
more comprehensive explanation of the spatiotemporal 
heterogeneity in the relationships between independent 
and dependent variables [34]. For specific parameters, 
we used a Gaussian function to regulate the calculation 
of the spatiotemporal power function and spatiotem-
poral distance [34]. The neighborhood number and the 
bandwidth for the spatiotemporal distance ratio were set 
to 100 and 1, respectively. The GTWR analysis was con-
ducted using ArcGIS 10.2, as developed by Huang [34]. 
Furthermore, by integrating the GTWR results with the 
Hot Spot Analysis (Getis-Ord Gi*) tool in ArcGIS, we 
uncovered spatial clusters of factors with positive and 
negative impacts on HFMD [47].

Results
Importance of environmental factors affecting HFMD 
under stationarity
We selected three air pollution factors (PM2.5, O3, and 
PM10), five meteorological factors (mean tempera-
ture, wind speed, precipitation, relative humidity, and 

https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni
http://chrsdata.eng.uci.edu
http://chrsdata.eng.uci.edu
https://dataverse.harvard.edu/
https://hub.worldpop.org
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pressure), and two socio-economic factors (nighttime 
light and population density) as alternative explanatory 
factors. A VIF test and a correlation analysis were con-
ducted to assess the multicollinearity and correlation 
between variables. The analysis revealed strong cor-
relations between PM2.5 and PM10, as well as between 
temperature and humidity. Additionally, air pressure 
exhibited a notable correlation with both PM10 and PM2.5 
(Fig. S1). Following the VIF test results (Table S1), we 
removed PM10 (VIF: 42.71) since PM2.5 played a more 
crucial role within the study area [48]. Subsequently, 

relative humidity (VIF: 16.93) and air pressure (VIF: 6.33) 
were also excluded. Ultimately, we retained PM2.5, O3, 
nighttime light, population density, mean temperature, 
precipitation, and wind speed as the seven independent 
factors influencing HFMD.

Random Forest results indicated a strong association 
between these factors and HFMD incidence (Fig.  2). 
Nighttime light emerged as the most significant fac-
tor, followed by precipitation and mean temperature, 
with PM2.5 and O3 also showing high importance. Build-
ing upon the stationary importance of variables, further 

Fig. 2  Ranking of explanatory factors influencing HFMD incidence. This figure illustrates the global-scale stationary relative importance of seven key 
explanatory factors in the context of HFMD incidence, as determined by the importance index calculated using the random forest method
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analysis can be conducted to explore the locally heteroge-
neous effects of these factors on HFMD incidence.

Numerical nonstationarity in HFMD-environment 
associations
Figure  3 illustrates the impact of environmental fac-
tors on HFMD incidence at the numerical nonstation-
ary scale. All factors, except for wind speed, displayed 
clear nonlinear characteristics. PM2.5, nighttime light, 
mean temperature, and precipitation exhibited inverted 
‘V’-shaped influence curves on HFMD incidence. Spe-
cifically, low concentrations of PM2.5 and moderate con-
centrations of O3 were positively associated with HFMD 
incidence. However, continuous increases in PM2.5 con-
centrations and extreme concentrations of O3 (either 
low or high) were linked to a reduction in HFMD inci-
dence. Among the covariates, nighttime light showed a 
positive effect at low values but a negative effect at high 
values, while population density maintained an overall 
positive association with HFMD incidence. Mean tem-
perature promoted HFMD incidence when below 10 °C, 
but became inhibitory beyond this threshold. Overall, 
changes in PM2.5 and O3 had a significant impact on 
HFMD incidence, indicating substantial numerical non-
stationarity across the study area.

Temporal nonstationarity in HFMD-environment 
associations
Using the GTWR statistical model, we analyzed the tem-
porally heterogeneous effects of seven environmental 

factors on HFMD risk, considering both seasonal and 
monthly scale variations (Fig.  4). First, an examination 
of monthly HFMD incidence trends from 2009 to 2011 
(Fig. 4A), revealed a consistent seasonal pattern across all 
three years, with 2010 exhibiting the most pronounced 
peak in high-risk values. The incidence of HFMD peaked 
primarily in spring (April and May) and showed second-
ary peaks during the transitional months of autumn and 
winter (November and December).

O3, mean temperature, and nighttime light displayed 
similar seasonal trends, with mean temperature having 
the most pronounced impact. Nighttime light exerted the 
strongest influence across all four seasons (Fig. 4B). PM2.5 
had a substantial impact in summer and autumn, while 
O3 exhibited a strong influence in spring and summer.

On a monthly scale, the effects of PM2.5, O3, mean 
temperature, and nighttime light on HFMD risk varied 
(Fig. 4C). PM2.5 had its greatest positive impact in Octo-
ber and the least in March. O3 was most influential in 
July, while mean temperature had the strongest effect in 
March and the weakest in July. Nighttime light showed 
a higher influence in spring and summer, with its peak 
effect occurring in May. Additionally, precipitation had 
a stronger positive effect in January, while wind speed 
exerted its greatest influence in September.

Spatial nonstationarity in HFMD-environment associations
Using local-scale spatiotemporal regression coefficients 
estimated by the GTWR model, we generated a series of 
spatial heterogeneity maps illustrating the county-level 

Fig. 3  Nonlinear exposure-response relationships (numerical nonstationarity) between HFMD incidence and seven environmental factors
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impacts of seven factors on HFMD incidence across dif-
ferent seasons in the Sichuan-Chongqing region of China 
(Fig. 5). The distinct variation in coefficients across coun-
ties supports the “single county, single policy” approach 
for disease prevention and control. Additionally, we 
performed a geographical hotspot analysis using the 
Getis-Ord Gi* statistic to identify significant clusters 
(Fig.  5), where hot spots represent significant positive 
associations between environmental factors and HFMD 
incidence, and cold spots represent significant negative 

associations [47]. The analysis revealed clear spatial clus-
tering patterns in the county-level impacts of PM2.5 and 
O3 on HFMD risk across all four seasons.

Specifically, PM2.5 formed significant hot clusters in 
western Sichuan during spring, northern Sichuan in 
summer, and around Chengdu in autumn and winter. 
Conversely, PM2.5 exhibited significant cold clusters 
around Chengdu in spring and in eastern Chongqing 
during summer and autumn. For O3, noticeable hot 
clusters emerged in western Sichuan during summer, 

Fig. 4  Temporal heterogeneous associations of seven environmental factors with HFMD incidence. This figure is divided into three parts: (A) illustrates 
the monthly trend of HFMD incidence from 2009 to 2011; (B) depicts the seasonal magnitude of temporal nonstationary impacts of these factors; and (C) 
shows the monthly differences in their associations
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while cold clusters were found in the central region dur-
ing spring and autumn, and in the eastern part during 
summer. Other covariates also displayed distinct spatial 
aggregation. For example, nighttime light formed signifi-
cant high-risk clusters in western Sichuan during sum-
mer and in central areas during autumn and winter, while 
temperature showed notable high-risk clusters mainly in 
Chengdu and its surrounding areas. Overall, by exam-
ining the spatial nonstationarity and hotspot maps, we 
identified the spatially heterogeneous impacts of air pol-
lution on HFMD at both the county level and in broader 
regions through hotspot clustering.

Discussion
Air pollution is a critical global public health concern, 
with significant implications for well-being, making the 
investigation of its impact on childhood HFMD essen-
tial to support SDG 3 [26]. More importantly, recogniz-
ing the three-dimensional nonstationarity of air pollution 

factors in relation to HFMD enhances the precision and 
reliability of identifying key risk determinants [49]. This 
approach avoids oversimplified, global-scale interpreta-
tions and fosters a more nuanced understanding of the 
issue [29]. In this study, we took the Sichuan-Chongqing 
region in China as an example and, for the first time, 
addressed the three aspects of numerical, temporal, and 
spatial nonstationarity to comprehensively elucidate the 
heterogeneous effects of air pollution factors on small-
area HFMD incidence. After controlling for meteorologi-
cal and social environmental factors, we identified the 
nonlinear numerical effects of PM2.5 and O3 on HFMD 
and revealed their spatially and temporally heteroge-
neous impacts at county and monthly scales. In the fol-
lowing discussion, we will explore these findings from the 
three distinct perspectives of nonstationarity in environ-
mental health research.

Initially, the findings from the nonlinear relationships 
shed light on threshold effects between air pollution 

Fig. 5  Spatial heterogeneous associations between HFMD incidence and environmental factors at the county level in Sichuan-Chongqing, China. This 
figure presents spatial nonstationary maps that reveal county-level variations in the impact of seven environmental factors on HFMD incidence. These 
variations are quantified using local coefficients derived from the Geographically and Temporally Weighted Regression (GTWR) model. Additionally, 
hotspot maps, based on an in-depth analysis of these local coefficients, highlight regions experiencing significant, clustered impacts from the specified 
environmental factors. The factors examined here are X1: PM2.5; X2: O3; X3: Nighttime light; X4: Population density; X5: Mean temperature; X6: Precipita-
tion; and X7: Wind speed
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and HFMD incidence in the Sichuan-Chongqing region, 
uncovering the numerical nonstationarity of air pollu-
tion factors. We observed that low concentrations of 
PM2.5 increased the risk of HFMD as levels rose, a pat-
tern consistent with previous studies [50]. We speculate 
that PM2.5 may elicit adverse reactions in alveolar phago-
cytes [51], heightening the risk of HFMD. Moreover, 
PM2.5’s potential damage to the central nervous system 
could heighten susceptibility to the EV-71 virus, which is 
linked to HFMD [52]. Furthermore, low PM2.5 levels may 
promote outdoor activities, potentially contributing to 
higher HFMD incidence [53]. Conversely, at high PM2.5 
concentrations, reduced outdoor activities might natu-
rally lower the risk of infection.

The inhibitory effect of O3 on HFMD at both low and 
high concentrations, coupled with its promotive impact 
at medium concentrations, aligns with findings from 
previous studies [27, 31]. The promotive effect of O3 
may be attributed to its role as a lung irritant [54], which 
can adversely affect children’s lung function and respira-
tory system, especially with prolonged exposure. This 
increased respiratory damage could elevate the risk of 
HFMD [20]. O3 pollution tends to rise to relatively high 
levels on sunny days [53, 54], leading to greater O3 expo-
sure for children engaging in outdoor activities. The 
observation that high concentrations of O3 had an inhibi-
tory effect on HFMD risk is supported by previous stud-
ies [21], potentially due to O3’s ability to suppress the 
production of cytokines associated with EV-71 infection 
[55].

In line with prior research, our study affirmed the non-
linear impacts of socioeconomic and meteorological fac-
tors on HFMD. Increased population density facilitates 
easier virus transmission [56]. However, with ongoing 
economic development, improvements in healthcare, 
education, and hygiene practices help reduce the risk 
of HFMD. Mean temperature showed an inverted ‘V’-
shaped association with HFMD, aligning with previous 
studies [50]. Within an optimal temperature range, ris-
ing temperatures promote enterovirus secretion [57], 
and children are more likely to engage in outdoor activi-
ties during comfortable weather conditions. Conversely, 
extremely high temperatures shorten the survival time of 
enterovirus, diminishing the likelihood of transmission 
back to the host [58].

Beyond identifying nonlinear nonstationarity, our 
study highlights temporal nonstationarity by uncover-
ing distinct seasonal trends in the influence of environ-
mental factors on HFMD prevalence at the county level 
within the Sichuan-Chongqing region. Consistent sea-
sonal patterns were observed between HFMD incidence 
and the effects of O3, mean temperature, and nighttime 
light, suggesting a synergistic impact on HFMD risk. 
PM2.5 notably increased HFMD risk during summer and 

autumn, underscoring the need for targeted air pollution 
control and self-protection measures in these seasons. In 
winter, while PM2.5 concentrations were visibly high [38], 
preventive measures such as mask-wearing and reduced 
outdoor activities helped mitigate PM2.5-associated 
risks. Despite lower PM2.5 levels in summer, potential 
health risks remained a concern [59]. O3 had a significant 
influence during spring and summer, which coincided 
with HFMD peaks. Given the increased O3 exposure in 
late spring and summer [38], protective measures such 
as limiting outdoor activities during sunny afternoons 
become critical. These findings enable more accurate 
predictions of how future changes in meteorological con-
ditions, air pollution, and socio-economic factors will 
influence HFMD risk. They also provide valuable insights 
for policymakers to develop timely, region-specific strat-
egies for HFMD control and prevention.

We also validated the spatial nonstationarity of seven 
environmental factors influencing HFMD incidence 
across the four seasons using geographic hotspot detec-
tion techniques. Among these factors, PM2.5 and O3 
demonstrated distinct seasonal and regional impacts, 
with O3 emerging as the primary influencing factor in 
the western plateau and PM2.5 in the basin area. Air pol-
lutants were concentrated in high-high clusters in the 
basin, while low-low clusters predominated in the pla-
teau region [38]. Tailoring prevention and control strat-
egies to address specific pollutants like PM2.5 and O3 in 
these diverse regions could lead to more effective mitiga-
tion efforts. The use of hotspot maps to analyze the com-
bined impacts of air pollution, meteorological factors, 
and socio-environmental covariates allows for the devel-
opment of more comprehensive intervention strategies. 
For instance, in autumn, authorities in Chengdu could 
focus on simultaneously reducing PM2.5 levels and wind 
speed to lower HFMD incidence. Prioritizing the com-
bined effects of these factors in high-risk areas could sig-
nificantly enhance the effectiveness of HFMD prevention 
and control measures.

Our study provides policy-relevant insights into the 
diverse effects of air pollution on HFMD across vary-
ing pollutant concentrations, regions, and timeframes, 
through a comprehensive three-perspective nonstation-
arity analysis. The findings reveal that even PM2.5 and 
O3 levels deemed ‘safe’ can pose significant health risks 
to children, emphasizing the need for stricter air qual-
ity monitoring. Temporal analysis pinpoints high-risk 
periods, highlighting the importance of time-specific 
interventions to preempt HFMD outbreaks. Seasonally 
adjusted strategies, such as focusing on PM2.5 reduce in 
autumn and O3 control in summer, could significantly 
lower HFMD risks. Spatial risk mapping further under-
scores the necessity of localized policies that target spe-
cific pollutants in high-risk areas. For instance, reducing 
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PM2.5 in Chengdu during autumn and winter, and man-
aging O3 levels in western Sichuan during summer, 
exemplifies this targeted, region-specific approach. Such 
differentiated strategies, driven by three-perspective 
heterogeneous analysis, are crucial for improving early 
warning systems and predictive models. By adopting 
tailored interventions, policymakers can enhance public 
health measures, protect children’s health, and mitigate 
HFMD risks more effectively. Identifying county-level 
temporal and spatial disparities, alongside pollutant 
concentrations, enables the customization of prevention 
strategies. Authorities can adjust environmental health 
policies to better protect vulnerable groups, particularly 
children. This data-driven approach is key to improving 
public health initiatives and reducing the community dis-
ease burden.

Conclusions
This study, from numerical, temporal, and spatial non-
stationary perspectives, successfully unveiled the hetero-
geneous relationships between air pollution and HFMD 
in the Sichuan-Chongqing region, China, at both county 
and monthly scales. We highlighted the significant influ-
ences of PM2.5 and O3 on HFMD incidence, revealing 
that low concentrations of PM2.5 and moderate concen-
trations of O3 were associated with elevated risks. The 
sensitive periods for these pollutants were autumn for 
PM2.5 and summer for O3. Furthermore, the spatial clus-
tering of PM2.5 and O3 impacts on HFMD emphasized 
the need for localized approaches. Our findings show 
that a one-size-fits-all approach to HFMD mitigation is 
ineffective. Instead, region-specific and time-sensitive 
interventions, tailored to local conditions and pollutant 
levels, are essential. By concurrently accounting for the 
three-perspective nonstationarity, our study supports the 
development of targeted prevention measures to improve 
children’s health, contributing to the achievement of SDG 
3. Incorporating the three dimensions of nonstationarity 
also enhances the precision of identifying environmental 
health determinants, offering a valuable modeling frame-
work for future research.

Our study has certain limitations. First, the macro-
geospatial ecological analysis may not fully capture indi-
vidual-level exposure-response relationships. Second, 
limited access to up-to-date disease data, the absence 
of certain air pollution indicators, and the exclusion of 
factors like hygiene practices and vaccination rates con-
strained our analysis. Despite these challenges, we suc-
cessfully identified HFMD’s complex heterogeneous risk 
patterns, offering valuable insights for public health and 
policy development. Future research should explore bio-
logical mechanisms and risk factor interactions, using 
comprehensive data across various scales [60], such 

as grid and city levels, to provide more tailored public 
health recommendations.
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