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Background: Biochemical processes involved in complex skin diseases (skin
cancers, psoriasis, and wound) can be identified by combining proteomics
analysis and bioinformatics tools, which gain a next-level insight into their
pathogenesis, diagnosis, and therapeutic targets.
Methods: Articles were identified through a search of PubMed, Embase, and
MEDLINE references dated to May 2022, to perform system data mining, and
a search of the Web of Science (WoS) Core Collection was utilized to
conduct a visual bibliometric analysis.
Results: An increased trend line revealed that the number of publications
related to proteomics utilized in skin diseases has sharply increased recent
years, reaching a peak in 2021. The hottest fields focused on are skin cancer
(melanoma), inflammation skin disorder (psoriasis), and skin wounds. After
deduplication and title, abstract, and full-text screening, a total of 486 of the
7,822 outcomes met the inclusion/exclusion criteria for detailed data mining
in the field of skin disease tooling with proteomics, with regard to skin
cancer. According to the data, cell death, metabolism, skeleton, immune,
and inflammation enrichment pathways are likely the major part and
hotspots of proteomic analysis found in skin diseases. Also, the focuses of
proteomics in skin disease are from superficial presumption to depth
mechanism exploration within more comprehensive validation, from basic
study to a combination or guideline for clinical applications. Furthermore, we
chose skin cancer as a typical example, compared with other skin disorders.
In addition to finding key pathogenic proteins and differences between
diseases, proteomic analysis is also used for therapeutic evaluation or can
further obtain in-depth mechanisms in the field of skin diseases.
Conclusion: Proteomics has been regarded as an irreplaceable technology in
the study of pathophysiological mechanism and/or therapeutic targets of
skin diseases, which could provide candidate key proteins for the insight into
the biological information after gene transcription. However, depth
pathogenesis and potential clinical applications need further studies with
stronger evidence within a wider range of skin diseases.
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Introduction

Skin, as the human body’s largest and one of the most

important organs, exerts an essential function, such as

protecting from external insults and maintaining

microenvironment homeostasis, based on the exquisite

balance of intestinal microbiota, metabolites, and so on. Once

this balance is damaged or out of the compensatory range,

various skin disorders occur concomitantly, resulting in

physical impairment and adversely impacting the quality of

life worldwide. As for this, a majority of studies have focused

on the pathophysiological mechanisms of different skin

diseases, benefited for accurate diagnosis and identifying the

subtype of skin diseases, finding an efficient therapeutic

target, and/or evaluating the treatment or nursing care effect.

However, there are still multiple challenges during the basic

investigation, clinical diagnosis, and treatment (e.g., a low

specific mechanism or biomarker in skin diseases, preliminary

inquiry of the critical molecules, ignoring the co-network in

different skin diseases or other systemic changes, and arduous

process in mining problem). For these aspects, the emergence

of proteomics provides a systematic and reliable prediction

tool or verification method (1, 2).

Mass spectrometry (MS)-based high-throughput

proteomics has been regarded as a core technique for large-

scale protein characterization in cells, tissues, or organisms. It

mainly provides a qualitative and quantitative analysis of

proteins in samples as complementary bio-information to

genomics and transcriptomics, which is essential for better

understanding the complex biochemical processes (3–5). From

the production of proteins to function execution, it refers to

various conditions for multiple post-translational mechanisms.

So, proteomics has not been limited to be performed in a

quantitative fashion of a conventional protein. It has also

been improved to be used in the analysis of specific

modifications (e.g., acetylations, methylations, and

phosphorylations), leading to an insightful analysis of protein

function (6–8). As we can see, the proteomic analysis aims to

increase the depth of protein coverage of cells or tissues.

Notably, with the development of technologies, proteomics

has integrated computer elements to improve the accuracy

and comprehensiveness (7–9). Meanwhile, public databases

and analysis platforms began to appear and continued to

innovate (10, 11), promoting proteomics data sharing and

analysis applications in various fields.

In the past decade, proteomics has been used in skin

diseases, which significantly contributed to skin disease’s
02
pathogenesis and clinical applications. For instance, in

research on the pathophysiological mechanism, proteomics

can provide candidate hub proteins (12). It can also identify

similarities and differences in the proteome of different skin

diseases with similar symptoms (13). Furthermore, proteomics

can reveal biomarkers of different degrees of skin diseases,

drug treatment targets, and treatment effects (14–16).

However, the application of proteomics in skin disease

research has not shown a corresponding high growth rate

with the innovation of key technologies (17, 18). Moreover,

only conventional proteomics methods have been used widely

in most studies, and a few attempted to combine proteomics

with other techniques or used multi-omics analysis (19, 20).

These may make some of the limitations of proteomics

irreparable, and the single application solution may also

hinder the advantages of proteomics. So, the necessity to fully

understand the advantages and limitations of proteomics in

skin disease research is one of the keys to promoting this

research. As far as we are concerned, there are no

comprehensive and systemic information and suggestions for

proteomics applied in skin diseases based on accurate data.

Data mining and analysis is a suitable statistical and analysis

method that can analyze the value and future trend of

proteomics in skin diseases based on the published literature

and provide more practical information in the direction of

research and methods of proteomics application.

Generally, bibliometrics has been used as a visual analysis

for trend and hot spot prediction through publications,

citations, and keywords (21–23). However, since the datasets

“Proteomics for Skin Disease Research” were accessed through

searching online databases, the qualifier “skin disease” in the

search cannot comprehensively and accurately represent all

skin disease research using proteomics. Thus, we chose to use

more accurate and heavier workload data mining to screen

and analyze the datasets retrieved from three databases—

PubMed, MEDLINE, and Embase. By manually analyzing the

data, we summarized the proportion of research directions

and the characteristics of time migration according to the

application of proteomics in skin diseases, supplemented by

quantitative analysis (Figure 1). For specific proteomics

research designs, we analyzed the advantages and limitations

of proteomics in dermatology based on the overall situation

and specific dataset records and proposed more complete

research methods. We also made a detailed record and

analysis of the current research hotspots, prospects, and

trends by collecting skin disease research using proteomics.

The results showed that the application of proteomics in skin
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FIGURE 1

Bibliometric and data mining provide insights and trend analysis of proteomics in skin disorder. SCC, squamous cell carcinoma; MCC, Merkel cell
carcinoma; LC, liquid chromatogram; MS, mass spectrum.
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disease research had differences worth summarizing in terms of

sample sources, techniques, and result analysis methods. In

terms of pathogenesis research, we took skin cancer as a

typical example and conducted a comprehensive analysis from

exploring molecular functions to finding out biomarkers or

take insight into the depth mechanism, which illustrated the

irreplaceable importance of proteomics in skin diseases.

Ultimately, we hope to summarize the contributions of

proteomics and make rational research recommendations with

accurate data analysis and comprehensive discussions.
Data and methods

Data retrieval and analysis for data mining

Search strategy
We selected a systematic approach to make a document

collection: PubMed, MEDLINE and Embase. The retrieval

strategy of each database is customized according to the usage

standard of the database and the scale of the retrieved
Frontiers in Surgery 03
documents. After screening within the inclusion/exclusion

criteria, part of the literature has been used for a full-text

screening and data collection. The process of literature

screening is shown in Figure 2, and more details are as follows.

To perform a systematic analysis of skin and proteomics, we

chose articles for inclusion using a data mining analysis. The

terms “skin” and “proteomic” were used in the MeSH

(https://www.ncbi.nlm.nih.gov/mesh) search, whereas

“proteomics,” and “proteome,” “skin,” “cutaneous,” “dermal,”

“dermatis” and “tegumental” were represented by other

expressions.
Preliminary screening according to exclusion/
inclusion criteria by screened titles, abstracts,
and keywords

Exclusion criteria conducted were as follows:

(1) Not research article: review, letter, book, comment, etc.;

(2) Not skin diseases or not main;

(3) Full-text not available; and

(4) Duplicate articles.
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FIGURE 2

Systematic literature search and outcome identification.
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After the preliminary screening was completed, 919

literature studies were included for secondary screening.
Secondary screening according to inclusion
criteria by screened full-texts

Inclusion criteria conducted were as follows:

(1) Type of documents: original proteomic data;

(2) Topic of documents: studied on skin diseases using

proteomics; and

(3) Contents of documents: Reporting of at least one

statistically significant protein were included;

After the secondary screening was completed, 486 literature

studies were included for secondary screening.
Frontiers in Surgery 04
Grouping the literature in tables
Literature studies included finally were divided into several

groups according to research topics and the four groups are

as follows: (1) Pathogenesis; (2) Risk factor; (3) Treatment;

(4) Others.
Data extraction and analysis
Then, we made whole summaries of the literature in

publication, situation of development, and analyzed the details

in each table. In the process of selecting article data, we

mainly extracted disease types, proteomic sample sources, key

enrichment pathways, and in-depth research based on

differential proteins. In addition, we extracted risk factors for

disease in the Risk factor group, and considering that some
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studies have also given novel solutions for the corresponding

factors, we also extracted Options for risk factors in

particular. For the Treatment group, we have additionally

extracted treatments for better understanding.

Comprehensively analyzing these contents, we have drawn

some research characteristics of proteomics in various aspects.
Data retrieval and analysis for
bibliometrics study

To make our summary more credible, we also used

bibliometrics to analyze the characteristics of published

articles from the perspective of big data. Due to “skin” or

“skin diseases” being inaccurate in searching the literature

from the databases, we chose skin diseases using data mining.

The search was conducted in the Web of Science (WoS) Core

Collection database with citation indexes, including Science

Citation Index Expanded (SCIE), Social Science Citation

Index (SSCI), and Emerging Sources Citation Index (ESCI). A

total of 2,060 documents were retrieved to make visual

bibliometric analysis with the duration from 1 Jan 2002 to 18

Sep 2022.
FIGURE 3

Distribution of publications on the studies of skin diseases according to year an
ultraviolet; AD, atopic dermatitis.
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Results

The overview of the application and
distribution of proteomics in skin diseases

All included articles were counted according to respectively

related diseases. According to the type of skin diseases, we

classified the diseases in different color and performed the

publication search by year through manual statistics

(Figure 3). From 2002 to 2021, the total number of

publications was on an upward trend with volatility.

Especially from 2015 to 2021, a successive growth trend in

proteomics was shown using the field of skin, and our

bibliometric data also indicated this increasing trend

(Supplementary Figure S1). Among these skin diseases, skin

cancer seems to be a major part of studies using proteomics

that reached the highest growth rate in 2018 and peaked in

2020 and 2021. Also, the publications on psoriasis and atopic

dermatitis (AD) showed an increased trend and reached a

peak in 2021. As for skin wounds, the growth trend of

publications leveled off owing to a massive growth in 2018.

The overall trend of cutaneous leishmaniasis has been

relatively stable from 2013 and increased slightly in the past
d each part contributions have also shown. SSc, systemic sclerosis; UV,
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two years (Figure 3). In addition, our bibliometric data have

showed that some keywords of skin disease that have co-

occurred in recent years are consistent with the above results

(Supplementary Figure S2).

In addition, to further analyze the research on skin diseases

using proteomics, we noted the diseases with the above

conditions. The proportion of different skin diseases varied

widely across all studies. Here, we mainly highlighted cancer,

inflammatory skin diseases, wound, aging, alopecia, and

systemic sclerosis (SSc) (Figure 4). Cancer accounted for the

largest proportion of all disease categories (25.514%). Among

these, melanoma (18.107%) had the highest proportion,

followed by squamous cell carcinoma (SCC) (3.086%). In

addition, there were studies involving lymphoma, Merkel cell

carcinoma (MCC), and cholesteatoma. Inflammatory skin

disease is the second largest category accounting for 14.609%.

Psoriasis and AD are the primarily researched diseases,

accounting for 7.819% and 6.173%, respectively. Wound,

aging, alopecia, and SSc account for a smaller proportion,

whose subordinate diseases are more diverse. Cutaneous

leishmaniasis, UV-induced damage, and chemical factors

damage were classified as other skin diseases here because

they are not further subdivided.
FIGURE 4

The proportion of research on the different skin diseases. The main applica
diseases, among which melanoma, AD, and psoriasis are the main ones. SCC
dermatitis; ACD, atopic contact dermatitis; DM, diabetes mellitus; FFA, fronta
SSc, systemic sclerosis; lcSSc, limited cutaneous SSc.
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Overall, the increased trend line and broad application

showed good progress in the study of skin diseases using

proteomics. The range of skin diseases is large and diverse

within complex pathogenesis, and proteomic analysis provides

a systematic analysis of the proteins during the disease

development. Notably, proteomic analysis has begun to be

incorporated in many other diseases in recent years

(Figures 3, 4). However, the sample source, research

significance, and their depth and breadth are different, so we

conducted full-text mining to obtain more detailed information.
Pathophysiological research analysis

Proteomics in pathogenesis, taking skin cancers
as the example

A total of 268 articles studied on pathophysiology were

obtained and divided into seven parts of different types of

skin diseases, including skin cancer, inflammation skin

disease, wound, skin aging, hair disorder, systemic sclerosis,

and others. According to the data, we suppose that there is

something that is common to these skin diseases. For a better

understanding of the proteomic application in skin disease,
tion directions of proteomics are skin cancer and inflammatory skin
, squamous cell carcinoma; MCC, Merkel cell carcinoma; AD, atopic
l fibrosing alopecia; AA, alopecia areata; AGA, androgenetic alopecia;
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we used skin cancer, the most significant proportion in the

above profiling, as a typical example in pathogenesis

compared with other skin diseases. To elucidate some of the

crucial mechanisms of skin cancer and the role of proteomics,

we screened the differential proteins in each article, shown as

the top upregulated and downregulated ones in Table 1 and

Supplementary Table S1.

In data, skin cancers mainly included melanoma, SCC,

lymphoma, etc. Some differential proteins with similar

functions in cancer appeared in different studies. Moreover,

these proteins can be mainly clustered into inflammation,

immunity, survival/death, metabolism, metastasis, cyclin-

dependent kinase (CDK), and heat shock protein (HSP).

(Many of the following proteins have multiple functions, and

the clustering here is only based on the main function, rather

than an absolute distinction.)

Inflammation-related proteins are detected to upregulate in

nearly all skin cancers, such as the interleukin family in

melanoma, the S100 calcium-binding proteins in SCC, and

tumor necrosis factor(TNF) in cutaneous T-cell lymphomas

(CTCL). Some immunity-related proteins were detected in

melanoma, like CD14 as a particular protein in stage II

melanoma and upregulated Endoglin/CD105. The proteins

related to the survival of melanoma cells mainly include

Galectin-3, Survivin, Dickkopf (DKK), Bcl-2, and so on.

Proteins related to the metabolism of melanoma cancer cells

mainly include heme oxygenase-1 (HO-1/HMOX1), Cathepsin

S, Progranulin, FBXO32, etc. For SCC, they mainly include

CDC-like kinase 2 (CLK2), serine/threonine kinase 10

(STK10), aldo-keto reductase family 1 member C3 (AKR1C3),

etc. There are also some proteins related to cancer migration,

such as intercellular adhesion molecule 1 (ICAM-1), tubulin

and vascular cellular adhesion molecule-1 (VCAM-1) in

melanoma, transforming growth factor-β (TGFβ), and

calmodulin-like 5 (CALML5) in SCC. In addition, some

proteins are involved in many life activities such as tumor cell

proliferation and migration, such as serine/threonine kinase 2

(AKT2).

In addition to functional distinction, some proteins can also

be considered promising markers for skin cancer diagnosis.

HSPs are associated with many characteristics of cancer, such

as cell proliferation and metastasis. In addition, there are

Survivin, CDK12, Vimentin, and Galectin-3. These proteins

may be potential biomarkers for some skin cancers. In

addition, some studies focus on markers in the pathogenesis

process, but it has not been confirmed experimentally

(Table 1, Supplementary Table S1).

Based on differential proteins, many studies have further

enriched their functions to explain critical pathways and

biological processes in the development or progression of skin

cancer. In melanoma-related proteomic studies, PI3K/AKT

pathway, mTOR pathway, and mitogen-activated protein

kinase (MAPK)/ERK pathway are the most frequently
Frontiers in Surgery 07
mentioned signaling pathways (Supplementary Table S1).

Upstream of the mTOR pathway, PI3K/AKT signaling

initiates several selective signaling cascades that lead to

increased cell growth and proliferation (24). Whether it is

tripartite motif-containing 14 (TRIM14)-promoted

melanoma progression or Hey1-promoted melanoma

invasion and migration, the PI3K/AKT pathway is an

important part (25, 26). Activation of the mTOR signaling

pathway plays a role in melanocytic tumorigenesis by

regulating extracellular signals that control cell growth,

proliferation, and apoptosis (27, 28). MAPK/ERK pathway

also plays a vital role in the tumorigenic effects of

transcription co-activators 1–3 (29). In addition, most

enrichment results focused on biological processes, especially

functions related to tumor progressions such as cell

adhesion, proliferation, and migration. SCC is similar to

melanoma, except that JNK/SAPK signaling, cell division

cycle 42 (CDC42) signaling, and Hippo signaling also

appears in the pathway enrichment of the former (Table 1,

Supplementary Table S1).

From the data and analysis of skin cancer, proteomics can

provide changes in fundamental proteins for disease research

and can also explore important functional changes in the

pathogenesis through enrichment or in-depth research. This

situation is also prominent in other skin diseases. Whether

searching for psoriasis biomarkers or the research on the

pathogenesis of AD, the application and analysis of

proteomics is similar to skin cancer.

Sample of proteomics
The sources of samples for proteomic analysis were diverse,

and the mainstream sample used for each disease was different.

The choices of samples are related to the characteristics of the

disease and the purpose of the proteome.

The most important source of samples for cancer was tumor

cell lines cultured in vitro, accounting for 59.302% (Table 1,

Supplementary Table S1). The second was cancer tissue

samples, most of which were cancer samples of the skin, and

a small number of studies used fibroblasts (30), serum (31),

and metastatic cancer tissue (32) to study the progression and

metastasis of cancer. Compared with skin cancer, blood

samples from diseased individuals are essential and frequently

used in research on inflammatory skin diseases (41.818% in

Table 2 and Supplementary Table S2). Blood samples

include serum, plasma, and biologically active substances and

cells in the blood environment. These samples provide an

accurate and detailed reflection of inflammatory changes in

skin diseases. Based on these changes, biomarkers can obtain

biomarkers (33), diseases can be distinguished (13, 34), and

also the pathogenesis can be studied with hub proteins (35,

36). In addition, the use of skin tissue samples and primary

cell samples was also common. In recent years, studies have

begun to use blood samples and skin tissue samples from the
frontiersin.org
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TABLE 1 Mechanism of squamous cell carcinoma pathogenesis within proteomic analysis.

Type of
disease

Sample TOP differential proteins Biological
process of
cancer

Highlighting
mechanism

Depth mechanism Ref.

SCC SCC cell lines ANO1, CE350, NRBF2, NSUN4,
K1C14, KT33B, HORN in 10% O2;
TRI18, TRY3, ZN714, VAT1,
AL1B1 in 5% O2; TRFL, HBA,
PI3R4, CTL1, K2C8, TTLL1,
FGFR2, DKK2, CCD73, STON2,
SHRM3 in 1% O2

Levels of
hypoxia

Energy, metabolism,
nucleic acid regulation

— Głuszko et al.
(2021)

SCC SCC cell lines Up: CK19, tropomyosin 1α chain,
HSP27, CK8, AHCY, NNMT,
GSTO1

Proliferation,
invasion
(NNMT)

— NNMT knockdown
inhibits cell migration
and invasion

Hah et al.
(2019)

SCC SCC cell lines A431: FUCA2, LRG1, MAGEA4,
CSF1, PROS1, PLAT, LCP1, AXL,
EGFR, DNAJB11;

— Metabolism, mTOR,
PI3K-AKT, RAP1
signaling

Secretome of A431 cancer
cells accelerates migration
and proliferation

Hoesl et al.
(2020)

HaCaT: SERPINB7, MMP13,
GSN, DSG4, MXRA5, SEMA3A,
FN1, SPARC, MMP2, DSC3

SCC SCC cell lines Down: AKT2, MAP4K4, PRKCD,
ERBB2, CLK2, STK10, MAP2K1,
EGFR, PTK2B, MAP2K2;

Invasion MAPK, mTOR
pathways; adhesions,
skeleton

YAP1 and SOX2 are
related to mesenchymal
and epithelial
transcriptional programs

Pastushenko
et al. (2021)

Up: YES1, CDK11, PRPF4B,
BMP2K, CDK12, PNKP, MNAT,
MINK

SCC SCC cell lines Up: FABP5, S100A9, S100A8,
SPRR1A, AKR1C3, AKR1C2,
SPRR1B

Proliferation — — Shintani et al.
(2021)

SCC SCC cell lines CDK1T14,Y15, EIF4EBP1T46,T50,
EIF4BS422, AKT1S1T246,S247,
CTTN1T401,S405,Y421, CAP1S307/309

in K8-S73A/D mutant;
CTTN1T401,S405,Y421, BUB1BS1043,
CARHSP1S30,S32 in K8-S431A/D
mutant

Metastasis,
Proliferation,
Invasion

Junction, JNK/SAPK,
CDC42 signaling,
Hippo signaling

— Tiwari et al.
(2017)

SCC SCC cell lines — — Cholesterol and steroid
metabolic process

HMGCS1 partly was
related to A431 cell
proliferation

Xu et al.
(2022)

SCC SCC cell lines KRT8, KRT14, KRT18 — — — Yamashiro
et al. (2010)

SCC SCC cell lines — — — — Yanagi et al.
(2018)

SCC Human [SCC (n = 5)] Up: G3BP, Filamin-A, NDRG1,
Myosin-9, Plectin, 40S Ribosomal
protein S4, Actin-related protein 2/
3 complex subunit 1B, Fascin,
Transgelin, Superoxide dismutase
[Mn];

— Cell survival,
proliferation

— Azimi et al.
(2016)

Down: FLG2, Suprabasin, FLG,
Dermokine, Apolipoprotein
EArginase-1, Galectin-7,
Desmoglein-1, Desmoplakin,
Collagen alpha-1(III) chain,
Corneodesmosin

SCC Human [SCC (n = 20)] — — Gene, metabolism — Chen et al.
(2021)

(continued)
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TABLE 1 Continued

Type of
disease

Sample TOP differential proteins Biological
process of
cancer

Highlighting
mechanism

Depth mechanism Ref.

SCC Human [samples of
primary (n = 19 patients,
n = 20 lesions) and
metastatic SCC lesions
(n = 20 patients, 25
lesions)]

Up: ISG15 ubiquitin like modifier,
APOA1, MARCKS, EFHD2,
STMN1, ACBD3;

Metastasis Invasion, migration,
immune response

— Azimi et al.
(2020)

Down: CMA1, CST6, KRT79,
CPA3, APCS, DMKN

SCC Human [primary (n =
52), metastasize (n =
53)]

Up: TNC, POSTN, TGFB1,
PRDX5, SFPQ, FGB, LCP1, PHB2,
HNRNPA2B1, P4HB;

Metastasis PI3K-Akt signaling — Shapanis et al.
(2021)

Down: CALML5, KRT2, KRT6B

SCC Human [AK (n = 19),
SCC (n = 21), HCs (n =
40)]

— — MEK-ERK, EGFR,
mTOR pathways

— Einspahr et al.
(2021)

SCC Human — — Cell motility, cell death,
survival, growth,
proliferation,
morphology

KRT17 protein is related
to caspase-mediated
degradation, supporting
by altered TMS1-NF-κB
signaling

Tiwari et al.
(2018)

SCC: squamous cell carcinoma; HCs, human controls; AK, actinic keratosis; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-

kinase; mTOR, mechanistic target of rapamycin; JNK/SAPK, c-Jun N-terminal kinase/stress-activated protein kinase; CDC42, cell division cycle 42; RAP1, role of ras-

associated protein 1; EGFR, epidermal growth factor receptor; Panx1, pannexin 1; AKT, protein kinase B; NNMT, N-nicotinamide methyltransferase; YAP1, yes-

associated protein 1; SOX2, SRY-box transcription factor 2; HMGCS1, 3-hydroxy-3-methylglutaryly-CoA synthase 1; NF-κB, nuclear factor-kappaB; KRT17, keratin

17; AKT2, AKT serine/threonine kinase 2; CLK2, cdc2-like kinase 2; MAP2K1, mitogen-activated protein kinase kinase 1; MAP4K4, mitogen-activated protein kinase

kinase kinase kinase 4; PRKCD, protein kinase C, delta; ERBB2, epidermal growth factor receptor 2; STK10, serine threonine kinase 10; PTK2B, protein tyrosine

kinase 2 beta; MAP2K2, mitogen-activated protein Kinase Kinase 2; YES1, YES proto-oncogene 1 tyrosine kinase; CDK11, cyclin-dependent kinase 11; PRPF4B,

PRP4 pre-mRNA processing factor 4 homolog B; BMP2K, BMP-2-inducible protein kinase isoform b; PNKP, polynucleotide kinase 3’-phosphatase; FABP5, fatty

acid-binding protein 5; S100A9, S100 calcium-binding protein A9; AKR1C3, aldo-keto reductase family 1 member C3; SPRR1B, small proline-rich protein 1B; TNC,

tenascin C; TGFB1, transforming growth factor, beta 1; PRDX5, peroxiredoxin 5; LCP1, lymphocyte cytosolic protein 1; PHB2, prohibitin 2; P4HB, prolyl 4-

hydroxylase beta-subunit; CALML5, calmodulin-like 5; KRT, keratin; NRBF2, nuclear receptor binding factor 2; CTL1, choline transporter-like 1; K2C8, keratin, type

II cytoskeletal 8; TTL1, Tubulin tyrosine ligase-like family, member 1; FGFR2, fibroblast growth factor receptor 2; DDK2, Dickkopf-2; STON2, Stonin 2; LRG1,

leucine-rich alpha-2-glycoprotein 1; CSF1, colony-stimulating factor 1; PROS1, protein S; PLAT, plasminogen activator; MMP13, matrix metallopeptidase-13; GSN,

gelsolin; DSG4, desmoglein 4; MXRA5, matrix-remodeling associated 5; SEMA3A, semaphorin 3A; FN1, fibronectin 1; SPARC, secreted protein acidic and rich in

cysteine; DSC3, desmocollin 3; CK19, cytokeratin 19; AHCY, adenosylhomosysteinase; GSTO1, glutathione S-transferase omega 1; EIF4EBP1, eukaryotic translation

initiation factor 4E binding protein 1; EIF4B, eukaryotic translation initiation factor 4B; AKT1S1, AKT1 substrate 1; CAP1, cyclase-associated protein 1; CARHSP1,

calcium-regulated heat stable protein 1; G3BP, galectin-3-binding protein; FLNA, Filamin-A; NDRG1, N-myc downstream regulated gene 1; FLG2, Filaggrin-2.
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same individual to obtain more comprehensive information on

pathological changes (37, 38).

In the study of other diseases, there were also applications of

specific samples corresponding to particular diseases

(Supplementary Tables S5–S8). As for skin wounds, we often

focused on the surrounding skin tissue but ignored the

exudates of the wound. Studies by Krisp et al., van der Plas

et al., and Bekeschus et al. reported that the exudates of skin

wounds might have important implications for the

progression of wounds (39–41). In the study of bullous

pemphigoid, blister fluid was used as a sample for proteomic

analysis (42). Moreover, with the continuous improvement of

online databases in recent years, some studies have begun to

download online data for analysis (43, 44). However, the skin

proteomic database still needs to enrich and improved. The

use of online analysis may be one of the future development

trends of skin disease research.
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Application of proteomics in skin
pathophysiological research

Turning back to the total articles of skin disease benefited

for proteomics, most of them were based on proteomic

analysis to raise a presumption and explore the pathology of

skin diseases. The typical analysis process consists of five

steps: sample acquisition, protein purification, qualitative and

quantitative, acquisition of differential protein information,

and validation (Western blot, ELISA, etc.). However, this

routine process can only provide insights into the study of the

pathological mechanism but cannot concretize the results of

protein profiling (45).

With the improvement and promotion of bioinformatic

platforms, such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG), Gene Ontology (GO), and Ingenuity

Pathway Analysis (IPA), the results of proteomics can be

analyzed online to correlate with information on cellular
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TABLE 2 Mechanism of atopic dermatitis pathogenesis within proteomic analysis.

Type of
disease

Sample Highlighting mechanism Depth mechanism Ref.

AD Human [AD (n = 12), HCs (n = 13)] Localization, regulation of biological
quality, platelet activation, etc.

— Chang et al. (2021)

AD Human [AA (n = 35), HCs (n = 36), psoriasis (n =
19), AD (n = 49)]

Atherosclerosis signaling, immune
pathways, cardiovascular pathway

— Glickman et al. (2021)

AD Human [AD (n = 4), HCs (n = 7), spontaneously
healed AD (n = 4)]

— — Rindler et al. (2021)

AD Human [AD (n = 34), HCs (n = 20)] — Insufficiency of IL-37
leads to
dysregulation of serum
protein
and skin disruption in
AD

Hou et al. (2021)

AD Human [AD (n = 8), HCs (n = 8)] Biological regulation, cellular component
organization, etc.

— Morelli et al. (2021)

AD Human [AD (n = 20), HCs (n = 28)] — — Pavel et al. (2020)

AD Skin suction blisters and skin — — Rojahn et al. (2020)

AD Human [18–40 years old (n = 26), 41–60 years (n
= 24),>60 years (n = 21), HCs (n = 37)]

Th1/Th2 differentiation, IL-4-mediated
signaling, IL-5-mediated signaling, etc.

— He et al. (2020)

AD Human [AD + FA (n = 21), AD (n = 19), HCs (n =
22)]

Inflammatory response, glycolysis,
oxidative stress response

— Goleva et al. (2020)

AD Human [AD (n = 20), HCs (n = 7)] — — Umayahara et al. (2020)

ACD Mice TGs Response to stimulus, metabolic process,
immune system process, etc.

— Su et al. (2020)

AD Human [AD (n = 76), HCs (n = 39)] — — Leonard et al. (2020)

AD Human — — Yin et al. (2019)

AD Human [AD pediatric (n = 30), healthy pediatric
(n = 19), AD adult (n = 58), healthy adult (n = 18)]

— — Brunner et al. (2019)

AD Human [HCs (n = 84),severe AD (n = 50),
moderate AD (n = 123)]

— — Mikus et al. (2019)

AD Human [HC (n = 10), AD (n = 20), CD (n = 10),
AD and CD (n = 10), psoriasis (n = 12)]

— — Wang et al. (2017)

AD Human [psoriasis (n = 22), AD (n = 59), HCs (n =
18)]

— — Brunner et al. (2017)

ACD Dendritic-like cell line Cell signaling, transcriptional regulation,
protein transport, ubiquitination, etc.

MLK is one of FITC
targets leading
the specific protein
haptenation
and the subsequent
pathway of dermal
dendritic cells activation

Guedes et al. (2017)

AD Spleen and thymus Treg cells — — Lee et al. (2016)

AD AD-NC/Nga mice — — Kawasaki et al. (2014)

AD Human [EH− (n = 18), EH+ (n = 17), non-atopic
controls (n = 6)]

Skin barrier, generation of natural
moisturizing factor

— Broccardo et al. (2011)

AD Human [AD (n = 8), HCs] — — Kim et al. (2008)

AD Human [ADe (n = 14), ADi (n = 10), HCs (n = 14)] — — Park et al. (2007)

AD Human [ADe (n = 14), ADi (n = 10), HCs (n = 14)] — — Park et al. (2007)

AD Human [ADe, ADi, HCs] — — Park et al. (2006)

AD Human [ADe, ADi, HCs] — — Park et al. (2004)

AD, atopic dermatitis; ACD, atopic contact dermatitis; HCs, human controls; AA, alopecia areata; TGs, trigeminal ganglions; CD, contact dermatitis; EH, eczema

herpeticum; ADe, extrinsic AD; ADi, intrinsic AD; PsA, psoriatic arthritis; FITC, fluorescein isothiocyanate; MLK, mixed-lineage protein kinase.
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pathways and biological processes. The proteomic protein

function analysis could provide comprehensive and specific

information for the progress of pathogenesis. According to

the statistical results of the pathophysiological group, 50.988%

of the studies conducted functional analyses of the online

database on the proteome results (Tables 1, 2, Supplementary

Tables S1, S2, S5–S8). Taking the melanoma study by

Konstantakou et al. as an example, after obtaining the

proteome, a series of online database analyses were used to

provide insights into the core proteins and pathways from

tumorigenesis to therapeutic targets (2).

In addition, somestudiesuseproteomics as a reliablemethod for

validating researchfindings (46) or replenishing proof of results (47).

Thesemaybenewapproaches to applying proteomics to skin disease

research. Online database analysis of proteomes is not a necessary

research process. Follow-up studies based on proteomic analysis

results can be comprehensive (such as GO analysis) or precise

(only targeting one core protein or core pathway). For example,

PSMB9 in systemic lupus erythematosus (SLE) and TRIM29 in

SCC were obtained through proteomic screening, and further

functional studies were conducted precisely (12, 48). Moreover, a

study identified the critical mechanism associated with melanoma

metastasis through specific changes obtained by proteomics (49).

At present, such precise functional research has a more specific

role in promoting the research on the pathophysiological

mechanism of skin diseases. However, as the basis of precise

studies, extensive functional studies like GO analysis and KEGG

analysis are essential and non-negligible.
Risk factors research analysis

A total of 128 articles were included in the risk factor group,

and these articles were divided into two tables according to

biological risk factors and abiotic risk factors. Non-biological

risk factors include UV exposure, chemical exposure, and

other irradiation, while biological risk factors are all about

microbial skin infections (Supplementary Tables S3, S9).

Among the 44 articles related to non-biological risk factors,

the research on radiation (including UV and laser) accounts

for the most significant proportion (50.000%). As for

biological risk factors, Leishmania and its subspecies infection

studies account for the vast majority (46.913%).

The focus of research on risk factors is to lead a guideline

for preventing or treating diseases, which is further beneficial

for discovering the critical pathogenic proteins and

mechanisms of risk factors.
Treatment research analysis

A total of 87 articles were included in the skin disease

therapy. Skin cancer has the highest number of studies, while
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the wound is as the second but less than half the number of

cancers. The number of remaining studies on psoriasis, aging,

UV-induced damage, and AD is not much different

(Supplementary Table S4).

Among 28 studies related to skin cancer therapy, 19 studies

used in vitro cells, and 89.473% were tumor cell lines. For

samples, de Groot et al. have reported that combined

treatment of IACS-010759 (IACS) and atorvastatin (STN)

could induce tumor regression, and they further explored the

mechanism MAPK pathway using functional proteomic

analysis (50). In researching glucocorticoid treatment for

vitiligo, Qian et al. pioneered urine as a sample source for

proteomics to identify the differentially expressed proteins and

ingenuity pathway analysis (such as retinol binding protein-1

and torsin 1A interacting protein 1) (51). In these studies,

proteomics exerts as a screener, accurately reflecting changes

in proteins before and after interventions. Similar to the study

of pathophysiological mechanisms, only a few studies carried

out precise therapeutic mechanism studies based on core

proteins after obtaining the proteomic results. However, unlike

the study of pathophysiological mechanisms, the application of

proteomics in therapeutic research was more inclined to

investigate the effectiveness of the intervention substance or

the main therapeutic effect of the intervention substance. For

example, BRAF inhibitors were used in melanoma therapy,

and MS-based chemical proteomics were used to identify

never-in-mitosis-gene-A related kinase 9 (NEK9) and CDK16

as unique targets of dabrafenib (52). The situation may be

related to the different purposes of the two types of research.

The study of pathophysiological mechanisms explores the

possibility of disease grading and treatment, and the study of

therapy is to judge the degree of cure and effectiveness.
Discussion

Over the hundreds of years of studies in skin diseases, the

curve of its annual publications showed a sharply increasing

trend in recent 20 years. During the preceding 12 years

covered by the proteomic analysis utilized in the studies of

skin diseases, a number of annual publications have

contributed to the development of skin diseases, which

reached a peak in 2021. Among these, skin cancer as a major

part exerted a sharply increasing trend in recent five years for

the cancer hotspot or most research groups, a wide range of

samples and multiple cell lines, and high prevalence, a limited

therapeutic effect, and sorely needed treatment targets (53).

Skin inflammation disease, as a major category of skin disease

that ranked second, may be related to its prevalence with a

well therapeutic response (54). We have summarized the

timeline of some key discoveries in different skin diseases

according to our data (Figure 5). In all, this curve suggests

that an increasing number of researchers pay attention to
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FIGURE 5

The timeline of some key discoveries in the field of the skin disease using proteomics. The first records of proteomics used in several diseases and
their subsequent development are listed here. We selected primary skin diseases that began in different periods to list and used high-impact factor
articles as developing nodes to display in the follow-up development process AD, atopic dermatitis; SLE, systemic lupus erythematosus; AE, atopic
eczema; PKP1, plakophilin-1; HAPLN1, hyaluronan and proteoglycan link protein 1; AXL, AXL receptor tyrosine kinase; YAP1, yes-associated protein 1;
MITF, microphthalmia-associated transcription factor: DM, diabetes mellitus; KLK7, kallikrein-7.
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improved technologies, which indicates a continuously

increasing hotspot of proteomic analysis in skin disorders

over the next few years.

Proteomic assays have been extensively used in the field of

skin, providing significance to nucleotide sequences by giving

a direct link to biological activity, such as functional

proteomics and phosphoproteomics (55, 56), so that the

knowledge of structural–functional cellular complexities and

their changes under skin physiological and pathological

conditions could advance at a faster pace (57). Numerous

studies have identified skin lesion-related changes (including

systemic changes) in protein expression or modification to

enrich the specific pathogenesis well or find a special

biomarker for diagnosis and a therapeutic target for a

particular disease (58). Recently, a more improved and

delicate proteomic analysis has been developed, such as spatial

proteomics (protein subcellular localization tightly combined

with its functions) (59), multi-omics analysis (genetics-

proteomics) (60), and single-cell proteomics (61).

As for the pathogenesis of skin diseases, we analyzed the

application and characteristics of proteomics in skin disease
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and selected skin cancer as a typical example for further

explanations. We enumerated differential proteins with similar

functions. Whether related to inflammation or cancer cell

survival, these proteins are undoubtedly of great significance

for the study of skin cancer. S100A9 is a protein involved in

the recruitment of immune cells and has been shown to be a

molecule in the epidermal layer of the skin that controls skin

tumor formation (62). As survival-related molecules, DKK

proteins can also affect the phenotype of melanoma in various

ways (63, 64), and studies have also shown that the invasive

activity of melanoma cells can be inhibited by DKK1 (65).

Knockdown of FBXO32, which is related to the metabolism of

melanoma cancer cells, was able to induce global changes in

melanoma gene expression profiles and was shown to

correlate with melanoma cell migration, proliferation, and

tumor development (66). ICAM-1, a cell surface glycoprotein

and adhesion receptor, was shown to be expressed together

with LFA-1 under melanoma-endothelial cell co-culture

conditions to facilitate melanoma metastasis in vitro (67, 68).

However, there are still many high-fold change proteins

whose real functions are still unclear (Table 1,
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Supplementary Table S1). In addition, we also tried to find

some common biomarkers, such as HSPs, Survivin, Galectin-

3, and other markers that have been experimentally verified.

The detection of HSPs in the serum of sick individuals can

play an essential role in cancer diagnosis (69). Survivin, one

of the inhibitors of the apoptosis protein family, is

overexpressed in cancer and has been proved to be a

biomarker for cancer diagnosis (70). CDK12, a member of the

CDK family, has also been shown to play an important role

in various human cancers, suggesting that it is a potential

biomarker of cancer (71). Vimentin is proved to be not only

the diagnostic marker but also the hematogenous metastasis

predictor for melanomas clinically (72). Galectin-3 shows high

serum levels in advanced melanoma patients and is also

regarded as an important biomarker for prognosis in stage III

and IV melanoma patients (73). There are also many

potential biomarkers that have not been further confirmed.

For instance, the study by Welinder et al. identified several

proteins correlated with tumor tissue content by combining

proteomics with histopathology and clinical outcomes, of

which HEXB, PKM, and GPNMB were relatively prominent

and may serve as biomarkers in progression from stage III to

IV melanoma (74).

Proteomics is mainly involved in screening differential

proteins and enriched functions, as well as in the search for

biomarkers in the pathogenesis of skin cancer. Most of the

research relies on proteomics to obtain the general protein set

related to cancer, obtain the enriched protein function

through platform analysis or other approaches, and then

highlight or research the part related to cancer. For example,

Eumorphia et al. used nano-liquid chromatography-tandem

mass spectrometry (nLC-MS/MS) proteomic technology to

dissect the deep proteome of WM-266-4 human metastatic

melanoma cells and found 6,681 unique proteins. Ultimately,

they focused on 1433G and ADT3 proteins, which are related

to epithelial-to-mesenchymal (EMT) and mesenchymal-to-

epithelial (MET) programs (2). Some studies focused on

specific proteins and explored the relationship between

proteins and cancer. For example, to explore the role of

heparin-binding protein 17 (HBp17) and FAT1 in the

progression of cutaneous squamous cell carcinoma, both

adopted the knockout-first pattern and finally proved their

mechanisms in promoting keratinization and deterioration,

respectively (75, 76). Identifying FAM83H as a TRIM29

interactor through comprehensive proteomic and

immunoprecipitation analysis is similar (48).

In exploring biomarkers, researchers obtain candidate

proteins by comparing differential proteins from the tissue or

cells from different stages of diseases. However, the screened

candidate proteins often cannot become efficient markers.

Whether for tumors and tumors, or tumors and other

diseases, due to the existence of similar biological processes,

the specificity of differential molecules expressed in clusters is
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not enough to distinguish similar diseases. At present, the

solution is to adopt the combined detection of

immunolabeling to meet the specific identification, but this is

not a universal and cost-effective method. In some respects,

proteomics has similar functions to genomics, transcriptomics,

etc. However, in particular, the proteome is dynamic,

regulated by post-translational modifications (PTMs), and the

prediction of impaired PTMs cannot be achieved by genomic

and transcriptomic analysis but only by proteomic approaches

(77). Therefore, developing proteomic technologies and

applications is very important for skin cancer. Likewise, these

conditions are suitable for other skin disorders.

Among the research on skin disorders, proteomics seems to

be a key part and a research hotspot in skin research. According

to our data, we have found that proteomics contributed to a

more profound discovery of the physiology and pathology of

the skin. Both in circulation and skin of systemic sclerosis,

CXC-l4 was found as a special biomarker via proteome-wide

analysis, which provided a meaningful guideline for clinical

diagnosis both for the presence and progression of

complications (78). As for shrimp allergen analysis (most of

the allergens were protein), Pen m2 was identified as a novel

cross-reactive crustacea allergen through matrix-assisted laser

desorption ionization time-of-flight mass spectrometry

analysis (79). For depth mechanism, Yoon et al. found a

specific defect in an internal ribosome entry site-dependent

translation in X-linked dyskeratosis congenita using an

unbiased proteomic strategy (80). Also, secretory proteome

has been used for skin-related microbiomes, such as to reveal

the pathogenicity of extracellular hydrolases from dandruff-

associated Malassezia (81). Proteomics has been used to

identify protein-interacting proteins, such as ERK-interacting

protein analysis during cell fate decisions (82). Besides

research articles, various high-cited reviews have also pointed

out that proteomic strategies improved our ability to

understand skin disorders, such as the structure and function

of the microbiome in both diseased skin and its healthy states

(83). In general, the proteomic technology contributed to the

development of diagnosing skin disease and improved more

sophisticatedly with high universality, practicality, and accuracy.

Initially, proteomics emerged as one of the technologies that

gave a better explanation of the pathogenesis of disease within a

simple verification. For example, the process of injured skin

healing refers to a complex and highly regulated mechanism,

such as growth factor (GF)-related clotting cascade, proteases-

related necrotic tissue removal, and inflammation response-

related repair and cell growth (84, 85). These findings have

only described part of the pathogenesis of wound healing,

whereas a broader perspective of proteins in the wound area

is detected by proteomic technology. Proteomic analysis

revealed the altered abundance of proteins in wound skin,

suggesting the pathogenesis progress of myofibroblast

contractility, extracellular matrix production, response to
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oxidative stress, and energy metabolism (86). Through mass

spectrometric investigation, the progress of an antiangiogenic

environment, excessive inflammation, and accelerated cell

death have been found in exudates from chronic wounds (41).

It has also found that neutrophil extracellular trap

components were enriched in wound tissue, which may delay

wound healing (87). Besides skin wounds, proteomic analysis

has also been used in other skin diseases. As for chronic hand

eczema (CHE), skin barrier dysfunction plays an essential role

in the pathogenesis of CHE (88). An integrated quantitative

proteomics approach was used to detect proteomic changes in

the SARS-CoV-2-infected skin to provide a functional analysis

of the response to microorganisms, apoptosis, and immune

response, which leads to an insight into the virus-damaged

skin response (89).

At present, in the research process of skin diseases, multi-

omics combined analysis methods are more and more

popular. Proteomics is often combined with genome,

epigenome, transcriptome, metabolome, lipidome, exposure

group, and microbiome for the exploration of various

aspects of skin diseases. Take AD as an example. Genomics

can help identify some of the underlying root causes of AD

lesions, such as mutations in genes such as BAT1, LCE3E,

PCDH9, and PRR5l (90–93). Proteomics can provide AD

information in the form of phenomena during pathogenesis,

namely, the protein profile of diseased tissue at specific time

points (94, 95). Adipomics, microbiome, and exposome can

also provide detailed information on various aspects (20).

When these omics serve the same experiment or the same

goal, they can reflect the pathogenesis of AD at multiple

levels and broadly (96). Multi-omics are used more

frequently and in depth in melanoma research. Such

analysis can not only identify the multi-omics features that

drive the molecular classification of melanoma but also

provide precise guidance for subsequent treatment (97, 98).

In fact, the advantage of multi-omics is that each project

can help make up for the shortcomings of other projects,

especially when one kind of omics is not enough to get a

full picture of the disease process.

Recently, it has raised great attention on the mechanism

of skin factors for skin diseases, such as UV damage,

microorganism, and chemical agents. According to our

data, proteomics plays an essential role in bridging the

basic mechanism and risk factors. The research process

generally uses risk factors to intervene on skin or cells.

Second, proteomics has been used to analyze the proteome

changes after the intervention. In addition, some studies

further explored the effectiveness of specific agents against

risk factors based on proteomic results. For instance, the

research on diesel particulate extract conducted by

Rajagopalan et al. investigated the treatment of vitamin E

according to oxidant changes from proteomics (99). Most

studies on microbial risk factors focus on screening
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virulence proteins from microorganisms via proteomics.

For example, comparing the performance of RT4 and RT6

subtypes of Cutibacterium acnes in different living

environments, triacylglycerol lipase and Christie–Atkins–

Munch–Petersen (CAMP) factor were the critical virulence

factors in pathogenesis (100). In addition, some studies

examined infected skin or cells and have focused on

pathogenic proteins derived from tissue cells (101). Using

proteomics to study risk factors can provide detailed

molecular changes and even mechanism predictions for the

pathogenesis of particular diseases.

Interestingly, we have found the sample source differed

from in various skin diseases. The most important source of

samples for cancer was tumor cell lines cultured in vitro

(59.302%). The advantage of using cell lines in vitro as

research samples is that the results can reflect the

characteristics of tumor cells in more detail and specially,

which could exclude the interference of various other cells

compared to skin tissue or tumor tissue sample. However,

tissue samples, cell samples, and blood samples derived from

patients or diseased mice are more realistic and

comprehensive than in vitro cell lines in reflecting disease

conditions and more conducive to studying the impact of

tumor invasion, metastasis, and other deterioration processes.

Moreover, cancer skin samples, primary fibroblasts (30),

serum (31), and metastatic cancer tissue (32) have also been

used in the study of progression and metastasis in cancer.

Blood samples include serum, plasma, and biologically active

substances and cells in the blood environment. These samples

provide an accurate and detailed reflection of inflammatory

changes in skin diseases. Based on these changes, biomarkers

can obtain biomarkers (33), diseases can be distinguished (13,

34), and also pathogenesis can be studied with hub proteins

(35, 36). In addition, the use of skin tissue samples and

primary cell samples was also common. The advantage of

skin tissue samples is that the proteomic results are closer to

the actual pathological situation. In contrast, the primary cells

can be used for detailed studies of single cells in the diseased

site. In recent years, studies have begun to use blood samples

and skin tissue samples from the same individual to obtain

more comprehensive information on pathological changes (37,

38).

With the development of the enriched complex mechanism,

proteomics helps gain a next-level insight or offer a

breakthrough to guide further study. For example, CDK7 was

identified by proteomics, and then its related function was

proved by further experience to reveal that the downstream

mechanism CDK7 could promote CD4+ T-cell activation and

Th17/Th1 cell differentiation by regulating glycolysis,

contributing to the pathogenesis of psoriasis (36). The

phosphoproteomic analysis identified the signaling cascades

downstream of FAT1 deletion. Then, combined with

mechanistic studies, it jointly revealed that loss of function of
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FAT1 could activate a CAMK2-CD44-SRC axis to promote

tumor initiation, progression, invasiveness, stemness, and

metastasis (75). However, many more concerns remain for

continued and improved research: (1) although the proteomic

analysis could provide strong indications of expression level

protein differences or the highlighted pathways, the

hypothesized implications in several pathways or their co-

network have to be confirmed not only in presentation but

also their functions during the disease; (2) a specific or

causative candidate has failed to identify for the certain skin

disease, as well as the analysis mostly provided with the same

inflammation factors or immune pathways in disease; (3) the

different source of tissue (skin, guy, blood, urine, etc.) for

proteomics may suggest systematic pathological changes

during skin disorder, but it is still unclear to understanding

their interface; (4) it is important to recognize the control

populations included in the study, which should be

appropriately matched in terms of other factors, and the

subtype, the progression, and the interruption should be also

provided in evidence; (5) strong evidence needs a large scale

of samples limited to sample source and cost. However, there

is no denying that proteomics leads to a well-founded

hypothesis and a more systematic understanding of the

pathogenesis of skin disorders.

Furthermore, a more accurate and systematic proteomic

analysis has been contributed to clinical applications.

According to our data, a majority of studies in proteomics

utilized in skin disease focused on the specific proteins and

their corresponding functions presented with a sensitive

option for biomarker monitoring of diagnosis and disease

progression evaluation. As for acute alopecia, Krt5 has been

found as a novel biological marker for acute radiation

symptoms via liquid chromatography/electrospray-ionization

mass spectrometry (102) and a series of specific inflammation

candidates have been reported for disease monitoring (38).

Also other biomarkers were discovered through proteomics,

such as acetaldehyde dehydrogenase 1 (ALDH1) for atopic

dermatitis (103) and GPX5 for melanoma (104). Recently, the

proteins in the circulatory system mirror an individual’s

physiology, which could be utilized as a specific marker

within a convenient sampling method (105). As plasma

biomarkers’ specific analysis, a large-scale quantitative

proteomic discovery helped identify the specific biomarker

elafin for skin graft-versus-host disease and proved the

specificity with enzyme-linked immunosorbent assay in

samples from 492 patients (106). Interestingly, a series of

specific proteins have been detected in the CD81-positive

small extracellular vesicles through proteomics in melanoma,

strengthening the circulating sEV as a systematic biomarker

for early diagnosis for melanoma patients (107). Although

multiple biomarkers have been termed, they tend to develop

with high accuracy, specificity, and cost-effective combination

of these candidates rather than a single indicator.
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Also, proteomics has been utilized in the evaluation of the

therapeutic strategy, and it is also benefited from a better

understanding of the elusive mechanism of drug targets. As

for the drugs for wound healing, it significant changes of

abundance proteins have been found from the topical peri-

wounding tissue after extracorporeal shock wave therapy

(ESWT). After that, the related MAPK signaling might

involve ESWT-enhanced diabetic wound healing (108).

Also, through proteomic microarrays of the wound exudate,

significantly higher levels of matrix metalloproteinases

(MMPs) and lower levels of inflammation factors (e.g.,

CX3CL1, FLT-3 L, IL-1ra, IL-1a, IL-9, IL-2, IL-3) have been

found to evaluate the therapeutic effect (109). The

therapeutic effect also provided an optimal dose guiding

drug therapy. For example, using collagen to treat aging

could reduce the MMP-1, IL-1b, and IL-6 protein

expression, especially in high concentration-treated in

160 mg/kg (110). Proteomics may lead to a systematic

analysis, but Western blot and ELISA are still irreplaceable

and classic methods, while part of certain proteins needs to

be detected in skin disorders.
Conclusion

Proteomics is a technique that provides the ability to

identify changes in proteins at specific time points. It can

provide key molecules, candidate biomarkers, and other

information in the research of skin diseases. Based on this

information, skin diseases can be more comprehensively

explored through multichannel analysis methods, precise in-

depth research, and the combination of multiple

technologies. Various proteomic analyses have significantly

contributed to a better understanding of the

pathophysiology progress of skin, which is closely related to

clinical applications. Although initial studies emerged to

enrich skin proteomes and/or their related systemic

disorder to establish comprehensive inventories, subsequent

quantitative analysis paved the way to more in-depth

studies addressing the detailed pathways underlying skin

disease, guiding diagnosis, and therapy. Furthermore, spatial

proteomics, multi-omics analysis, single-cell proteomics,

and others may lead to a richer brainstorming for a deeper

mechanism.
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