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Abstract Molecular chaperones promote the folding and macromolecular assembly of a diverse

set of ‘client’ proteins. How ubiquitous chaperone machineries direct their activities towards

specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative

proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the

FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss

of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader

degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8

phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that

human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-

chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein

assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be

considered a cell-type specific protein-misfolding disease.

DOI: https://doi.org/10.7554/eLife.34389.001

Introduction
Macromolecular motors of the dynein family power the essential beating of motile cilia/flagella.

Motile cilia propel sperm cells, generate mucociliary clearance in airways, modulate nodal flow for

embryonic left-right patterning and circulate cerebrospinal fluid inside the brain. Force-generating

dynein motors are large molecular complexes visible by transmission electron microscopy (TEM), as

‘outer’ and ‘inner dynein arms’ (ODA, IDA) spaced at regular intervals along the microtubule axo-

neme. Each ODA motor consists of catalytic heavy chains (HC), intermediate chains (IC) and light

chains (LC); IDAs have a more heterogeneous composition. In mammals, at least 4 ODA and 7 IDA
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subtypes exist, each containing different HCs (Kollmar, 2016; Wickstead and Gull, 2007). Defective

dyneins render cilia immotile, resulting in the severe congenital ciliopathy in humans termed Primary

Ciliary Dyskinesia (PCD, OMIM: 242650). Understanding the molecular causes of PCD requires

addressing how complex molecular machines like the dyneins get built during cilium biogenesis.

PCD-causing mutations are most frequently detected in genes encoding structural ODA subunits

such as the intermediate chains (DNAI1 and DNAI2; [Pennarun et al., 1999; Guichard et al.,

2001; Loges et al., 2008]), or the catalytic heavy chain (DNAH5; [Olbrich et al., 2002]), all of which

disrupt motor assembly and/or function. Consequently, mutant multiciliated cells form cilia but these

fail to move, lacking ODAs by TEM or immunofluorescence.

In addition to these structural subunits of dynein motors, several PCD-causing mutations are also

found in a newly discovered set of genes, the ‘dynein axonemal assembly factors’ (DNAAFs) whose

functions are poorly understood. DNAAFs are proposed to assist heat shock protein (HSP) chaper-

ones to promote subunit folding and cytoplasmic pre-assembly of dynein motors. DNAAFs are pre-

sumed to act as cilial-specific co-chaperones based on proteomic identification of interactions with

both ‘client’ dynein chains and canonical chaperones. Of the known assembly factors, KTU/DNAAF2

and DYX1C1/DNAAF4 have the most direct biochemical links to HSP90 and HSP70 chaperones, as

well as ODA intermediate chain DNAI2 (IC2) (Omran et al., 2008; Tarkar et al., 2013). Additionally,

KTU/DNAAF2, PIH1D3/DNAAF6 and SPAG1 share structural domains with key non-catalytic subu-

nits of the R2TP-HSP90 chaperoning complex, PIH1 and TAH1, respectively. R2TP is a well estab-

lished HSP90 co-chaperone which confers specificity during the assembly of multisubunit enzymes

(Pal et al., 2014). DYX1C1/DNAAF4 and LRRC6 each have a CS or p23-like domain (Kott et al.,

2012; Tarkar et al., 2013), p23 being a well characterised HSP90 co-chaperone acting during the

last steps of the HSP90 chaperone cycle (Li and Buchner, 2013). Interactions between LRRC6,

DNAAF1/LRRC50 and C21ORF59/Kurly/CFAP298 were also recently reported which, coupled with

the phenotypic analysis of Lrrc6 mutant mice, suggests that these assembly factors may function

together in a late-acting complex (Inaba et al., 2016; Jaffe et al., 2016). The functions of DNAAF3

and DNAAF5/HEATR2 which have no reported links to chaperones, remain elusive (Diggle et al.,

2014; Mitchison et al., 2012). Altogether, the current view is that many DNAAFs transiently partici-

pate as HSP90 co-chaperones during the macromolecular assembly of dynein motors before they

are finally transported into the cilia.

Dynein pre-assembly has been well studied in unicellular eukaryotes such as Chlamydomonas and

Paramecium. For ODAs in Chlamydomonas, affinity purification confirmed all three HCs (HCs; a, b,

and g , each of ~500 kDa) and two ICs (IC1, 78 kDa; IC2, 69 kDa) are pre-assembled as a three

headed complex and exist in a cytoplasmic pool prior to ciliary entry (Fok et al., 1994; Fowkes and

Mitchell, 1998; Qin et al., 2004). This cytoplasmic pre-assembly pathway is highly conserved and

exists in all ciliated eukaryotes (Kobayashi and Takeda, 2012). While it is clear that the aforemen-

tioned assembly factors aid axonemal dynein pre-assembly, their precise molecular functions within

the pre-assembly pathway still remain largely unknown.

Previous studies had established a strong genetic link between loss of ZMYND10, a putative

DNAAF, and perturbations in dynein pre-assembly (Cho et al., 2018; Kobayashi et al., 2017;

Kurkowiak et al., 2016; Moore et al., 2013; Zariwala et al., 2013), however the molecular role of

ZMYND10 as a DNAAF in this process remained unclear. In order to probe the mammalian dynein

pre-assembly pathway in greater molecular and cellular detail, we generated Zmynd10 null mice by

CRISPR genome editing. We used different motile ciliated lineages at distinct stages of differentia-

tion from our mammalian mutant model to ascribe a molecular role to ZMYND10 within the dynein

pre-assembly pathway.

Our studies implicate a novel chaperone complex comprising of ZMYND10, FKBP8 and HSP90 in

the maturation of dynein HC clients and provide novel evidence of the temporally restricted nature

of interactions within this chaperone-relay system, later involving LRRC6 likely to promote stable

inter-subunit interactions. We postulate that a chaperone-relay system comprising of several discrete

chaperone complexes handles the folding and stability of distinct dynein subunits all the while pre-

venting spurious interactions during cytoplasmic pre-assembly.
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Results

Generation of a mammalian PCD model to characterize dynein
assembly
We targeted exon 6 of mouse Zmynd10 to target all predicted protein isoforms, with three guide

RNA (gRNA) sequences for CRISPR genome editing and generated several founders with insertion,

deletion and inversion mutations (Figure 1A, Figure 1—figure supplement 1). Null mutations from

the different CRISPR guide RNAs gave identical phenotypes, confirming the phenotypes are due to

loss of ZMYND10, as opposed to off-target effects. For detailed analysis, we focused on a �7 bp

deletion mutant line (Zmynd10 c.695_701 p.Met178Ilefs*183), which results in a frame shift with pre-

mature termination. Generation of a null allele was verified by ZMYND10 immunoblotting of testes

extracts (postnatal day 26, P26) and immunofluorescence of multiciliated ependymal cells and lung

cryosections (Figure 1B–D)

Zmynd10 mutant mice displayed several clinical features of PCD including heterotaxia, progres-

sive hydrocephaly and chronic mucopurulent plugs in the upper airways, all features consistent with

defects in ciliary motility (Figure 1E–H, Figure 1—figure supplement 2). This was directly confirmed

by high-speed video microscopy of ependymal cells, where cilia of normal number and length were

present but failed to move (Videos 1, 2, 3 and 4, Figure 1—figure supplement 3). Ultrastructure

analysis of tracheal cilia axonemes revealed an absence of both outer and inner dynein arms

(Figure 1F). The hydrocephaly phenotype was particularly pronounced on a C57BL6/J background

and the majority of mutants died around weaning (P17-P21). On outbred backgrounds, male infertil-

ity and sperm immotility were also noted in homozygous mutant animals (Figure 1—figure supple-

ment 2, Videos 5 and 6). These findings demonstrate that ZMYND10 functions are exclusively

required in most motile ciliated cell lineages.

Mis-assembled dynein motors are blocked from entering cilia and
cleared in Zmynd10 mutants
We analysed expression of dynein subunits in different postnatal tissues by immunofluorescence and

immunoblotting from Zmynd10 mutants, focusing on ODA components for which the most robustly

validated immunoreagents exist, to assess whether ZMYND10 loss impacts ODA levels. In adult tra-

chea (P26) and oviducts (P26-30), total levels of the ODA HCs DNAH9 and DNAH5, as well as ICs

DNAI1 and DNAI2 were reduced by immunoblot (Figure 2A,B) and immunofluorescence

(Figure 2C,D). In agreement with recent studies(Cho et al., 2018), no alteration in dynein transcripts

were detected by RT-qPCRs on mutant oviduct (P12) total RNA, supporting the findings that the

zinc-finger MYND domain of ZMYND10 plays cytoplasmic molecular scaffold functions other than a

nuclear transcriptional role (Figure 2E). Critically, immunoblots of P7 Zmynd10 mutant oviduct

lysates, an early stage corresponding to synchronized multicilial axonemal elongation (Dirk-

sen, 1974), showed a laddering of DNAH5 products using an antibody raised against an N-terminal

epitope, indicating post-translational destabilization of DNAH5 in the absence of ZMYND10

(Figure 2F).

These observations raise the possibility that in the absence of ZMYND10, individual dynein subu-

nits are initially synthesised during cytoplasmic pre-assembly before a quality-control response is

triggered to clear stalled dynein motor assembly intermediates that fail to reach the mutant axo-

nemes. The process of mammalian cytoplasmic pre-assembly in terms of dynamics of localization

and levels of dynein subunits has been previously documented (Diggle et al., 2014). ‘Immature’ cells

stain strongly for dynein subunits within the cytoplasm, they appear rounder and their cilia are

apparently shorter than those cells in which dynein subunits exclusively stain the ciliary compartment.

Using Sentan as an independent marker for ‘mature’ motile cilia, we were able to detect a strong,

focused signal at the tips of cilia with exclusively ciliary staining of axonemal dyneins (Figure 3A,

lower left inset). Sentan is a component of the apical ciliary crown structure of mature motile cilia,

where peripheral singlet microtubules are capped by electron dense material abutting the mem-

brane (Kubo et al., 2008). In contrast, in cells without clear apical Sentan signal, shorter cilia and

cytoplasmic staining (DNAI2, DNALI1) were observed, consistent with these cells being ‘immature’

and in the process of assembling dynein motors and cilia (Figure 3A, upper right inset). We there-

fore postulate that these dynamic patterns of dynein subunits represent ‘mature’ and ‘immature’
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Figure 1. Loss of Zmynd10 in mice results in a PCD phenotype. (A) Schematic illustrating the null allele generated by a �7 bp CRISPR deletion in

Zmynd10 exon 6. (B) Immunoblots from testes extracts from postnatal day 26 (P26) control and mutant male mice show loss of ZMYND10. (C, D)

Immunostaining for ZMYND10 reveals a complete loss of signal in multiciliated ependymal cells (C) and lung cryo-sections (D). Multicilia are marked

with acetylated a- tubulin (C). (E) Neonatal Zmynd10 mutants display hydrocephaly; the white arrowhead points to doming of the head. See also

Figure 1—figure supplement 2E. (F) TEM of tracheal ciliary axoneme cross-sections shows a lack of axonemal outer (ODA: white arrowhead) and inner

(IDA: black arrowhead) dynein arms in mutants. (G) Representative image of a gross dissection of lungs shows situs inversus totalis in mutants. See also

Figure 1—figure supplement 1F. (H) H&E staining of coronal sections of nasal turbinates reveals mucopurulent plugs in mutants. Scale bars in (C) = 5

mm, in (D) = 100 mm, in (F) = 100 nm.

DOI: https://doi.org/10.7554/eLife.34389.002

The following figure supplements are available for figure 1:

Figure supplement 1. Generation of Zmynd10 mutant mice by CRISPR genome editing.

DOI: https://doi.org/10.7554/eLife.34389.003

Figure supplement 2. Detailed phenotypic analysis of Zmynd10 mutants.

DOI: https://doi.org/10.7554/eLife.34389.004

Figure supplement 3. No gross ciliary defects are seen in Zmynd10 mutants.

DOI: https://doi.org/10.7554/eLife.34389.005

Mali et al. eLife 2018;7:e34389. DOI: https://doi.org/10.7554/eLife.34389 4 of 27

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.34389.002
https://doi.org/10.7554/eLife.34389.003
https://doi.org/10.7554/eLife.34389.004
https://doi.org/10.7554/eLife.34389.005
https://doi.org/10.7554/eLife.34389


cells during assembly of motile cilia, which we

can see in cells isolated from nasal turbinates of

control mice (3B middle and upper panels,

respectively). In Zmynd10 mutants, no apparent

defects in ciliary length or number were observed

(Figure 1—figure supplement 3) however outer

or inner arm dyneins fail to incorporate into

mature ciliary axonemes. Importantly, no cyto-

plasmic accumulations were noted in ‘mature’ cili-

ated cells (Figure 3B panels with arrows).

Surprisingly, cytoplasmic staining was observed

in both ‘immature’ control and Zmynd10 mutant

cells (Figure 3B, arrowheads). A similar staining

pattern was observed for DNALI1 (Figure 3C)

indicating ODA and IDA dynein subunit precur-

sors are initially synthesised normally, further sup-

porting that ZMYND10 loss does not impact their

transcription or translation. Instead, loss of

ZMYND10 leads to dyneins being robustly

cleared when their pre-assembly is perturbed.

ODA and IDA complexes are
defective and unstable in the
absence of ZMYND10
As cytoplasmic staining for DNAI2 and DNAH5

was detected in Zmynd10�/� immature respira-

tory cells, suggesting that they were initially synthesized, we sought to verify if they were assembled

into complexes using the in situ proximity ligation assay (PLA). In control immature human nasal

brush epithelial cells, we detected PLA signals consistent with DNAI2 and DNAH5 existing in both

cytoplasmic and axonemal complexes (Figure 4A). However, we detected a highly reduced number

of PLA positive foci in nasal epithelial cells of P7 Zmynd10�/� mice, with complexes restricted

entirely to the cytoplasm in contrast to the strong axonemal staining observed in similarly staged

controls (Figure 4B, Figure 4—figure supplement 1). To directly examine the interactions between

ODA IC and HC subunits, we immunoprecipitated endogenous DNAI2 (IC2) from postnatal testes

(P26), trachea (P7 and P90) and oviduct (P7)

extracts from Zmynd10-/- animals. DNAI2 co-pre-

cipitated DNAI1 (IC1) at similar levels from both

wild type and mutant P26 testes extracts

(Figure 4C). This indicated that loss of

ZMYND10 does not primarily impact IC subunit

Video 1. Rapid ependymal ciliary motility in lateral

ventricles of a wild type mouse. High-speed video

microscopy on a coronal brain vibratome section

(postnatal day 11 mouse, littermate control) shows

ependymal cilia lining lateral ventricles beating with

high frequency in a wild type mouse.

DOI: https://doi.org/10.7554/eLife.34389.006

Video 2. Immotile ependymal cilia lining lateral

ventricles of Zmynd10 mutant mouse. High-speed

video microscopy on a coronal vibratome section of a

brain from a Zmynd10 mutant mouse (postnatal day 11)

shows complete loss of ependymal cilia motility.

DOI: https://doi.org/10.7554/eLife.34389.007

Video 3. Control murine ependymal cilia with

metachronal waveform. High-speed video microscopy

on a coronal vibratome section of a Zmynd10 mild

hypomorphic mutant mouse brain (p. M179del;

postnatal day 24) shows arrays of cilia beating in a

metachronal waveform and actively generating fluid

flow to move particulates over the ventricle tissue.

DOI: https://doi.org/10.7554/eLife.34389.008
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heterodimerization or stability during the assem-

bly process. Similarly, the relative enrichment of

DNAI2 changed very little between mutant and

wild type P7 oviduct and trachea mutant

extracts. In contrast, we observed significantly

reduced co-immunoprecipitation of DNAH5 by

DNAI2 in P7 oviduct and trachea mutant extracts

(0.47 and 0.56 fold reduction respectively, nor-

malized to total levels, Figure 4D,E and Fig-

ure 4—figure supplement 1B,C). Moreover, we

observed similar degradative bands (arrow-

heads) for DNAH5 in the mutant samples indi-

cating that any DNAH5 that is incorporated may

be poorly folded and unstable, in the absence of

ZMYND10. We hypothesize that this reduced

association between the two subunits is due to

the HC subunit being in an assembly incompe-

tent, unstable state such that any substandard

complex would be targeted for subsequent deg-

radation (Figure 4F).

ZMYND10 loss also leads to absent IDA motors from human, fly and mouse cilia (Cho et al.,

2018; Kobayashi et al., 2017; Kurkowiak et al., 2016; Moore et al., 2013; Zariwala et al., 2013).

To bypass the limitation of robust immunoreagents for IDA detection, we used label-free quantita-

tive proteomics comparing postnatal testes extracts from P25 control and Zmynd10 mutant litter-

mates. ZMYND10 is highly expressed in the cytoplasm of round and elongating spermatids, as well

as maturing sperm (Figure 5A). In the absence of ZMYND10, mature sperm form but lack expression

of outer and inner dynein subunits (Figure 5B). At P25, we hypothesized that synchronized spermio-

genesis and flagellar extension at this stage would correspond with cytoplasmic pre-assembly of fla-

gellar precursors. Whilst protein expression profiles were not different between mutant and controls

for differentiation, meiosis and cell death markers (Supplementary file 1), the expression profile for

the motility machinery showed specific and significant changes wherein almost all the axonemal

dynein HCs (outer and inner) detected were reduced whilst the other axonemal dynein subunits

were generally not significantly changed (ICs WDR78 and DNAI1, DNAI2) (Figure 5D, Figure 5—fig-

ure supplement 1). This is distinct from previous observations in Chlamydomonas, where loss of

DNAAFs (DNAAF1, 2 and 3) impacting HC stability generally led to an aberrant cytosolic accumula-

tion of IC subunits (Mitchison et al., 2012), highlighting a key difference between the two model

systems. Components of the radial spokes (RS)

and dynein regulatory complex (DRC) were also

unchanged (Figure 5D). Interestingly, several

DNAAFs including the co-chaperones DNAAF4

and DNAAF6 were moderately but significantly

up regulated in Zmynd10 mutants suggestive of

a proteostatic response to counter aberrant pre-

assembly as it progresses.

A ZMYND10-FKBP8-HSP90
complex mediates maturation of
dynein heavy chains
To further understand how ZMYND10 regulates

stability of axonemal dynein HC subunits, we

aimed to generate an endogenous ZMYND10

interactome in P30 mouse testes using two vali-

dated commercial ZMYND10 polyclonal antibod-

ies followed by mass-spectrometry (AP-MS,

Supplementary file 2). Overlapping interactors

in the endogenous affinity purifications of

Video 4. Tufts of immotile ependymal cilia in Zmynd10

mutant murine brain. High-speed video microscopy on

a coronal vibratome section of a Zmynd10 null mutant

mouse brain (p. L188del; postnatal day 29) shows arrays

of immotile cilia lining the ventricle tissue with no

active fluid flow noticeable.

DOI: https://doi.org/10.7554/eLife.34389.009

Video 5. Aberrant flagellar motility in Zmynd10 mutant

murine epididymal spermatozoa. High-speed video

microscopy on mature spermatozoa extracted from the

epididymis of a 5 month old Zmynd10 CRISPR founder

mutant mouse and slowed-down in methylcellulose.

The majority of spermatozoa were completely immotile

but rarely displayed highly aberrant flagellar

movements as observed in the video.

DOI: https://doi.org/10.7554/eLife.34389.010

Mali et al. eLife 2018;7:e34389. DOI: https://doi.org/10.7554/eLife.34389 6 of 27

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.34389.009
https://doi.org/10.7554/eLife.34389.010
https://doi.org/10.7554/eLife.34389


ZMYND10 included ODA HCb DNAH17 (fold

enrichment: 5.8x (P), 2.9x (S); p>0.05), HSP90

(1.5x, 1.8x; p>0.01) and the well-characterized

immunophilin FKBP8 (FK506-binding protein

(FKBP) family member) (6.2x, 8.2x; p>0.001),

which can act as an HSP90 co-chaperone

(Figure 6A).

This suggested a novel association between a

mammalian DNAAF, putative ‘client’ dynein

heavy chain and the ubiquitous HSP90-FKBP8

chaperone complex during cytoplasmic pre-

assembly in vivo. To validate these interactions,

we immunoprecipitated endogenous ZMYND10

and FKBP8 from control versus mutant testes

samples (P30: Figure 6B) and cultures of differ-

entiating human tracheal epithelial cells (D17

ALI1: Figure 6C), both during cytoplasmic pre-

assembly. Indeed, we confirmed that ZMYND10

interacted with FKBP8 and HSP90, but not with

other DNAAFs, including previously identified

interactor LRRC6 (Figure 6B). We also corrobo-

rated associations between FKBP8, ODA HCa DNAH5, HSP90 and ZMYND10 using human Air-Liq-

uid Interface (ALI) cultures and P7 oviducts (Figure 6C,D), as we failed to find specific

immunoreagents against testes ODA HC isoforms (i.e. ODA HCb DNAH17 or HCa DNAH8). Taking

step-wise ODA macromolecular assembly into account, we found that whilst DNAI1 co-immunopre-

cipitated DNAH5, it did not immunoprecipitate either ZMYND10 or FKBP8 (human ALI tracheal cells

D17: Figure 6C). Together our data suggests that the DNAI1-DNAH5 interaction occurs in a com-

plex that is distinct and downstream from the FKBP8-DNAH5-ZMYND10 complex, as supported by

our DM-CHX experiments in which both subunits are destabilized after 24 hr drug

treatment (see below).

We verified the interactions between ZMYND10 and FKBP8 as well as HSP90 using tagged

ZMYND10 affinity purifications from primary ciliated HEK293 cells (Figure 7B). In agreement, direct

interaction between the N-terminus of FKBP8 and MYND domains of ZMYND6/PHD2 (Barth et al.,

2009) and ZMYND20/ANKMY2 (Nakagawa et al., 2007) have also been reported. To characterize

the complex between FKBP8 and ZMYND10 further, we mapped their interaction interface and

assessed its potential biological relevance by generating point mutations in ZMYND10 (Figure 7A).

The W423A mutation falls within the MYND domain and is predicted to functionally disrupt one of

two Zn2+-fingers in the MYND domain. Located just before the MYND domain, the T379C PCD

patient mutation (Zariwala et al., 2013) failed to disrupt binding to LRRC6, suggesting some other

underlying pathogenic mechanism exists for this mutation, one which we hypothesized could involve

FKBP8. Affinity purification of ZMYND10-turboGFP variants from HEK293 cells revealed that both

point mutations abolished endogenous FKBP8 binding (Figure 7B). These results indicate that the

interaction interface for FKBP8 extends beyond the MYND domain of ZMYND10, consistent with

recent deletion mutations described in medaka capable of functional rescue (Kobayashi et al.,

2017) and suggest that loss of ZMYND10-FKBP8 interaction may underlie the pathogenic effect of

the T379C PCD mutation.

FKBP8 is a peptidyl-prolyl isomerase (PPIase), which catalyzes cis-trans isomerization of proline

peptide groups and is one of the rate-determining steps in protein folding. To test whether its

PPIase activity is critical for stabilization of dynein HCs, we treated immature day 17 and mature day

60 (D17 and D60 ALI) human tracheal epithelial cell cultures with a specific PPIase inhibitor DM-CHX

(Edlich et al., 2006) for 24 hr and assayed extracts for stability of ODA subunits by immunoblotting.

Immature cultures were very sensitive to FKBP8 inhibition, where cytoplasmic levels of DNAH5 were

reduced to ~10% of control levels after DM-CHX (150 mM). In mature cells, fully assembled com-

plexes within cilial axonemes were less sensitive to DM-CHX treatment (Figure 7C and D). Surpris-

ingly, a very striking destabilization of DNAI1 was also observed in immature cultures under these

Video 6. Sinusoidal flagellar motility in wild type

murine epididymal spermatozoa. High-speed video

microscopy on mature epididymal spermatozoa

extracted from a 5 month-old wild type mouse

(littermate control) and slowed-down in

methylcellulose. Virtually all spermatozoa underwent

forward motion with the flagella displaying a sinusoidal

beat pattern.

DOI: https://doi.org/10.7554/eLife.34389.011
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conditions. This supports the possibility that a transient requirement of the PPIase activity of FKBP8

is necessary for the folding and/or stability of axonemal dyneins in the cytoplasm.

Immunofluorescence of mouse tracheal epithelial cells (mTECs) shows that treating parallel cul-

tures once they have differentiated (D3 ALI, 14 days vehicle followed by 7 days DM-CHX), or as they

begin to differentiate (D3 ALI, 14 days DM-CHX followed by 7 days vehicle) have drastically different

outcomes (Figure 7E). These results are in agreement with immunoblot data supporting the findings

that inhibiting the PPIase activity of FKBP8 in mature ALI cultures does not affect motility or levels of

DNAH5 or DNAI2, whilst early inhibition can drastically reduce the levels of these ODA components

abolishing motility (Figure 7E).

A successive set of complexes are involved in multiple steps of
axonemal dynein assembly
In the chaperone cycle of HSP90, PPIs like FKBP8 are part of the intermediate stage where HSP90 is

bound to the client protein and ATP. Co-chaperones containing a p23-like domain enter at the last

Figure 2. Global post-transcriptional destabilization of dyneins occurs in Zmynd10 mutant motile ciliated tissues. Immunoblots of whole protein

extracts from trachea P26 (A) and P30 oviducts (B) show reduced abundance of ODA subunits HC-g, HC-b (DNAH5 and DNAH9), IC1 and IC2 (DNAI1

and DNAI2). Immunofluorescence of trachea (C) and oviduct (D) tissue sections show loss of axonemal DNAH5 and DNAI2 staining as well as reduced

total abundance in Zmynd10 mutants compared to controls. Brightfield is included in oviduct merge panel (D) to highlight absence of staining in cilia in

Zmynd10 mutants. Scale bars in (C) and (D) = 50 mm. (E) No significant changes are detected in levels of dynein transcripts by quantitative RT-PCR of

(Dnah5, Dnali1) normalized to (Tbp) in P12 Zmynd10 mutant oviducts (n = 3/genotype, dark grey Zmynd10 mutants). (F) During early motile ciliogenesis,

mildly reduced levels and laddering consistent with degradative, misfolded intermediates (arrowheads) of ODA HC-g DNAH5 are detected in Zmynd10

mutant oviducts (P7). These will be subsequently cleared as tissue differentiation proceeds.

DOI: https://doi.org/10.7554/eLife.34389.012
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Figure 3. Loss of ZMYND10 perturbs sub-cellular distribution and levels of dynein complexes during pre-assembly. (A) Z-projection through healthy

human donor nasal brush immunofluorescence shows a mix of ‘mature’ motile ciliated cells (lower inset, arrow) with exclusively axonemal staining of

dynein subunits (DNAI2 green, DNALI1 magenta) and strong foci of SENTAN (red) at cilial tips, as well as ‘immature’ cells having cytoplasmic staining

of dynein subunits and no SENTAN (right inset, arrowheads). Scale bar = 10 mm. (B) Nasal brush immunofluorescence from Zmynd10 mice shows

components of outer arm dyneins (DNAH5, DNAI2) are initially expressed in apical cytoplasm of immature mutant cells (arrowheads) but subsequently

undergo ‘clearance’ in mature cells (lower panels, arrows), whilst all complexes exclusively translocate into cilia in control mature cells (middle panels,

arrows). (C) Inner arm dynein component DNALI1 is expressed and apically arrested in immature mutant cells (arrowhead) and unlike controls, will get

subsequentlycleared along with the ODA IC, DNAI2, in mature mutant cells. Scale bars = 5 mm.

DOI: https://doi.org/10.7554/eLife.34389.013
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Figure 4. Sequential cytosolic assembly of outer arm dynein components occurs in mammalian motile ciliogenesis in a process requiring ZMYND10.

(A,B) Z-projections of Proximity Ligation Assay (PLA) on human donor (A) or mouse P7 (B) nasal brush biopsies confirming ODA subunits (mouse IC2/

DNAI2 and HC-g/DNAH5) are pre-assembled in the cytoplasm of mammalian multiciliated cells. Control (antibody only control, Ab control) sections

incubated with only DNAH5 show no PLA signal. Red spots denote individual ODA complexes (<40 nm) that appear as peri-nuclear foci in immature

cells (arrowhead) and translocate to cilia in mature cells (arrow). (B) In Zmynd10 mutant cells, reduced number of foci are observed and restricted only

to the cytoplasm, highlighting defects in cytoplasmic pre-assembly. GRP94 was used as a pan-cytosolic marker (A) or phalloidin for apical actin ring (B).

Nuclei are stained with DAPI (blue). See also Figure 4—figure supplement 1A for mouse IC2/DNAI2 and HC-b/DNAH9 PLA. Scale bars in (A) = 5 mm

and (B) = 10 mm. (C) Endogenous Immunoprecipitation of DNAI2 from P26 Testes extracts reveals no defects in DNAI2 association with its

heterodimeric partner DNAI1 in Zmynd10 mutants. (D) Endogenous Immunoprecipitation of DNAI2 from P7 oviduct extracts show disruption in

subsequent association between DNAI2 and DNAH5 in mutants compared to controls as quantified by intensities of the DNAH5 pull-down bands (E).

Arrowheads show predicted degradative or misfolded intermediates of DNAH5 polypeptide in the mutants only. Numbers to the right of panels

denote protein molecular weight in kDa. See also Figure 4—figure supplement 1B,C for analysis in P7 and P90 trachea. (E) Ratio of mutant versus wild

type fold enrichment (from 4D, Figure 4—figure supplement 1B: IP/input) for DNAI2 and DNAH5, normalized for differences in stability in input, as

well as amount of DNAH5/DNAI2 complexes. (F) Schematic of axonemal ODA showing the intermediate chain heterodimers (IC) bind normally to heavy

chains (HC) to form the entire motor complex in controls (green) and that this association is perturbed in mutants (red).

DOI: https://doi.org/10.7554/eLife.34389.014

The following figure supplement is available for figure 4:

Figure supplement 1. Sequential cytosolic assembly of outer arm dynein components occurs during mammalian motile ciliogenesis in a process

requiring ZMYND10.

Figure 4 continued on next page
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stage of the chaperone cycle when ATP is hydrolysed and client and co-chaperones are released

from HSP90 (Li and Buchner, 2013). As LRRC6 contains a p23/CS-like domain and was previously

reported to interact with ZMYND10 (Moore et al., 2013; Zariwala et al., 2013), we went on to

investigate the effect of LRRC6 on ZMYND10 binding to FKBP8.

Expression of myc-LRRC6 and ZMYND10-turboGFP followed by affinity purification with a mono-

clonal antibody to turboGFP shows that all ZMYND10 variants tested interact with LRRC6, extending

on previous studies (Zariwala et al., 2013). Interestingly, the presence of myc-LRRC6 significantly

decreased the association of ZMYND10 to FKBP8 (Figure 8A). These results are consistent with the

canonical roles of p23 co-chaperones and suggest that its presence advances the HSP90 chaperone

cycle releasing all co-chaperones and thus promoting FKBP8 dissociation from ZMYND10. Whilst we

have been unable to confirm endogenous interaction of ZMYND10 and LRRC6 (Figure 6A and B,

Supplementary file 2), we note that LRRC6 levels are decreased (�7.2 fold change, p=0.023,

Figure 5D, Supplementary file 1) in Zmynd10 mutant testes suggesting some functional interaction

exists during cytoplasmic pre-assembly, highlighting the transient nature of some of these interac-

tions in vivo.

Taken together our results suggest that ZMYND10, firstly with FKBP8 and subsequently with

LRRC6, likely participates in an HSP90 chaperone cycle of common clients, the axonemal dynein

heavy chains. LRRC6 may promote the final maturation and release of clients and co-chaperones

onto subsequent chaperone complexes, including the R2TP and R2TP-like complexes associated

with additional subunits such as the IC1/2 heterodimers, for the next stages of assembly (Figure 8B).

Future studies will determine how HSP90 may be targeted to specific stages of dynein pre-assembly,

but competitive binding through the conserved C-terminal motif MEEVD of HSP90 between discrete

HSP90-co-chaperone-client complexes may confer directionality (Back et al., 2013; Blundell et al.,

2017; zur Lage et al., 2018; Martino et al., 2018; Yamaguchi et al., 2018). Stalling of the folding

process will likely trigger degradation of all folding intermediates regardless of the initial client pro-

tein recruited by the chaperone machinery.

Discussion
Motile cilia are highly complex structures comprising of hundreds of mega-Dalton scale molecular

assemblies. Axonemal dynein motors represent the largest and most complex of such motile ciliary

components. Their coordinated transcription, translation, assembly and transport is critically linked

to ciliary function. The cell appears to have evolved a dedicated chaperone relay system involving

multiple assembly and transport factors to execute distinct steps for their pre-assembly, sometimes

in a tissue- or ciliary domain-specific manner (Dougherty et al., 2016; Fliegauf et al., 2005;

Yamaguchi et al., 2018).

In the present study, we reveal that the DNAAF ZMYND10 co-operates with the ubiquitous co-

chaperone FKBP8 and chaperone HSP90 to mediate a key step in the pre-assembly pathway, specifi-

cally maturation of axonemal dynein heavy chains. Using multiple motile ciliated tissues, including

trachea, oviduct and testes, from Zmynd10 null mouse models, we observed reduced protein abun-

dances for ODA HCs (DNAH5, DNAH9) and ICs (DNAI1 and DNAI2). Proximity ligation assays and

immunopurification of endogenous components suggest that unstable intermediates of axonemal

dynein ODA HCs are primarily affected and unable to fully associate with the IC heterodimers which

are subsequently degraded in Zmynd10 mutants. We provide evidence that the PPIase activity of

FKBP8 is required to stabilize wild type axonemal dynein assemblies. Specific pharmacological inhibi-

tion of FKBP8 PPIase activity phenocopies the motility defects observed in Zmynd10 mutants. We

also confirm that LRRC6 may participate transiently at possibly later stages in the ZMYND10-depen-

dent HSP90 chaperone cycle. Finally, mutations of ZMYND10 that impair its ability to interact with

the FKBP8-HSP90 chaperone system but not with LRRC6, provide a molecular explanation for a pre-

viously unresolved PCD disease-causing variant (Zariwala et al., 2013).

HSP90 is emerging as a central feature in the post-translational maturation of axonemal dynein

motors, through at least two distinct regulatory modules. The first one involves the multi-functional

Figure 4 continued
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Figure 5. Early and specific defects in axonemal dynein heavy chain stability are observed in Zmynd10 mutants during cytoplasmic assembly. (A)

Immunofluorescence of ZMYND10 in control and mutant adult testes (P150) in asynchronous seminiferous tubules (arrowhead). (A) ZMYND10 is strongly

expressed in primary spermatocytes and spermatids, where it is restricted to the cytoplasm and never in developing sperm tails. This staining is lost in

mutants. Nuclei are stained with DAPI. Scale bar = 100 mm. (B) Cross-sections of similarly staged seminiferous tubules reveal similar developmental

Figure 5 continued on next page
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Figure 5 continued

staging of sperm between adult control and mutants, but loss of DNAI2 (ODA) and DNALI1 (IDA) proteins from cytoplasm and axonemes (arrowhead)

of mutant sperm. Nuclei are stained with DAPI. Scale bars = 50, 100 mm. (C) Schematic summarizing mouse spermatogenesis which is initially

synchronized postnatally (stages shown to right), before occurring in asynchronous waves across seminiferous tubules. Axonemal dynein pre-assembly

in the cytoplasm occurs from spermatid stage around P25 and continues till flagellogenesis at P30. (D) Unbiased quantitative proteomics of control and

mutant testes (elongated spermatid: P25) reveal that loss of ZMYND10 leads to a primary reduction in abundance of all dynein HC subunits during

cytoplasmic pre-assembly, whilst other components remain initially unaffected at this stage. Yellow diamonds highlight significantly (p<0.05) changed

hits based on LFQ intensity between Zmynd10 mutants and wild type littermates (n = 3/genotype). Schematic below highlights fold change of specific

subunits on given dynein arms. Some heavy chains had specific multiple isoforms detected (DNAH7b/c and DNAH12 (E9QPU2*, F6QA95, Q3V0Q1†).

See also Supplementary file 1. Key: IAD: inner arm dynein; OAD: outer arm dynein; DNAAFs: dynein axonemal assembly factors; RSP: radial spoke

protein; DRC: dynein regulatory complex.

DOI: https://doi.org/10.7554/eLife.34389.016

The following figure supplement is available for figure 5:

Figure supplement 1. Peptide intensities across the axonemal dynein heavy chains reveal profound and significant decreases, whilst other dynein

subunits are not affected.

DOI: https://doi.org/10.7554/eLife.34389.017

Figure 6. ZMYND10 interacts with a novel chaperone relay at a distinct stage of dynein heavy chain stability during cytoplasmic assembly. (A) Summary

schematic of affinity purification-mass spectrometry (AP-MS) analysis of endogenous ZMYND10 interactomes from P30 mouse testes, overlapping

between two commercial polyclonal Sigma (S) and Proteintech (P) antibodies. See also Supplementary file 2. (B) Endogenous ZMYND10 affinity

purification with two validated ZMYND10 antibodies from Zmynd10 control and mutant P30 testes extracts confirm the ZMYND10 interaction with

FKBP8 and HSP90AB1 (S only) in control samples. These interactions are not found in mutant samples lacking ZMYND10, serving as specificity controls.

An in vivo interaction between ZMYND10 and LRRC6, as well as with DNAAF1, was not detected in reciprocal endogenous immunoprecipitations in P30

control testes extracts, using rIgG as a control. (C) Endogenous FKBP8 and DNAI1 immunoprecipitations in differentiating healthy human donor

tracheal epithelial cultures (D17 ALI) both show binding of client DNAH5, the rest of the complexes are distinct, suggesting they act at sequential steps

of assembly. (D) Endogenous ZMYND10 immunoprecipitation of client DNAH5 and chaperone HSP90, but not HSP70 from differentiating oviduct

epithelial tissue (P7) using rIgG as a control. Protein molecular weights displayed in KDa.

DOI: https://doi.org/10.7554/eLife.34389.018
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Figure 7. Ubiquitous FKBP8 actively participates in axonemal dynein heavy chain stability via its interaction with ZMYND10. (A) Summary of mutations

generated in ZMYND10-tGFP by site-directed mutagenesis to disrupt the binding interface for FKBP8, including the W423A mutation predicted to

functionally disrupt one of two Zn2+-fingers in the MYND domain and the T379C PCD patient mutation (Zariwala et al., 2013), lying just before the

MYND domain. (B) Extracts from transiently transfected HEK293 cells affinity purified against turboGFP shows C-terminal mutations interrupt

endogenous FKBP8 and HSP90 binding to ZMYND10. (C) Healthy human donor tracheal epithelial cultures (MucilAir) before ciliation (D17, post-ALI) or

Figure 7 continued on next page

Mali et al. eLife 2018;7:e34389. DOI: https://doi.org/10.7554/eLife.34389 14 of 27

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.34389


R2TP complex (RUVBL1, RUVBL2, RPAP3, PIH1D1), which is a well-characterized co-chaperone of

HSP90 in the assembly of several multimeric protein complexes (Kakihara and Houry, 2012;

von Morgen et al., 2015). Recent reports have highlighted the importance of PIH-domain contain-

ing DNAAFs (DNAAF2 and DNAAF6), RPAP-domain containing SPAG1 as well as Reptin (RUVBL2)

and Pontin (RUVBL1) as regulators of cilia motility (Desai et al., 2018; Dong et al., 2014; zur Lage

et al., 2018; Li et al., 2017; Olcese et al., 2017; Omran et al., 2008; Paff et al., 2017;

Figure 7 continued

fully ciliated (D60, post-ALI), were cultured for 24 hr in control (vehicle only) or DM-CHX (concentrations indicated in mM) before harvesting protein

extracts. Immature cultures (D17) were more sensitive to effects of specific PPIase inhibitor DM-CHX, destabilizing dynein components, whilst mature

cultures were minimally affected. (D) Quantification of band intensities for DNAH5 (blue) or DNAI1 (yellow) from (C) were normalized to loading control,

and plotted as a fold change after 24 hr. (E) Z projections of whole-mount immunofluorescence of mouse tracheal epithelial cultures (MTECs) stained

with DNAH5 (magenta), DNAI2 (green) and DAPI (blue) after treatment of three days post-airlift (ALI) with either 100 mm DM-CHX or vehicle control for

14 days in culture to differentiate, followed by switching cultures from control to 100 mm DM-CHX (mature: cilial beat visualized) or from DM-CHX into

vehicle control (no cilia beat) and culturing an additional 7 days. Treatment of mature ciliated cultures had little effect on DNAH5 and DNAI2 levels,

whilst treatment during differentiation disrupted expression of dynein subunits, as evidenced by lack of axonemal staining in most cells (right panels)

but release allows recovery of dynein pre-assembly, mostly cytoplasmic after 7 days.

DOI: https://doi.org/10.7554/eLife.34389.019

Figure 8. ZMYND10 specifies dynein heavy chains as clients in a chaperone relay during dynein pre-assembly. (A) Extracts from transiently transfected

RPE-1 cells with ZMYND10-turboGFP variants and human LRRC6-myc were affinity purified against turboGFP (upper panels). Inclusion of LRRC6

destabilizes binding of wild type ZMYND10 to endogenous FKBP8. C-terminal ZMYND10 mutations do not affect its interaction with LRRC6. Expression

of interactors is confirmed in input cell lysates (lower panels). (B) During dynein arm assembly in the cytoplasm, ZMYND10 interaction with co-

chaperone PPIase FKBP8 and HSP90 is required for the stabilization and folding of dynein heavy chains (DNAH). Competitive binding of LRRC6 to

ZMYND10 may advance the HSP90-FKBP8 chaperone cycle taking the client DNAHs to the next stage of assembly. We propose either R2TP or a

specialized R2TP-like complex may function in parallel to assemble, scaffold or tether the DNAI1-DNAI2 heterodimeric complex via the PIH-domain

proteins, such as DNAAF6, DNAAF2 and PIH1D2. The TPR-domain containing SPAG1 or DNAAF4 could recruit HSP90 via its MEEVD domain and

together with RUVBL1/RUVBL2 these assembly factors could form a stable platform to promote HC-IC subunit interactions. This R2TP or R2TP-like

complex likely operates distinctly to ZMYND10 as DNAI1/2 heterodimers are detected in Zmynd10 mutants, however, these are likely degraded if fully

functional mature complexes (with heavy chains) cannot be assembled. This chaperone-relay system comprises several discrete chaperone complexes

overseeing the folding and stability of discrete dynein subunits. Folding intermediates are handed off to successive complexes to promote stable

interactions between subunits all the while preventing spurious interactions. Stable dynein complexes, once formed are targeted to cilia via transport

adaptors and intraflagellar transport (IFT).

DOI: https://doi.org/10.7554/eLife.34389.020
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Tarkar et al., 2013; Yamaguchi et al., 2018). All of these factors bear homology to components or

form part of the multi-functional R2TP complex. Functional genetic analysis of the four PIH zebrafish

paralogues revealed distinct and overlapping DNAAF functions in pre-assembly of specific subsets

of axonemal dynein motors, in a tissue-specific as well as axonemal domain-specific manner

(Yamaguchi et al., 2018). Biochemical evidence from endogenous affinity purification of an R2TP

adaptor, WDR92 further revealed physical associations of heavy and intermediate chains of ODA

and IDA subunits with R2TP (zur Lage et al., 2018). Collectively, these studies link dynein assembly

factors to a cilial-specific configuration of the HSP90-R2TP complex. However, further biochemical

studies are needed to define how these different cilial-configurations of R2TP-HSP90 and dynein cli-

ents interact during the chaperone cycles operative during axonemal dynein pre-assembly. Our

study uncovers a second cilial-specific configuration of the HSP90 chaperone machinery involving

FKBP8 via ZMYND10 in the processing of client axonemal dynein heavy chains in all motile ciliated

tissues studied (Figure 8B). We show that the unchanged transcript levels do not correlate with the

reduced protein levels of axonemal dynein HCs (Figure 2D) and that unstable heavy chain folding

intermediates in Zmynd10 mutant extracts likely result from degradation of fully translated, improp-

erly folded axonemal dynein HCs. Our results suggest that ZMYND10 directs and drives an FKBP8-

HSP90 cycle, likely involving LRRC6, aiding the maturation of axonemal dynein HC clients required

for their post-translational stability.

Our multipronged approach using immunofluorescence, proteomic and endogenous interaction

studies all indicate that axonemal dynein HCs are the primary clients of ZMYND10. This is in contrast

to recent studies suggesting that ZMYND10’s primary targets are the ODA ICs, DNAI1 and DNAI2

(Cho et al., 2018; Kurkowiak et al., 2016). Initially, neither the levels of DNAI1 and DNAI2

(Figure 5D, Supplementary file 2), nor heterodimer formation (Figure 4C) are significantly affected

during cytoplasmic pre-assembly in Zmynd10 mutants. Moreover, our unbiased label-free quantita-

tive proteomics shows that ZMYND10 loss also specifically impacts IDA HC stability whilst other sub-

units or structures remain mostly unaffected. This is distinct from the response seen in PCD models

specifically affecting ODAs wherein complete lack of or misfolding of a single heavy chain in the

case of DNAH5 results in a very specific and limited loss of outer dynein arms only: in DNAH5

patients, DNALI1 is still found in the ciliary axonemes and IDAs visible by TEM (Loges et al., 2008).

The primary defects we observe support the hypothesis that aberrant HC-IC subunit association

and/or the misfolded HC polypeptides themselves trigger a robust proteostatic response leading to

clearance of non-functional ODA and IDA complexes to mitigate cellular protein stress.

Our study goes towards addressing a long-standing question of where dynein pre-assembly

occurs within the cytoplasm. Our interaction and mutational studies define a novel ZMYND10-

FKBP8-HSP90 complex functioning in dynein pre-assembly, where FKBP8 could tether HC folding to

endomembranes. The participation of FKBP8-HSP90 chaperone complex in protein folding, activa-

tion and clearance has been extensively documented (Banasavadi-Siddegowda et al., 2011;

Barth et al., 2009, 2007; Edlich et al., 2005; Hutt et al., 2012; Saita et al., 2014; Taipale et al.,

2014; Wang et al., 2006). Given the role of this complex in folding and maturation of CFTR on the

cytosolic face of the ER (Hutt et al., 2012; Wang et al., 2006), it raises the possibility that during

early stages of pre-assembly, axonemal dynein heavy chains could also be localized to the cytosolic

face of the ER through ZMYND10’s association with FKBP8. Future work should be directed to fur-

ther pinpoint where different assembly steps occur within the cytoplasm. It would be tempting to

speculate that properly folded dynein HCs are subsequently exchanged in the recently described

dynamic cytoplasmic puncta containing rapidly fluxing DNAAFs and less mobile dynein subunits as

shown for DNAI2 and DNALI1, structures termed dynein assembly particles or

DynAPs (Huizar et al., 2017; Li et al., 2017). This ‘phase-separated organelle’ model is attractive as

increasing local concentration of specific DNAAF complexes could help overcome the apparently

low binding affinities between different DNAAFs except in these molecular condensates. Indeed, we

have been unable to capture endogenous interactions between LRRC6 and ZMYND10 in vivo

(Figure 6A and B, [Moore et al., 2013; Zariwala et al., 2013]), suggesting their physiological inter-

actions may be highly transient or temporally restricted, as opposed to existing in stable complexes.

Taken together, we propose a revised model of the dynein preassembly pathway (Figure 8B),

where multiple roles for HSP90 are emerging. Here, ZMYND10 acts as a novel co-chaperone of the

ubiquitous FKBP8-HSP90 chaperone complex for axonemal dynein HC subunit maturation. Mature,

assembly-competent HCs are then handed-off to a subsequent chaperone complex, likely the R2TP
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complex to allow for stable associations with other subunits such as the IC1/2 complex, in a

ZMYND10-independent step. Working together, this chaperone relay ensures efficient assembly of

functional dynein complexes for subsequent ciliary targeting. Given the critical role ZMYND10 plays

in dynein assembly, we propose a novel alias, DNAAF7 for ZMYND10. Our work on ZMYND10

shows that the biosynthesis and quality control of dynein motors relies on an elaborate proteostasis

network. Perturbations to this network by pharmacological means or due to genetic defects can dis-

rupt motor assembly leading to PCD. This represents a paradigm shift in our understanding of PCD

pathogenesis. We propose that the motile ciliopathy primary ciliary dyskinesia (PCD), when caused

by defects in dynein preassembly should be considered a cell-type specific protein misfolding dis-

ease, which may be amenable to therapy by modulation of the cellular proteostasis network.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene (Mus musculus) Zmynd10 NA MGI:2387863;
ENSMUSG00000010044;

Synonym: Blu; Dnaaf7

Strain (M. musculus) C57BL/6J JAX 664

Strain (M. musculus) C3H/HeJ JAX 659

Strain (M. musculus) CD1 (ICR) Charles River 022 Outbred background

Genetic
reagent (M. musculus)

Zmynd10em1Pmi This paper Allele symbol:
Zmynd10em1Pmi;
Allele synonym:
Zmynd10-;
Accession ID: MGI:6159883

CRISPR null allele of Zmynd10;
Zmynd10 c.695_701
p.Met178Ilefs*183

Cell line (H. sapiens) HEK293 ATCC CRL-1573 Human embryonic kidney cell line.

Cell line (H. sapiens) RPE-1 ATCC CRL-4000 Human retinal pigmented epithelial
cell line immortalized with hTERT.

Biological
sample (M. musculus)

mouse tracheal epithelial
cells (mTECs)

This paper NA See Vladar and Brody, 2013
for protocol.

Biological
sample (H. sapiens)

MucilAir tracheal epithelial
cell cultures

Epithelix Sarl EP01MD

Antibody Acetylated a-tubulin Sigma 6-11B-1; T6793,
RRID:AB_477585

IF (1:500–2000)

Antibody b-actin Sigma AC-15; A1978,
RRID:AB_476692

WB (1:1000)

Antibody DNAAF1/LRRC50 Novus Biologicals NBP2-01936;
RRID: AB_2732031

WB (1:5000)

Antibody DNAH5 PMID: 23525783 Custom made IF (1:100),
PLA; WB (1:5000)

Antibody DNAH5 Sigma HPA037470,
RRID:AB_10672348

IF (1:100),
PLA; WB (1:5000)

Antibody DNAH9 PMID: 24421334 Custom made IF (1:100),
PLA; WB (1:5000)

Antibody DNAH5 Sigma HPA037470,
RRID:AB_10672348

WB (1:5000)

Antibody DNAI1 Abcam ab171964;
RRID: AB_2732030

WB (1:5000)

Antibody DNAI2 Abnova M01 clone IC8;
H00064446-M01,
RRID:AB_426059

IF (1:100), PLA; WB (1:5000)

Antibody DNAI2 Proteintech 17533–1-AP; 17533–1-AP,
RRID:AB_2096670

IF (1:100); WB (1:5000);
IP (1.5 mg-3mg/IP)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody DNALI1 Santa Cruz N-13; sc-160296,
RRID:AB_2246230

IF (1:75); WB (1:1000)

Antibody FKBP8 Proteintech 11173–1-AP,
RRID:AB_10597097

WB (1:5000);
IP (1.5 mg-3mg/IP)

Antibody FKBP8 R and D Systems MAB3580,
RRID:AB_2262675

WB (1:5000)

Antibody g tubulin Abcam GTU-88; ab11316,
RRID:AB_297920

IF (1:500)

Antibody GAPDH Abcam ab8245,
RRID:AB_2107448

WB (1:5000)

Antibody tGFP Origene TA150041,
RRID:AB_2622256

IF (1:200); WB (1:5000)

Antibody GFP Santa Cruz FL; sc-8334,
RRID:AB_641123

WB (1:5000);
IP (1.5 mg-3mg/IP)

Antibody GRP-94/HSP90B1 Thermo Scientific clone 9G10; MA3-016,
RRID:AB_2248666

IF (1:100); WB (1:5000)

Antibody HSP70 Santa Cruz K-20; sc-1060,
RRID:AB_631685

WB (1:5000)

Antibody HSP90AB1 R and D Systems MAB32861,
RRID:AB_2121071

WB (1:5000)

Antibody HSP90 Santa Cruz Clone F-8; sc-13119,
RRID:AB_675659

WB (1:5000)

Antibody LRRC6 (Hiroshi Hamada) PMID:27353389 Custom made WB (1:5000), a gift from
Hiroshi Hamada

Antibody SENTAN Sigma HPA043322 ,
RRID: AB_10793945

IF (1:150)

Antibody ZMYND10 Proteintech 14431–1-AP,
RRID:AB_2218002

WB (1:5000); IF (1:100);
IP (1.5 mg-3mg/IP)

Antibody ZMYND10 Sigma HPA035255,
RRID:AB_10601928

WB (1:5000); IF (1:100);
IP (1.5 mg-3mg/IP)

Recombinant
DNA reagent

pCMV6-Zmynd10-tGFP Origene MG207003 Mouse Zmynd10 ORF with
C-terminal
turbo-GFP tag under
CMV promoter in
plasmid with ampicillin
resistance gene

Recombinant
DNA reagent

pCMV6-DNAAF5-tGFP Origene MR221395 Mouse Dnaaf5 ORF with
C-terminal
turbo-GFP tag under CMV
promoter in
plasmid with ampicillin
resistance gene

Recombinant
DNA reagent

pRK5-Myc-LRRC6 PMID:23891469 NA Human LRRC6 ORF with myc tag;
gift from the Hildebrandt
and Gee labs

Recombinant
DNA reagent

pX330-U6-Chimeric
_BB-CBh-hSpCas9

PMID: 23287718 Addgene:#42230 A human codon-optimized SpCas9
and chimeric guide
RNA expression plasmid.
pX330-U6-Chimeric_BB-CBh-hSpCas9
was a gift from Feng Zhang.

Recombinant
DNA reagent

pCAG-EGxxFP PMID: 24284873 Addgene:#50716 5’ and 3’ EGFP fragments that shares 482 bp
were placed under ubiquitous
CAG promoter. Used for
validation of gRNA sequences by
DSB mediated EGFP reconstitution.
pCAG-EGxxFP was a gift
from Masahito Ikawa

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Sequence-based
reagent

mouse Dnahc5
qRT-PCR primers

This paper AAGCTGTTGCACCAGACCAT/
CCCAGGTGGCAGTTCTGTAG; Probe:88

Sequence-based
reagent

mouse Dnali1
qRT-PCR primers

This paper AGTTCCTGAAACGGACCAAC/
TGAGACCCATGTGGAAATGA; Probe:97

Ssequence-based
reagent

mouse Zmynd10
qRT-PCR primers

This paper GCCATCCTTGATGCAACTATC/
CAATCAGCTCCTCCACCAG; Probe:64

Sequence-based
reagent

mouse Tbp
qRT-PCR primers

This paper GGGGAGCTGTGATGTGAAGT/
CCAGGAAATAATTCTGGCTCA; Probe:97

Chemical
compound, drug

N-(N’N’-Dimethyl
carboxamidomethyl)
cycloheximide (DM-CHX)

PMID:16547004 FKBP8 inhibitor, 1 mM stock in sterile PBS

Software,
algorithm

Fiji PMID: 22743772

Software,
algorithm

Nis-Elements AR V4.6 Nikon Instruments

Software,
algorithm

Imaris V9.1 Bitplane

Software,
algorithm

MaxQuant PMID: 19029910

Software,
algorithm

Andromeda PMID: 21254760

Software,
algorithm

Perseus PMID: 27348712

Software,
algorithm

Crapome PMID: 23921808

Generation of CRISPR mouse mutants
CAS9-mediated gene editing was used to generate mutant mice for Zmynd10 (ENSEMBL:

ENSMUSG00000010044) using three (guide) gRNAs each targeting ‘critical’ exon 6. Guide RNA

sequences were cloned into a pX330 vector (Addgene:#42230) (Cong et al., 2013) and efficacy was

first validated using a split GFP assay in HEK293 cells (Addgene: #50716) (Mashiko et al., 2014).

Pronuclear injections of 5 ng/ml of purified plasmid DNA of pX330 constructs were injected into fer-

tilized C57BL/6J eggs, which were cultured overnight until the two-cell stage before transferring to

pseudopregnant females. PCR based screening, Sanger sequencing and characterization of genetic

mutations of founder animals (F0) was performed. A genotyping was developed using a restriction

digest of a PCR product for the �7 bp deletion line used in this study. Animals were maintained in

SPF environment and studies carried out under the guidance issued by the Medical Research Council

in ‘Responsibility in the Use of Animals in Medical Research’ (July 1993) and licensed by the Home

Office under the Animals (Scientific Procedures) Act 1986.

Cytology, Histology and TEM
Motile multiciliated ependymal cells were obtained from mouse brains (>P7) using a published

protocol (Grondona et al., 2013). Mouse respiratory epithelial cells were obtained by exposing the

nasal septum and scraping cells off the epithelium with an interdental brush (TePe, 0.8 mm Extra-

Soft) followed by resuspension in DMEM (isolated from animals at P7-P29). Cells were spread on

superfrost slides, air-dried and processed for immunofluorescence. This was modified for proximity

ligation assay (PLA) where cells were resuspended in PBS, then fixed 4%PFA/3.7% sucrose/PBS for

30 min on ice and cytospun onto Superfrost slides. Human respiratory epithelial cells obtained by

brush biopsying the nasal epithelium of healthy human donors or P7 neonatal mice were processed

for proximity ligation assay using a Duolink PLA starter kit (DUO92101, Sigma-Aldrich), as per the

manufacturer’s instructions following PFA fixation and 0.25%Triton-X100/TBS permeabilization 10

min. Alexa-488 phalloidin (Thermo Fischer) or rat anti-GRP94 (Thermo Fischer) counterstaining was

done post-PLA protocol, prior to mounting in Duolink In Situ Mounting Medium with DAPI (Sigma
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Aldrich). Trachea (P7), testes (P150) and oviducts (P7) were dissected and immersion fixed in 4%

paraformaldehyde (from 16% solution, Thermo Fischer) overnight and cryosectioned for immunofluo-

rescence staining with antibodies to ZMYND10, acetylated a-tubulin or dynein components

(Diggle et al., 2014). Nasal turbinates were similarly fixed and processed for paraffin sectioning

stained with H and E to reveal mucus plugs. Immunofluorescence images were acquired at either

60x or 100x optical magnification as confocal stacks through whole cells and tissue sections using a

Nikon A1R confocal microscope and displayed as Z-projections. Epidydymal spermatozoa were iso-

lated by dissecting the cauda and caput regions of the epididymides in M2 media (Life Technolo-

gies), spread onto superfrost slides and air-dried followed by fixation and permeabilisation for

immunofluorescence, as previously described (Diggle et al., 2014). For counting, sperm from the

cauda epididymides were immobilized by diluting in H2O and counts were performed using a hae-

mocytometer. For transmission electron microscopy, trachea tissue samples were dissected into PBS

and immersion fixed in 2% PFA/2.5% glutaraldehyde (Sigma-Aldrich)/0.2M Sodium Cacodylate

Buffer pH7.4 with 0.04% CaCl2 (Hall et al., 2013). Samples were cut into semi-thin and ultrathin sec-

tions and imaged by transmission electron microscopy (EM Services, Newcastle University Medical

School).

Live brain sectioning and high-speed videomicroscopy of ependymal
cilia
Whole brains were isolated from neonatal mice in ice cold PBS and kept on ice. Brains were

mounted vertically along the caudo-rostral axis on a petri dish and embedded in low melting point

agarose (Thermo Scientific). 400 mm thick vibratome sections of live brain tissue were obtained and

floated onto wells of a glass bottom multiwell plate (Greiner Sensoplates cat.662892) containing

DMEM and maintained at 37˚C and 5% CO2. Sections were imaged on a Nikon macroscope to visu-

alize dilated lateral ventricles. Motile cilia beating along the surfaces of the lateral walls were visual-

ized and motility was recorded using a high-speed videomicroscopy Andor CCD camera attached to

a confocal capture set-up.

Immunoprecipitations (IP) and immunoblots
Endogenous immunoprecipitations were performed using protein extracts either from multiciliated

cell cultures or motile ciliated tissues lysed under mild lysis conditions (50 mM Tris-HCl (pH 7.5), 100

mM NaCl, 10% Glycerol, 0.5 mM EDTA, 0.5% IGEPAL, 0.15% Triton-X 100 and Halt Protease Inhibi-

tor Single use cocktail EDTA free (Thermo Fischer)). For detecting HSP90 interactions, we included

sodium molybdate (Sigma-Aldrich) in the IP buffer aiming to reduce ATP hydrolysis and client

release (Sullivan et al., 2002). To detect interactions between ODA subunits, a DNAI2 antibody

(Abnova H00064446-M01, RRID:AB_426059) was used as a bait to enrich DNAI2 containing com-

plexes from mouse trachea and oviduct lysates. Immunoblotting was performed using DNAI1

(Abcam ab171964, RRID:AB_2732030) and DNAH5 (N-terminal epitope, M. Takeda). For ZMYND10

interaction studies, extracts from whole testes (P30) and differentiating mouse P7 oviducts were

used. Endogenous ZMYND10 containing complexes were pulled out using two validated ZMYND10

polyclonal antibodies (Sigma HPA035255, RRID:AB_10601928; Proteintech 14431–1-AP, RRID:AB_

2218002). Immunoblotting was performed using an HSP90 antibody (Santa Cruz sc-13119, RRID:AB_

675659). For human samples, endogenous FKBP8, DNAI1 and DNAI2 pulldowns were perfomed on

lysates from normal human airway epithelial cells (MucilAir, Epithelix Sarl) grown at air-liquid inter-

face for 17 days (immature cells). Antibodies for FKBP8 (Proteintech 11173–1-AP, RRID:AB_

10597097), DNAI1 (Abcam ab171964; RRID:AB_2732030) and DNAI2 (Abnova H00064446-M01,

RRID:AB_426059) were used as baits and antibodies for DNAH5 (Sigma HPA037470, RRID:AB_

10672348) and ZMYND10 (Proteintech 14431–1-AP, RRID:AB_2218002) were used to detect these

interactors. An isotype-matched IgG rabbit polyclonal antibody (GFP: sc-8334, RRID:AB_641123,

Santa Cruz) was used as control. In all pull-down experiments, immunocomplexes were concentrated

onto Protein G magnetic beads (PureProteome, Millipore). Following washes, immunocomplexes

were eluted off the beads by boiling and resolved by SDS-PAGE for immunoblotting. Alternatively,

beads were processed for on-bead tryptic digestion and mass-spectrometric analysis. For overex-

pression pull-downs, mouse Dnaaf5-tGFP (Origene- MG221395), Zmynd10-tGFP (Origene,

MG207003) and myc-Lrrc6 (Zariwala et al., 2013) were transiently transfected (Lipofectamine2000)

Mali et al. eLife 2018;7:e34389. DOI: https://doi.org/10.7554/eLife.34389 20 of 27

Research article Cell Biology Developmental Biology

https://scicrunch.org/resolver/AB_426059
https://scicrunch.org/resolver/AB_2732030
https://scicrunch.org/resolver/AB_10601928
https://scicrunch.org/resolver/AB_2218002
https://scicrunch.org/resolver/AB_2218002
https://scicrunch.org/resolver/AB_675659
https://scicrunch.org/resolver/AB_675659
https://scicrunch.org/resolver/AB_10597097
https://scicrunch.org/resolver/AB_10597097
https://scicrunch.org/resolver/AB_2732030
https://scicrunch.org/resolver/AB_426059
https://scicrunch.org/resolver/AB_10672348
https://scicrunch.org/resolver/AB_10672348
https://scicrunch.org/resolver/AB_2218002
https://scicrunch.org/resolver/AB_641123
https://doi.org/10.7554/eLife.34389


into hTERT-RPE (ATCC CRL-4000) and HEK293 (ATCC CRL-1573) cells, which were tested regularly

for mycoplasma. Site-directed mutagenesis was performed using two complementary PCR primers

containing the desired nucleotide changes (PrimerX tool) to amplify Zmynd10-tGFP with proof read-

ing DNA polymerase (Agilent II), followed by DpnI digestion, E coli transformation and sequencing

of the thus recovered plasmids. Subsequent affinity purification using a turboGFP antibody (Evrogen

TA150041, RRID:AB_2622256) was used to isolate fusion proteins 24-hr post-transfection followed

by immobilization onto protein G beads. For immunoblots, proteins were resolved by SDS-PAGE

using 3–8% Tris-Acetate gels or 4–12% Bis-Tris precast gels (NuPage Life Technologies), then trans-

ferred using XCell II Blot module (Life Technologies) to either nitrocellulose or PVDF membranes fol-

lowed by manual or iBind Western (Thermo Fisher) system for antibody binding. Protein bands were

detected using SuperSignal West Femto or Pico kit (Thermo Scientific). Supplementary file 3 con-

tains a list of reagents used.

Mass spectrometry and proteomic data analysis
For whole tissue proteome analysis, the Filter Aided Sample Preparation (FASP) method was

used (Wiśniewski et al., 2009). Briefly, mouse testes samples were homogenized in a lysis buffer

consisting of 100 mM Tris (hydroxymethyl)amino-methane hydrochloride (Tris-HCl), pH 7.5, in pres-

ence of protease (Complete Mini Protease Inhibitor Tablets, Roche and 1 mM Phenylmethylsulfonyl

fluoride,, Sigma) and phosphatase inhibitors (PhosSTOP Phosphatase Inhibitor Cocktail Tablets,

Roche). Samples were further processed and peptides and proteins were identified and quantified

with the MaxQuant software package, and label-free quantification was performed by MaxLFQ, as

described in (Hall et al., 2017). The false discovery rate, determined by searching a reverse data-

base, was set at 0.01 for both peptides and proteins. All bioinformatic analyses were performed with

the Perseus software. Intensity values were log-normalized, 0-values were imputed by a normal dis-

tribution 1.8 p down of the mean and with a width of 0.2 p. Statistically significant variance between

the sample groups was tested by a permutation-based FDR approach and a Student’s t test with a p

value cut-off of 0.01. Total proteomic data are available via ProteomeXchange with identifier

PXD006849 and are summarised in Supplementary file 1

To examine endogenous ZMYND10 interactions from postnatal day 30 (P30: a period of synchro-

nized flagellogenesis) testes extracts using two well-validated polyclonal antibodies (ZMYND10 Pro-

teintech and Sigma) using an IP/MS workflow carried according to (Turriziani et al., 2014). Mass

spectra were analysed using MaxQuant software and label-free quantification intensity values were

obtained for analysis. T-test p-values between MS runs were calculated. MS datasets were ranked by

log2 fold-change (enrichment) over IgG controls (Supplementary file 2). As a filtering strategy to

find ’true’ interactions, we used the CRAPome repository (http://www.crapome.org/.) containing a

comprehensive list of the most abundant contaminants commonly found in AP/MS

experiments (Mellacheruvu et al., 2013). To aid filtering, we used an arbitrary threshold of 25 (i.e.

proteins appearing in >25 out of 411 experiments captured in the CRAPome repository) were

removed from further analysis. Filtered interactors common to both ranked datasets were prioritized

for further studies for validation as interactors of ZMYND10 in vivo. The mass spectrometry proteo-

mics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner reposi-

tory with the dataset identifier PXD006849 and summarised in Supplementary file 2.

Mouse tracheal epithelial cultures
Mouse tracheal epithelia cells (mTECs) were isolated from the tracheas of 5–7 week old outbred

mice, and then studied as passage 0 cells (Vladar and Brody, 2013). Cells were cultured on semi-

permeable supported membranes (Transwell; Costar, Corning, NY), as previously

described (Vladar and Brody, 2013). Y276342 (StemCell, UK) at 10 mM was added to the medium

during the proliferation stages to promote basal cell proliferation.

Reverse transcription quantitative real time-PCR (RT qPCR)
Total RNA was isolated from freshly dissected tissue or tissue stored in RNAlater (Qiagen). Isolation

was carried out using RNeasy Mini Kit or RNeasy Fibrous Tissue Mini Kit (Qiagen) following manufac-

turer’s protocol. RNA samples were treated with Turbo DNAse to remove genomic DNA contamina-

tion using the Turbo DNA free kit (Ambion). Intron-spanning RT-qPCR assays were designed using
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the Universal Probe Library probe finder tool (Roche) to identify transcript specific primer-probe sets

listed in supplementary table. Three separate experimental runs were carried out for each plate. All

runs were done on three individual biological replicates. Data was analysed using Roche LC480 soft-

ware. Subsequently, a paired two-tailed students t-test was used to compare differences in the

mean expression values between wild type and mutant samples.

DM-CHX FKBP8 inhibitor studies
Lyophilized FKBP8 inhibitor N-(N’N’-Dimethylcarboxamidomethyl)cycloheximide (DM-CHX)

(Edlich et al., 2006) was dissolved in sterile PBS in a 1 mM stock and diluted further to working con-

centrations in MucilAir media (EPITHELIX Sàrl). MucilAir tracheal epithelial cultures (EPITHELIX Sàrl)

inserts from healthy human donors (same for each stage, immature D17 after air-lift or mature D60

after air-lift) were incubated with DM-CHX for 24 hr at the indicated concentrations and harvested in

mild lysis buffer, (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 10% Glycerol, 0.5 mM EDTA, 0.5% IGE-

PAL, 0.15% Triton-X 100 and Halt Protease Inhibitor Single use cocktail EDTA free (Thermo

Fischer). For FKBP8 inhibition studies of mTECs, DM-CHX was diluted to 100 mm in NuSerum media

and added to wells every 2 days from 3 days ALI (immature treatment) or after 14 days (mature

treatment). For detection of DNAH5 (Takeda custom) and DNAI2 (Abnova H00064446-M01, RRID:

AB_426059) from mTECs, membrane from inserts were removed and stained with antibodies as

described above.

Imaging
Fluorescent confocal images (PLA, IF, ICC) were acquired using a 60x Apochromat lS or 100x Plan

Apochromat VC 1.4 DIC N2 lens using a Nikon A1R confocal microscope. Data were acquired using

NIS Elements AR software (Nikon Instruments Europe, Netherlands). mTEC wholemount images

were acquired using 20x Plan Apochromat VC 0.75 DIC N2 or air 40x Plan Fluar 0.75 DIC N2 lens on

the multimodal Imaging Platform Dragonfly (Andor Technologies, Belfast UK). Data were collected

in Spinning Disk 25 mm pinhole mode on the high sensitivity iXon888 EMCCD camera. Z stacks were

collected using a Mad City Labs Piezo. Data was visualized using IMARIS 8.4 (Bitplane).

Statistics
Statistical tests were performed using GraphPad Prism 7, (GraphPad Software, California) as

described in the text.
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Wiśniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome
analysis. Nature Methods 6:359–362. DOI: https://doi.org/10.1038/nmeth.1322, PMID: 19377485

Yamaguchi H, Oda T, Kikkawa M, Takeda H. 2018. Systematic studies of all PIH proteins in zebrafish reveal their
distinct roles in axonemal dynein assembly. eLife 7:e36979. DOI: https://doi.org/10.7554/eLife.36979, PMID: 2
9741156

Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, Hjeij R, Dell SD, Chaki M, Dougherty
GW, Adan M, Spear PC, Esteve-Rudd J, Loges NT, Rosenfeld M, Diaz KA, Olbrich H, Wolf WE, Sheridan E,
Batten TF, et al. 2013. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. The
American Journal of Human Genetics 93:336–345. DOI: https://doi.org/10.1016/j.ajhg.2013.06.007, PMID: 23
891469

zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, Mill P, Jarman AP. 2018.
Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. The
Journal of Cell Biology 217:2583–2598. DOI: https://doi.org/10.1083/jcb.201709026, PMID: 29743191

Mali et al. eLife 2018;7:e34389. DOI: https://doi.org/10.7554/eLife.34389 27 of 27

Research article Cell Biology Developmental Biology

https://doi.org/10.1083/jcb.200308132
http://www.ncbi.nlm.nih.gov/pubmed/14718520
https://doi.org/10.1074/jbc.M114.558635
https://doi.org/10.1074/jbc.M114.558635
http://www.ncbi.nlm.nih.gov/pubmed/25077969
https://doi.org/10.1074/jbc.M207754200
http://www.ncbi.nlm.nih.gov/pubmed/12324468
https://doi.org/10.1016/j.cell.2014.05.039
http://www.ncbi.nlm.nih.gov/pubmed/25036637
https://doi.org/10.1038/ng.2707
http://www.ncbi.nlm.nih.gov/pubmed/23872636
https://doi.org/10.3390/biology3020320
http://www.ncbi.nlm.nih.gov/pubmed/24833512
https://doi.org/10.1016/B978-0-12-397944-5.00014-6
http://www.ncbi.nlm.nih.gov/pubmed/23522475
https://doi.org/10.3389/fgene.2015.00069
http://www.ncbi.nlm.nih.gov/pubmed/25767478
https://doi.org/10.1016/j.cell.2006.09.043
http://www.ncbi.nlm.nih.gov/pubmed/17110338
https://doi.org/10.1111/j.1600-0854.2007.00646.x
http://www.ncbi.nlm.nih.gov/pubmed/17897317
https://doi.org/10.1038/nmeth.1322
http://www.ncbi.nlm.nih.gov/pubmed/19377485
https://doi.org/10.7554/eLife.36979
http://www.ncbi.nlm.nih.gov/pubmed/29741156
http://www.ncbi.nlm.nih.gov/pubmed/29741156
https://doi.org/10.1016/j.ajhg.2013.06.007
http://www.ncbi.nlm.nih.gov/pubmed/23891469
http://www.ncbi.nlm.nih.gov/pubmed/23891469
https://doi.org/10.1083/jcb.201709026
http://www.ncbi.nlm.nih.gov/pubmed/29743191
https://doi.org/10.7554/eLife.34389

