
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Haineng Xu,
University of Pennsylvania,
United States

REVIEWED BY

Xianyi Cai,
Huazhong University of Science and
Technology, China
Ling Yin,
University of Texas MD Anderson
Cancer Center, United States

*CORRESPONDENCE

Zhigang Chen
chenzhigang@zju.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Metabolism,
a section of the journal
Frontiers in Oncology

RECEIVED 02 July 2022

ACCEPTED 01 August 2022
PUBLISHED 12 September 2022

CITATION

Wang D, Ye Q, Gu H and Chen Z
(2022) The role of lipid metabolism in
tumor immune microenvironment and
potential therapeutic strategies.
Front. Oncol. 12:984560.
doi: 10.3389/fonc.2022.984560

COPYRIGHT

© 2022 Wang, Ye, Gu and Chen. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 12 September 2022

DOI 10.3389/fonc.2022.984560
The role of lipid metabolism
in tumor immune
microenvironment and potential
therapeutic strategies

Danting Wang1†, Qizhen Ye1†, Haochen Gu1†

and Zhigang Chen1,2,3,4*

1Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou, China, 2Key Laboratory of Tumor Microenvironment and Immune
Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China,
3Cancer Centre, Zhejiang University, Hangzhou, China, 4Cancer Institute, Key Laboratory of Cancer
Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou, China
Aberrant lipid metabolism is nonnegligible for tumor cells to adapt to the tumor

microenvironment (TME). It plays a significant role in the amount and function

of immune cells, including tumor-associated macrophages, T cells, dendritic

cells and marrow-derived suppressor cells. It is well-known that the immune

response in TME is suppressed and lipid metabolism is closely involved in this

process. Immunotherapy, containing anti-PD1/PDL1 therapy and adoptive T

cell therapy, is a crucial clinical cancer therapeutic strategy nowadays, but they

display a low-sensibility in certain cancers. In this review, we mainly discussed

the importance of lipid metabolism in the formation of immunosuppressive

TME, and explored the effectiveness and sensitivity of immunotherapy

treatment by regulating the lipid metabolism.
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Introduction

Lipids are hydrophobic molecules including phospholipids, monoglycerides,

diacylglycerides, triglycerides and sterols, which play the function of participating in

forming biological membranes, providing energy, storing energy and mediating

cellular signal transduction. Among them fatty acids (FAs), defined as a diverse class

of molecules consisting of hydrocarbon chains varying in length and saturation,

indispensably involve in the lipid metabolism which includes exogenous lipid

uptake, de novo lipid synthesis and lipolysis (1). Fatty acid oxidation (FAO, also

called beta-oxidation), shortens fatty acids by two carbons in each cycle and generates

NADH, FADH2 and acetyl CoA through its series of cyclic reactions. And the end
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product of FAO pathway, acetyl CoA, can be ultimately

converted back to fatty acids through the catalysis of various

enzymes in the process of FA synthesis (FAS). Besides,

cholesterol, which deemed as an indispensable part of

biological membranes and the substrate for steroid

hormones, is also derived from acetyl CoA and its synthesis

is inseparable from many enzymes like Acyl coenzyme A-

cholesterol acyltransferase (ACAT) (2).The above lipid

metabolic processes are of great significance and studies

revealed that lipid metabolism has undergone a variety of

metabolic reprogramming in tumor cells to promote tumor

growth, proliferation and metastasis (3, 4), and the diversity of

lipid types and their different roles in tumor cells lead to the

complex mechanism alterations. Therefore, targeting lipid

metabolism is a promising strategy for cancer treatment. (5).

It is inadequate for tumor cells to rely solely on glucose

metabolism for energy. Therefore, in order to meet the need

of rapid growth and proliferation, tumor cells promote lipid

metabolism through a series of mechanisms. Firstly, higher

expression of enzymes related to lipid uptake such as CD36

enables tumor cells to compete with other cells for lipids from

TME. Secondly, transcription factors related to lipid

oxidation enzymes have been found to be expressed at high

frequency. Thirdly, tumor cells have the ability to synthesize

lipids independently. In addition to providing energy, lipids

also serve as signal transduction molecules and raw materials

of cellular structure in tumor cells (6). Furthermore,

cholesterol and phospholipid biosynthesis are also very

active in tumor cells, they maintain the integrity and

fluidity of cell membranes to ensure the survival of tumor

cells, and affect the function of receptors on the membrane to

enable tumor cells' drug-resistance and better adaptation to

the TME (7).

In the hypoxic and acidic TME, dysfunctional immune cells

including tumor-associated macrophages (TAMs), tumor

infiltrating T cells (TILs), dendritic cells (DC), myeloid-

derived suppressor cells (MDSC), and natural killer cells (NK)

lead to muted immune responses and further promote tumor

progression (8). There is also a fierce competition for the

deficient nutrients between immune cells and tumor cells in

the TME, during which process their lipid metabolic

reprogramming are of great significance and closely involved

in the immunosuppressive outcome (9, 10). Pro-tumor and anti-

tumor immune cells have different levels of lipid metabolism

activity, the former, such as M2-macrophages and Treg cells,

tend to have more active lipid metabolism, while the latter prefer

to acquire energy through glucose metabolism (11). This

difference in lipid metabolism is regulated by many factors,

especially some transcriptional regulators such as peroxisome

proliferator-activated receptor (PPAR) and sterol regulatory

element-binding proteins (SREBP) (12). These lipid

metabolism reprogramming in immune cells together leads to

the formation of the immunosuppressive microenvironment.
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Immunotherapy including adoptive cell therapy, immune

checkpoint blockade (ICB), tumor-specific vaccines and small-

molecule immune drugs has shown certain therapeutic effects. As

one of the representatives of immunotherapy, programmed cell death

protein 1 (PD-1) antibodies can inactivate tumor cells’ checkpoint

and unleash cytotoxic T cells’ anti-tumor effects, but still major

patients do not show complete responses (13). At present, tumor

immunotherapy still faces many challenges, and it has a beneficial

effect on theminority of patients (14). The immunotherapy resistance

and post-immunotherapy cancer progression are two main problems

accounting for that low-sensitivity (15, 16). Since lipid metabolism

plays an important role in the function of immune cells, there are

many experiments to improve the function of immune cells by

regulating lipid metabolism, so that immunotherapy may be achieve

better efficacy. Our review summarizes and analyzes existing studies

with clinical application value, providing useful references for

researchers’ follow-up research. For more precise targeted

treatment, future research needs to focus on the sensitivity of

regulating the same lipid metabolism target in different types of

immune cells. Combining lipid metabolism regulation with

immunotherapy may lead to new breakthroughs in immunotherapy.
Lipid metabolism reprogramming in
tumor cells and tumor stromal cells

As a feature of many malignant tumors, lipid metabolic

reprogramming, especially the dynamic balance between FAS

and FAO, plays a significant role in tumor progression

(1) (Figure 1).

Studies have shown that lipogenesis plays an indispensable

part in the growth of numerous tumors (17). On the one hand,

lipids from the extracellular milieu are crucial for tumor cells.

Studies found that tumors can acquire exogenous FAs like

palmitic acid which was proved to promote metastasis in

carcinoma (18). The upregulation of multiple FA protein

transporters, particularly low-density lipoprotein receptors

(LDLRs), CD36 (fatty acid translocase) and fatty acid-binding

proteins (FABPs), were found in various tumors’ plasma

membranes. Low density lipoproteins (LDLs) can be taken in

via the LDLRs on the membrane, and the high expression of

LDLRs promotes the LDL cholesterol-mediated breast cancer

growth (19), which is also associated with the poor prognosis in

small cell lung cancer (SCLC) and ovarian cancer (OC) (20, 21).

High expression of CD36, which has been correlated with poor

survival for patients with gastric, ovarian and breast cancer,

could enhance the uptake of diet-derived FAs and fuel tumors’

growth and metastasis (22, 23). Besides, elevated FAs imported

via CD36 were also testified to accelerate tumors’ epithelial-

mesenchymal transition (EMT) (24), while inhibition of CD36

could impair the metastasis of human oral cancers and prevent

the development of the adipocyte-induced malignant

phenotypes in ovarian cancer (18, 25). Additionally, FABPs
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also play an instrumental role in cancer by affecting fatty acid

metabolism, high expression of epidermal FABP (E-FABP) in

the TAMs could enhance the production of interferon-beta

(IFN-b) against the growth of tumor (26). The above evidence

indicated the diversity of FA protein transporters’ functions in

tumor therapy and suggested potential treatments such as

dietary regulation in further study.

Apart from enhancing uptake of exogenous FAs, tumors also

exhibit a high level of de novo FA synthesis which alters cellular

lipid composition and fuels tumor growth (27). This process

involves the upregulation of many enzymes as follows. Acetyl–

coenzyme A (CoA), as the main substrate of lipid synthesis, can

be converted from citrate by ATP–citrate lyase (ACLY). Since

the production of citrate could be derived from glucose (22),

ACLY is also regarded as a key enzyme linking glycolysis and

lipid synthesis. High ACLY expression was found in gastric

adenocarcinoma patients, correlated with advanced stages and

lymph node metastasis (28), ACLY also shows a strong

association with poor prognosis in various cancers like ovarian

cancer (29). On the contrary, the ACLY-targeted treatments

exhibit tumor- suppressive effects. ACLY inhibitor SB-204990

could not only suppress lipid synthesis and tumor progression

but also show a stronger effect in combination therapy with

cisplatin by inhibiting the PI3K-AKT pathway and activating the

AMPK-ROS pathway (29, 30).

Acetyl-CoA carboxylase (ACC), which catalyzes the

carboxylation of acetyl-CoA to malonyl-CoA, was also found

highly expressed in multiple tumors like breast cancer (31), ACC

includes two isoforms, the cytosolic ACC1 is present in lipogenic
Frontiers in Oncology 03
tissues and is critical for FA synthesis, while ACC2 is bound in

the mitochondrial outer membrane, mainly presenting in lipid

oxidizing tissues like skeletal muscles. ACC1 promotes the FAO‐

mediated human hepatocellular carcinoma (HCC) survival

under conditions of metabolic stress and also contributes to

the metastasis and recurrence of breast cancer (32, 33). While

using RNA interference (RNAi) to silence the ACC-a gene could

inhibit cell proliferation and induce apoptosis of prostate cancer

cells (34). Unlike ACC1, ACC2 plays a role in inhibiting lipid

degradation and was found inhibited in various cancers, its

expression is also negatively correlated with tumor size and

clinical stages of lung adenocarcinoma patients (35, 36). Prolyl

hydroxylase domain protein 3 (PHD3) could also repress FAO

and inhibit leukemia cell proliferation by activating ACC2 (37).

The evidence revealed that both ACC1 and ACC2 could be

potential targets in the treatment of cancer.

Fatty-acid synthase (FASN) is a multi-enzyme protein

complex which can convert one acetyl-CoA molecule and seven

malonyl-CoA molecules into one palmitate acid (C16: 0). FASN

was found highly expressed in multiple cancers and closely related

to poor prognosis, and notably, many studies have revealed that

the downregulation of FASN can repress tumor progression via

diverse mechanisms (3). Inhibition of FASN could not only lead to

the accumulation of malonyl-CoA, which further represses tumor

cells’ FAO and ultimately blocks the cell-cycle, but also impair the

correct localization and/or functioning of EGFR and ERBB2 (3,

38). Besides, the apoptosis of tumor cells is also attributed to the

inhibition of FASN which causes the downregulation of Akt and

the starvation of phosphatidylcholine (3, 39). In terms of
FIGURE 1

lipid metabolism reprogramming in cancer cells. LDL, low density lipoprotein; LDLR, low density lipoprotein receptor; FA, fatty acid; FABP, fatty
acid binding protein; ACSL, Acyl-CoA synthetase long chain; CPT, carnitine palmitoyl transferase; FAO, fatty acid oxidation; TCA, tricarboxylic
acid cycle; ACLY, ATP–citrate lyase; ACC, Acetyl-CoA carboxylase; FASN, fatty-acid synthase; SCD, Stearoyl-CoA desaturase; Elovl6, Elongation
of long-chain fatty acids family member 6; ACAT, Acyl coenzyme A-cholesterol acyltransferase; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme
A reductase; SM, squalene monooxygenase.
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combination therapies, FASN inhibition with TVB-3166 or TVB-

3664 could inhibit tubulin palmitoylation and show stronger anti-

tumor effects with the combination of taxane drugs (40). And

another selective FASN inhibitor, Fasnall, also reduces tumor

volumes and extends survival when combined with carboplatin in

the MMTV-Neu model of HER2+ breast cancer (41). AS a

druggable target for cancer treatment, FASN has shown efficacy

in diverse tumors, and its relevant metabolic treatments have

broad prospects.

Palmitate acid (16:0) produced in de novo FA synthesis can

be desaturated to palmitoleic acid (16:1) by Stearoyl-CoA

desaturase (SCD). Since the desaturation driven by SCD1

could enhance tumor intrinsic antioxidants and anti-

ferroptotic resources for survival and regrowth, suppression of

SCD1 was also found to show anti-tumor effects (42).

Researchers revealed the association between high expression

of SCD1 and lung adenocarcinoma patients’ late stage, which

provides SCD1 as a novel potential therapeutic target to suppress

tumors (43). Apart from being desaturated by SCDs, palmitate

acid could also be elongated by the Elongation of long-chain

fatty acids family member 6 (Elovl6) which is also associated

with poor prognosis in patients with HCC and breast cancer (44,

45). Knockdown of Elovl6 could also reduce HCC cell

proliferation and Akt activation, which further represses

tumor growth, and could be used as a potential therapeutic

approach (44). High expression of various enzymes which

enhances de novo lipid synthesis in tumor cell is also deemed

as predictors or biomarkers, and the downregulation of these

enzymes shows its anti-tumor effects in different cancers, which

reveals the significance of drugs targeting lipid synthesis in

tumor therapy.

Tumor cells also exhibit a high level of FAO to meet their

demands for energy for rapid proliferation. Since the acidosis in

the TME causes the reduction of glucose-derived acetyl-CoA,

FAO (also called beta-oxidation), which converts long-chain

FAs into acetyl-CoA and meanwhile generates NADH and

FADH2 for electron transport chain, plays an essential role in

the energy production of tumors (1). Overexpression of FAO

enzymes can also be found in multiple tumors like breast cancer,

colorectal cancer and gastric cancer (46–48). As the rate-limiting

enzyme in FAO, carnitine palmitoyl transferase 1 (CPT1) can

transport acetyl-CoA to the mitochondrial matrix and CPT1

includes three isozymes who have different distributions and

close relations with tumor. CPT1A is widely distributed in liver,

pancreas, brain and blood, and it is also highly correlated with

poor prognosis in acute myeloid leukemia (AML) or ovarian

cancer (22). CPT1A could also support Castration-Resistant

Prostate Cancer (CRPC) by supplying acetyl groups for

histone acetylation and CPT1A variant 2 is also found to

promote tumor invasion and metastasis (49, 50) Besides,

knockdown of CPT1A could repress xenograft tumor

initiation through inhibiting adipocytes’ tumor-promoting

effects, which indicates CPT1A-dependent FAO as a target for
Frontiers in Oncology 04
anti-cancer therapeutics (51). CPT1B is selectively present in

brown adipose tissue, muscle and heart, JAK/STAT3 induces the

expression of CPT1B and further enhances FAO activity to

promote breast cancer chemoresistance and stem cells self-

renewal, while inhibiting the STAT3-CPT1B-FAO pathway

could recover tumor’ sensitivity to chemotherapy (52). Unlike

CPT1A and CPT1B, CPT1C is primarily present in the brain and

has oncogenic potential (53). Research found CPT1C was

remarkably reduced in senescent cells, and silencing of CPT1C

could also cause cellular senescence in tumor and suppress

xenograft tumor growth (54). CPT1C is also deemed as a

contributor to tumor cell metabolic transformation and

rapamycin resistance, which is significant for the growth of

tumor cells under the conditions of metabolic stress (53).

Acyl-CoA synthetase long chain 3 (ACSL3), an upstream

enzyme of CPT1, which converts free FAs into fatty acyl-CoAs,

is also crucial for the proliferation of KRAS-driven cancer cells

(55). Studies found that ACSL3 is upregulated in human

pancreatic ductal adenocarcinoma (PDAC), and the deletion

of ACSL3 could delay PDAC progression and reduce fibrosis in

mice (56). Apart from energy production, FAO also generates

nicotinamide adenine dinucleotide phosphate (NADPH) which

is derived from IDH (isocitrate dehydrogenase)-mediated

isocitrate oxidation to maintain homeostasis, which is also

regarded as a potential therapeutic target (4). Using etomoxir

to decrease NADPH level could result in cell death in human

glioblastoma cells accompanied by oxidative stress (57). Taken

together, the up-regulation of FAS and FAO levels in tumor cells

meets the energy need of their rapid proliferation, many

enzymes play significant roles in this process, and the down-

regulation or inhibitors of those enzymes have been found to

have anti-tumor effects with multiple mechanisms. Still some

enzymes whose correlation with tumor and potential therapeutic

effects remain to be confirmed, but the metabolic regulation

related to lipid metabolism is no doubt playing an indispensable

role in this field.

Multiple studies suggested that lipids other than fatty acids,

such as cholesterol, also play a key role in tumor progression,

and the inhibition of cholesterol synthesis is detrimental to

cancer cells (6, 58). Cholesterol biosynthesis begins with the

formation of acetoacetyl-CoA by the condensation of two

molecules of acetyl coenzyme A through Acyl co-enzyme A-

cholesterol acyltransferase (ACAT). And the inhibition of

ACAT could reduce the formation of lipid droplets (LD)

which further suppresses glioblastoma growth (59).

Meanwhile, ACAT inhibitor such as avasimibe, was also

proved to induce cell cycle arrest and apoptosis, which is

regarded as a potential therapy in the treatment of

glioblastoma (60).

As the rate-limiting enzyme in cholesterol biosynthesis, 3-

hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR)

which reduces 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)

to mevalonate was also found up-regulated in various cancers.
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Its overexpression induces statin resistance of cancer cells and

accelerates tumor migration, while HMGCR knockdown could

restore the statin sensitivity of tumor cells like breast cancer and

CRPC (61, 62). In addition, HMGCR inhibitor simvastatin could

also robustly enhances cancer vaccinations and synergizes with

anti-PD-1 antibodies, which shows the broad therapeutic

perspectives of drugs targeting cholesterol pathways in

combination with other anti-tumor treatments (63). Apart

from HMGCR, squalene monooxygenase (SM, also known as

squalene epoxidase) which converts squalene to 2,3(S)-

oxidosqualene is deemed as the second rate-limiting enzyme

in cholesterol biosynthesis and its increased expression was also

found associated with poor prognosis in several tumors like

prostate cancer, pancreatic adenocarcinoma (PAAD) and head

and neck squamous cell carcinoma (HNSCC) (64–66). While

inhibition of SM could lead to the accumulation of squalene

which further suppresses SCLC proliferation (67), and its

pharmacological blockage also inhibits the invasion of CRPC

(68). The above evidence reveals the potential value of various

enzymes in cholesterol metabolism in tumor therapy, suggesting

new ideas for tumor treatment.

When it comes to phospholipid metabolism, the

extracellular choline and ethanolamine are transported into

tumor cells to be catalyzed by a series of enzymes such as

ethanolamine kinase (ETNK), choline kinase (ChK),

cytidylyltransferase (CT), diacylglycerol phosphotransferase

(PT), and respectively converted into phosphatidylcholine

(PtdCho) and phosphatidylethanolamine (PtdEth) (69, 70).

Metabolic remodeling of phospholipids can promote tumor

progression and drug resistance. In glioblastoma (GBM),

overexpressed polymerase 1 and transcript release factors

(PTRF) lead to increased activity of cytoplasmic phospholipase

A2 (cPLA2), and PTRFs can also induce decreased infiltration of

CD8+ T cells. Ultimately, they promote the proliferation of

tumor cells (71). Since phospholipid and cholesterol are the

main raw materials for forming plasma membrane, their

composition changes affect the activity and function of drug

efflux pump on plasma membrane, and make tumor cells have

stronger drug resistance to some extent (7).

Cancer-associated fibroblasts (CAF) are the major

components of tumor stromal cells in TME. CAF-derived

exosomes contain a variety of metabolites, including lipids,

amino acids, and TCA cycle products (72), which play a major

role in regulating various metabolic reprogramming in the

tumor microenvironment, also including lipid metabolism

(73). These products enter the TME and serve as an important

source of extracellular lipids uptake by tumor cells and immune

cells. Studies have shown that FAs or lysophosphatidylcholine

(LPCs) overexpressed in fibroblasts can be released into TME,

which subsequently are partially taken up by tumor cells and

promote tumor growth through intracellular lipid metabolism

reprogramming pathways (74, 75). Similar experiments have

shown that CAF transport proteins and lipids to tumor cells in a
Frontiers in Oncology 05
one-way process (76). Moreover, CAFs induce the increased

expression of fatty acid transport protein 1 (FATP1) in breast

cancer cells and accelerate lipid uptake (77). CAFs in lung induce

high expression of SCD1 in tumor cells through PI3K/Akt/

mTOR pathway, which enhances the ability of tumor cells to

metastasize and may be related to lung metastasis of colon

cancer or breast cancer (74, 78). Meanwhile, CAFs contribute

to promoting immune evasion and are the core source of

immunosuppressive molecules. The resistance to ICB is also

strictly controlled by CAFs (79). There is evidence proved that

stromal cells targeting recombinant IL-2 in combination with

ICB can be more effective in immunotherapy than ICB

alone (80).
The lipid metabolism of immune
cells in TME

Tumor-associated macrophages

TAMs have distinct characteristics from conventional

macrophages. They infiltrate and settle down in the TME.

Abundant studies have proved that TAMs have prominent

pro-tumor activities, such as tumorigenesis, angiogenesis,

spread and metastasis, drug-resistance and tumor immune

evasion (81). TAMs are the most abundant immune cells in

TME (82). The classically (M1) and alternatively (M2)

activated macrophages phenotype are two different TAMs

states of polarized activation (83). M2 macrophages are

regarded as the main components of TAMs, which exhibit a

tumor-promoting effect and are dedicated to forming an

immunosuppress ive microenvi ronment , whi le M1

macrophages show a tumor-inhibiting effect (84) (Figure 2).

Consistently, the more amounts of M2 macrophages or total

TAMs, the worse prognosis for patients with advanced gastric

cancer (AGC) and hepatocellular carcinoma (85, 86). Lipid

metabolism is closely involved in the selection of different

polarization states in TAMs and ultimately leads to opposite

effects in tumor (87).

Several processes of lipid metabolism like FA biosynthesis,

uptake and storage are enhanced in TAMs (88). Free fatty acids

are derived from extracellular uptake, de novo synthesis or

release of LD from the cellular fatty acid pool. Research has

indicated that the immunosuppressive phenotype of TAMs is

induced by long-chain fatty acid metabolism, specifically

unsaturated fatty acids (UFA) (89). Mechanically, to obtain

enough energy and ensure the cellular survival, TAMs

overexpress scavenger receptor CD36 and accelerate FAs

transportation to accumulate lipid droplets and utilize FAO,

enhanced FAO leads to a high rate of oxidative phosphorylation

and STAT6 signaling pathway, which finally regulate gene

transcription to determine the TAMs function (90). Given that

CD36 is expressed extensively in other pro-tumor immune cells
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like regulatory T cells, the inhibition of CD36 may be a potential

adjunct strategy to immunotherapy.

So, what factors will regulate FAO in TAMs? PPAR family has

a strong link with FA metabolism in TAMs. PPARa, PPARd and
PPARg are three major members of the PPAR family and they are

involved in respective aspects of FA metabolism (91). S100A4 is a

deciding factor for the subsets of TAMs: M2 macrophages display

S100A4+ and M1 macrophages display S100A4-. S100A4 controls

the upregulation of PPAR-g during TAMs M2-like polarization,

and then PPAR-g upregulates CD36 to enhance FA uptake and

FAO (92). In hepatocellular carcinoma, the deficiency of receptor-

interacting protein kinase 3 (RIPK3) inhibits the caspase-1

mediated PPAR cleavage, and the reduction of PPAR clearance

results in an increase in FAO and polarization of M2 TAMs (93).

Intriguingly, the inhibition of caspase-1 could suppress tumor

progression by promoting FAO and exhausting lipid droplets

(94). The mechanism behind this contradiction still needs us to

explore further. Moreover, another nuclear receptor liver X

receptor (LXR), regarded as a cholesterol sensor and contributor

to the loss of cholesterol intracellularly (95), play a pivotal role in

TAMs gene expression. Activating LXR disrupts the mechanisms

of TAMs to maintain immunosuppressive effects (96). M2 and

M1 macrophages can be switched to each other in particular

conditions. When changing the amounts of FAs or blocking FAO,

M2 macrophages can be induced to transform into M1 type

polarization (97) and the cancer progression can be prevented.
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Compared to M2-like macrophages, M1-like macrophages

express less PD-1 and escape from the effects of programmed

cell death 1 ligand (PD-L1) (98). Therefore, we assume the

combination of anti-PD-1 therapy towards malignant tumors

with targeting lipid metabolism of TAMs might selectively

strike M2-like macrophages without impairing M1-like

macrophages to strengthen the effectiveness and sensibility

of treatment.
Tumor-infiltrating T lymphocytes

CD8+ and CD4+ cells are two types of TILs that are familiar

to us and they play different roles in TME. The CD8+ clusters

include effector T cells (Teff) that kill tumor cells directly, and

CD4+ clusters include regulatory T cells (Treg), T follicular

helper cells (Tfh) and T helper cells 1, 2, and 17 (Th1, Th2,

Th17) (99), the function of Treg significantly contributed to the

formation of immunosuppressive microenvironment (100, 101).

Intratumor Tregs were found to be at high levels in some

malignant tumors (102), one of the reasons is that both FAO

and FAS are enhanced in Treg cells, thus Treg cells accumulate

lipids and gain abundant energy to adapt to the undernourished

environment in TME (103). By contrast, Teff tends to utilize

glycolysis for more energy need (11), which will place Teff at a

disadvantage in the hypoxia microenvironment (Figure 2).
FIGURE 2

The lipid metabolism of immune cells in TME. FA, fatty acid; FAS, fatty acid synthesis; FAO, fatty acid oxidation; Msr1, macrophage scavenger
receptor 1; FATP, fatty acid transport protein; XBP1, X-box binding protein 1; LPO, lipid peroxidation; AP, antigen presentation; IL, interleukin;
TGF, tumor growth factor; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte macrophage colony stimulating factor; GzmB,
granzyme B; IFN, interferon; TNF, tumor necrosis factor; M1, M1 macrophage; M2, M2 macrophage; NK, natural killer cell; TANK, tumor-
associated natural killer cells; Teff, effective T cell; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell; DC,dendritic cell; TADC,
tumor-associated dendritic cell.
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Since activated T cells exhibit a desperate requirement for a

high rate of FAO to maintain energy supply, the intracellular

FAs content plays a crucial part in maintaining the levels of FAO

in cells (104). FAs are known to be the essential materials for

cells, and their deficiency in Teff inhibits cell proliferation and

signal transduction so that the quantity of Teffs in tumor is low

and cancer cells can’t be prevented efficiently. Another pro-

tumor effect of FAs is that FAs catalyzed by ACC1 will fuel the

differentiation of Tregs and Th17 (105). Tregs and Th17 have the

synergistic effects in tumor-promoting with IL-6 and TGF-b
secreted themselves (106). SREBP, a family of membrane-bound

transcriptional regulators in ER, are mainly involved in FA and

cholesterol synthesis. Three subsets are existing in human cells:

SREBR1a, SREBP1c and SREBP2 (12). FAS is especially

manipulated by SREBP1c (107). Studies showed that SREBP

activity is simulated in intracellular Treg cells (108) and

inhibited in Teff cells (109). To summarize, the levels of FA

synthesis (modulated by SREBP1c) and FA oxidation

(modulated by PPAR) are both elevated in Tregs to achieve a

better immunosuppressive effect in tumor. And evidence

showed that a high number of Tregs is associated with shorter

overall survival and poor prognosis in several tumors like breast

cancer or bladder cancer (110, 111).

The role of Th17 cells in tumors is like a coin with two sides,

on one side they impair the immune response to the tumor, and

on another side, they mediate anti-tumor immunity (112). More

specifically, Th17 cells are divided into two categories according

to whether they express CD5L (a regulator of lipid metabolism):

nonpathogenic Th17 cells (CD5L+) and pathogenic Th17 cells

(CD5L-). The former express immunosuppressive genes, while

the latter display pro-inflammation genes (113). The deletion of

CD5L remarkably reverses the function of Th17 cells by

controlling lipid metabolism. For instance, CD5L deficiency

leads to an elevated level of cholesterol ester and saturated

fatty acid (SFA), and eventually induces nonpathogenic Th17

into pathogenic Th17 (114). Obviously, lipids act as important

mediators in determining the phenotype and function of Th17

cells. In conclusion, changing lipid metabolism in T cell lines

targeting genes, transcriptional regulators, or SFA content may

become a potential strategy.

The regulation of lipid metabolism in T cells interacts with

PD-1/PD-L1 expression. PD-1 is the major contributor to hinder

tumor immune surveillance. High expression of PD-1 on cell

surface is partly responsible for the depletion of CD8+ cells

(115). Activation of PD-1 upregulates the expression of CPT1A

and fatty triglyceride lipase (ATGL) so that T cells prefer to

utilize FAO rather than glycolysis for energy supply (116, 117).

We can learn that PD-1 expression reinforce FAO in Teffs.

Interestingly, there is a study declaring that fenofibrate, a drug

increases FAO of Teff cells, can reverse the poor effects of PD-1

blockade treatment (118). Therefore, we hypothesize that the

enhancement of FAO at different levels might increase the PD-1

antibodies binding sites by increasing the expression of PD-1.
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The exact mechanism needs to be confirmed by abundant

experiments in the future.
Dendritic cells

DCs are the strongest antigen-presenting cells (119). DCs are

composed of four main subtypes: classical DCs 1 (cDC1s),

classical DCs 2 (cDC2s), plasmacytoid DCs (pDCs) and

monocyte-derived DCs (moDCs). In addition to antigen

presentation, another pivotal role of DC cells is to trigger the

activation of cytotoxic T cells. cDC1s mediate anti-tumor

immunity by activating cytotoxic CD8+ T cells, cDC2s activate

anti-tumor CD4+ T cells but this process is restricted by Tregs or

other immunosuppressive factors (120).

Even though the primary function of DC cells is inducing

anti-tumor immune response in TME, a series of research has

proved that the capability of anti-tumor of tumor-associated DC

cells (TADCs) was destroyed via lipid accumulation (Figure 2).

The augmentation of fatty acid synthesis relying on the ER and

Golgi body serves as a key regulatory factor of TADC activation

(121). High-rated FAS will eventually result in excessive lipids in

the cytoplasm of TADCs. Abnormal lipid accumulation prevents

the process of antigen-presenting and then weakens the tumor-

inhibiting effects (120).

Exposure to the tumor environment results in several

metabolic changes in TADCs. Firstly, TADCs overexpress the

scavenging receptor macrophage scavenger receptor 1 (Msr1)

that facilitates the perpetual uptake of fatty acids and cholesterol

in TME (122). Excessive lipids are a sign of ER stress and

oxidation damage because increased reactive oxygen species

(ROS) mediate lipid peroxidation (123). Afterwards, the

activation and cross-presentation to kill tumor cells are

impaired. We have already mentioned there are many

subtypes of DC cells, so grandly they possess distinct functions

and metabolic pathways. It would explain why the phenomenon

above was observed in cDC1 cells and cDC2 cells, but not in

pDC cells (119). Furthermore, the mechanism of lipid

peroxidation in TADCs to the ER stress response is mediated

by the inositol-requiring protein 1a (IRE-1a) and its targeting

X-box binding protein 1 (XBP1). XBP1 is regarded as the fuel of

tumorigenesis and tumor cell progression. In ovarian cancer and

triple-negative breast cancer, XBP1 is activated by the lipid

peroxidation byproducts and aggregated lipids to promote the

growth and dissemination of cancer cells (124). Therefore, the

authors have proved that blockade or silencing of XBP1 makes

TADCs regain the capability of immunostimulatory response

and restriction towards tumor.

This brings us to the next question, what is the mechanism

of excessive lipids driving these functional defects of TADCs?

The pivotal step of TADCs to exhibit anti-tumor effects is the

cross-presentation of tumoral antigens. Studies have established

that electrophilic oxidatively truncated (ox-tr) lipids, one of the
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components of lipid bodies (LB), mediate the aggregation of heat

shock protein 70 (HSP70) on the surface of large lipid droplets

and then result in the deficiency of cross-presentation. It means

that TADCs are unable to transport peptide MHC class I

(pMHC) complexes to the cell surface as normal (125). In

conclusion, modulating cross-presentation by reducing

intracellular lipid aggregation of TADCs might become a

potential therapeutic pathway. And there are experiments that

exactly did so, deletion of Atg5 (a key autophagy gene) in

dendritic cells increased CD36 expression and lipid

absorption, therefore, blocking CD36 in TADCs by regulating

Atg5 gene expression is a promising method to make a dent in

lipids surplus (126, 127).
Other immune cells

MDSCs have a powerful contribution to the formation of

the immunosuppressive microenvironment of tumor (128)

(Figure 2), which is controlled by several key factors like

arginase-1 (ARG-1), COX2, TGFb, iNOS, IL10 et al. But the

detailed mechanisms are not completely same in two categories

of MDSCs: polymorphonuclear (PMN-MDSCs) and

monocytic (M-MDSCs) (129). In advanced gastric cancer,

high content of MDSCs can be a conspicuous symbol of the

awful prognosis (130). Similar to TADCs, lipid accumulation

in cells also has a close relationship with MDSCs to achieve the

immunosuppressive microenvironment. Exposure to G-CSF

and GM-CSF secreted from tumor cells activates the STAT

signal pathway and then elevates FA uptake and FAO in tumor

infiltrating MDSCs (131). Continuous contact with exogenous

UFAs like oleate but not free FAs synthesized within cells

causes a regulatory phenotype induction in MDSCs and

suppresses cytotoxic T cells’ proliferation and immune

response (132). Exogenous lipids transporters like CD36,

Msr1 and FATP are highly expressed on the surface of

MDSCs to uptake lipids into cells and lead to a lipid-

overloaded situation. Thus CD36 deficiency can diminish the

useless lipid accumulation and immunosuppressive effect (9,

10). What’s more, previous studies have shown that FAO

maintains the synthesis and secretion of tumor-promoting

enzymes and cytokines, which is indispensable to the

suppressed function of MDSCs. Thus, blockade of FAO

wakens the Immune response tolerance mechanisms in

MDSCs, prevents tumor progression, and even boosts

adoptive T cells immunotherapy (131).

As a kind of cell easily underappreciated in tumor

immunosuppressive environment, tumor-associated natural

killer (TANK) cells have the important prognosis pertinence

of the interaction with lipid metabolism and tumor cells (133)

(Figure 2). In normal circumstances, NK cells express inhibitory

receptors (KIRs, killer-cell immunoglobulin-like receptors) and

activating receptors (NCRs, natural cytotoxicity receptors) on
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the surface, an appropriate proportion of them enables NK cells

to monitor tumor cells in circulation through recognizing

damage-associated molecular patterns (DAMPs) and

pathogen-associated patterns (PAMPs) (134). However, studies

in gastrointestinal cancer showed when NK cells infiltrate in the

TME, their anti-tumor function is damaged on account of the

unbalance between inhibitory and activating receptors (135).

And the more advanced the tumor stage is, the more completely

the function of TANK cells is destroyed.

One of the reasons accounts for the defects in TANK cells’

function and amount is that the immune checkpoint PD-1 high-

express on both intratumoral TANK cells and circulating NK

cells (136). It is possible that anti-PD-1 therapy can stop the

decline of NK cells. Another reason is that oxidative stress

caused by lipid peroxidation disrupts glucose metabolism and

homeostasis. Nrf2 is the major antioxidant factor to protect

TANKs from oxidative stress. Nrf2 agonist RTA-408 recovers

TANK cells’ glycolysis and function, maintaining the effective

lethality against tumor (137). Interestingly, with perioperative

immunology becoming an emerging field recently, researchers

suggested that tumor resection caused a postoperative lipid

accumulation in NK cells in mice having beared colorectal

cancer. This phenomenon is partially caused by gene

expression of scavenger receptors like CD36, CD38 and Msr1

(138). These changes of NK cells attenuate the removal of

residual tumor cells and increase the possibility of tumor

recurrence. Targeting these changes may have an auxiliary

effect after operations.
Sensitivity and efficiency of
combined immunotherapy and
targeted lipid metabolism therapy

Immunotherapy is defined as a kind of cancer treatment

strategy that enhances or restores immune function in the body

through a variety of methods, including immune checkpoint

blockade, adoptive T cell therapy, cancer vaccines and immune

stimulants (139). In our review, we mainly talk about anti-PD-1

treatment which plays an important role in tumor

immunotherapy. PD-1 is a well-known kind of inhibitory

immune checkpoints. A series of research demonstrated PD-1

is found to be highly expressed in most immune cells including

TAMs, T cells, DCs, NK cells and so on (98, 140–142). When

PD-1 on Teffs is combined with PD-L1 expressed on tumor cells,

the process will initiate the programmed cell death of T cells,

thus tumor cells attack the anti-tumor immune response of

activated T cells, achieving immune evasion. This is one of

the main mechanisms for the formation of tumor

immunosuppressive microenvironment. At present, PD-1/PD-

L1 inhibitors have shown promising therapeutic effects in

various cancers.
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Low-response to immunotherapy is the biggest obstacle of

immunotherapy and also the difficulty that must be broken

through to realize the progress of immunotherapy. This low

sensitivity is largely determined by the tumor cells themselves,

such as low antigenicity, activation of the WNT pathway or

MAPK pathway, inactivation of PTEN protein and the function

of CDK proteins (143, 144). The regulation of lipid metabolism

sometimes improves immunotherapy efficacy (Table 1) by

indirectly influencing these processes. For example, one reason

for low-sensitivity is the inactivation of the IFN-g pathway in

tumor cells. Teffs inhibit tumor cells by releasing IFN-g, and
tumor cells reduce Teffs by upregulating PD-L1 through IFN-

gR-JAK-STAT pathway (157). Targeted lipid metabolism

therapy promotes Teffs IFN-g production, thereby promoting

anti-PD-L1 therapy (153).

Moreover, lipid metabolites regulate immune checkpoints in

various aspects. A large number of toxic lipid metabolism

intermediates and by-products are produced and retained

during high-efficiency lipid metabolism in various immune

cells, which affect gene expression, transcription, modification

and activation of immune checkpoints (158). De novo fatty acid

synthesis promotes PD-1 expression in mature Tregs by protein

geranylgeranylation and elevates PD-L1 expression in breast

cancer by PD-L1 palmitoylation (108, 159). Considering that

anti-PD-1 therapy still performs poorly in several patients and

lipids play a pivotal role in immune cells’ function, the

combination of lipid metabolism targeted therapy and PD-1

inhibitors is a novel idea to break through the bottlenecks in

immunotherapy. Increasing research has proved that anti-PD-1
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drugs can combine the following lipid metabolism targets at

different levels to enhance anti-tumor immunity.

Treg cells are one of the most important members of

intratumor immune cells with immunosuppressive effects. So

blockade of lipid metabolism in Treg cells is the focus of research

nowadays. Diverse patterns inhibiting Treg cells improve anti-

tumor responses and prevent tumor metastasis (160, 161), but

non-selectively suppression of T cells can lead to accidental

damage of cytotoxic T cells and autoimmune caused by healthy

Treg cell defects (152). Therefore, how to accurately kill Treg

cells in tumors is a problem that needs to be solved at present.

This prompts us to seek different biomarkers or signaling

pathways between intratumoral Treg cells and normal T cells.

CD36 expression is up-regulated on the surface of both

Tregs and cytotoxic T cells. Blocking CD36 effectively suppresses

tumor growth (162) and prevents Tregs’ dysfunction. In a recent

experiment, inhibiting CD36 in intratumor Tregs by genetic

ablating or using CD36 monoclonal antibodies effectively retards

tumor growth and has an auxiliary effect for anti-PD-1

treatment (152). CD36 deletion decreased several immune

regulatory receptors’ expression but not PD-1, it could explain

why the therapeutic effect of PD-1 was not impaired.

Surprisingly, the body does not develop a severe autoimmune

response in this way. Other studies about CD36 showed the

over-expression of CD36 in intratumor effector T cells expose

them to oxidative damage and ferroptosis, and the combination

of anti-PD-1 therapy with inhibitors of CD36 or ferroptosis will

produce greater immunotherapeutic benefits (163). The main

reason why CD36 plays different roles in Tregs and effector T
TABLE 1 The combination of lipid metabolism targeted therapy and immunotherapy.

Lipid metabolism
targets

Metabolic
agents

Immunotherapy
combined

Immune
cells

Mechanisms References

FAO activator Bezafibrate Anti-PD-1 Teffs Increase FAO to prevent cell death caused by FAO inhibition
of anti-PD-1 therapy

(145–148)

ACAT1 inhibitor avasimibe CD19-CAR-T Teffs Block cholesterol esterification and facilitate TCR movement (149, 150)

cPLA2-a inhibition NA Adoptive T cell transfer
therapy

Teffs Prevent the dysfunction and senescence of Teffs (151)

CD36 inhibitor NA Anti-PD-1 Tregs Block fatty acid intake and Inhibit the up-regulation of CPT by
PD-1

(152)

FAO inhibitor etomoxir Adoptive T cell MDSCs Inhibit the infiltration of MDSCs and recruit the infiltration of
Teffs

(131)

FATP2 blockade Lipofermata Anti-PD-L1 MDSCs Up-regulate CD107a and reduce PD-L1 expression on tumor-
infiltrating CD8+ T cells

(153)

PIM1 inhibitor AZD1208 Anti-PD-L1 MDSCs Inhibit FA uptake and FAO in MDSCs to decrease MDSCs and
recruit Teffs

(154)

Arf1 ablation NA Anti-PD-L1 DCs Recruit and activate DCs and then increase Teffs’ infiltration (155)

HCK ablation NA Anti-CTLA-4, anti-PD-1,
anti-CD40

TAMs, DCs Transform TAMs and DCs into inflammatory endotypes and
recruit Teffs

(156)
fr
NA, not available.
FAO, fatty acid oxidation; PD-1, programmed cell death protein 1; Teffs, effective T cells; ACAT, acyl-CoA cholesterol acyltransferase; CAR-T, chimeric antigen receptor T cells; TCR, T cell
receptor; cPLA2-a, group IVA phospholipase A2; Tregs, regulatory T cells; CPT, carnitine palmitoyl transferase; MDSC, myeloid-derived suppressor cells; FATP, fatty acid transport
protein; PIM, proviral insertion in murine malignancies; DCs, dendritic cells; CTLA-4, cytotoxic T lymphocyte antigen 4; TAMs, tumor-associated macrophages.
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cells is that CD8+ T cells tend to rely on glycolysis for energy,

while CD4+ T cells tend to obtain energy through FAO and

OXPHOS in mitochondria (97). Therefore, Tregs promote

mitochondrial adaptation to survive, but effector T cells suffer

oxidative damage due to lipid accumulation (162).

We have mentioned above that FAS depends dreadfully on

SREBP cleavage active protein (SCAP)/SREBP signaling

pathway. Selectively block of this pathway to reduce FAS in

Treg cells delays tumor growth and development in B16

melanoma mice. Mechanically, IFN-g will be produced in

quantity after deleting SCAP, and some processes like

mevalonate metabolism and protein geranylgeranylation in

over-expression of PD-1 rely on SCAP/SREBP pathway (108).

In addition to the dysfunction of Treg cells, the decreased and

senescent cytotoxic T cell is another reason for tumor immune

evasion. Senescent and dysfunctional T cells exhibit aberrant lipid

metabolism and accumulation of lipids intracellularly. Scientists

found elevated expression of group IVA phospholipase A2

(cPLA2-a) in both tumor cells and Treg cells, which is closely

related to aging and lipid metabolism reprogramming in T cells

via MAPK and STAT signaling pathways. Furthermore, cPLA2a
inhibition prevents T cells from senescence and enhances

immunotherapy such as adoptive T cell transfer therapy (151).

Besides, using activator of FAO like bezafibrate could become an

adjuvant for anti-PD-1 therapy. And bezafibrate achieves that

mainly by facilitating the expression of CXCL9, CXCL10 from

tumor cells and CXCR3 on intratumor Teffs (145–147).

There have also been studies on drugs that target lipid

metabolism in other immune cells. The quantity of MDSCs is

positively correlated with the degree of malignancy of tumor and

the poor sensitivity of anti-PD-1 therapy. Combination of 5-

fluorouracil and oxaliplatin decreases the amount of infiltrating

MDSCs and then recruits CD8+ T cells in TME. However, there

exists a disadvantage that PD-L1 expression on tumor cells is

facilitated at the same time in this way (164). So it is necessary to

explore how to reduce the side effects when diminishing MDSCs.

The mechanism behind the connection between MDSCs and ICB

resistance is that the gene expressions of CD8+ T cells in sensitive

and insensitive patients are very different. CD8+ T cells in sensitive

patients express effective and stimulating genes like Fasl, Cd28,

G2mb, Tnfsf4, lcos Prf1, while in insensitive patients they express

inhibitory and exhausted genes like Pdcd1. Blockade of PIM1 (a

serine/threonine kinase) with drugs or genetic deletion inhibits FA

uptake and FAO in MDSCs through PPARg-mediated pathway,

which finally decreases the quantity of MDSCs, recruits CD8+ T

cells and ameliorate ICB resistance (154).

The removal of Arf1 (a mediator of lipid metabolism to

maintain the abundance of tumor stem cells) induces DC cell

activation and activated DC cells increase CD8+ T cells’ infiltration

to kill tumor cells. Mechanically, Arf1 ablation in tumor stem cells

induces mitochondrial disorder and the release of DAMPs, which

recruit and activate DCs at tumor sites. Therefore Arf1 ablation and

PD-1 blockade have a synergistic effect (155). Besides, another study
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has demonstrated that genetic ablation of myeloid-specific

hematopoietic cell kinase (HCK) boosts the therapeutic effect of

anti-CTLA-4, anti-PD-1 and anti-CD40 immunotherapy. The

deficiency of HCK transforms TAMs and DCs into inflammatory

endotypes and then recruits CD8+ T cells (156).

Nowadays, ferroptosis in tumor cells is an emerging field for

tumor treatment strategy. Ferroptosis, an iron-dependant

programmed cell death, is induced by lipid peroxides retention

and ROS (165). PKCbII-ACSL4 pathway is the main contributor

to inducing tumor ferroptosis through sensing and exaggerating

lipid peroxides. Ferroptosis is partially associated with

immunotherapy and patients with high ACSL4 display a high

sensitivity to anti-PD-1 therapy. So enhanced PKCbII-ACSL4
pathway can improve the efficacy of immunotherapy by

promoting ferroptosis (166). Consistently, there are a series of

experiments showing that manipulating ferroptosis in tumor

cells, such as low dose arachidonic acid (AA), inhibition of

CAMKK2 or AMPK-NRF2 pathway, inhibition of ALG3 et al.

(167–169), can boost the efficacy of anti-PD1 therapy.

In general, FAS and FAO are involved in many aspects of

tumor cells and immune cells, including energy acquisition, raw

materials of membrane structure, regulation of signaling pathways,

formation of the immunosuppressive microenvironment and

mediating ferroptosis. Manipulation of lipid metabolism at

different levels, such as regulating enzymes, transcription factors

or gene expression involved in lipid metabolism, can play a

synergistic role with ICB-induced anti-tumor immunotherapy.

The common mechanism of most combination therapy is the

recruitment and activation of CD8+ T cells. Moreover, some lipid

metabolism-related genes can predict the prognosis of anti-PD-1

therapy (170), which may alleviate the problem of low response

rates. In order to figure out the mechanisms or pathways involved

and improve the effectiveness and sensitivity of immunotherapy,

abundant experiments are needed to be warranted.
Conclusion and perspectives

The combination of lipid metabolism targets in either immune

cells or cancer cells therapy and ICB-induced immunotherapy

exhibits the potential to be a novel cancer treatment strategy.

This idea was put forward based on two facts. One is that the

inhibition of PD-1/PD-L1 therapy encounters the low-response rate

in certain patients, which is closely linked with the exhaustion of

CD8+ T cells, that’s why the major mechanism for many

combination therapies is recruitment and activation of Teffs. And

the other one is that lipid metabolism reprogramming not only

plays a vital role in immune cells and the formation of the

immunosuppressive microenvironment, but is also involved in

the expression of PD-1. Lipid metabolism reprogramming plays

contradictory roles in the immune microenvironment of tumors. In

situations of intense competition for nutrients, immune cells use

lipids as fuel to mount immune responses. Lipids and cholesterol
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regulate different immune cells cytotoxic effects, for example,

cholesterol enhances cytotoxic effects by restoring the IFN-g
production of iNKT cells. However, Excessive lipid accumulation

and LD formation damage T cells or DC cells and induce

macrophages and MDSC cells to differentiate into pro-tumor

subtypes (171). Although various preclinical trials of this

combination therapy achieve convincing and satisfactory results,

the systematic and comprehensive mechanisms of lipid metabolism

in coordinating anti-tumor or pro-tumor effects of distinct immune

cells are still not fully validated. Further, the pathway through which

alteration of lipid metabolism reverses the poor sensitivity of anti-

PD-1 also requires to be explored through more related

experiments. Take FAO as an example, increased FAO is a

double-edged sword. On one side, enhanced FAO promotes the

expression of PD-1 and polarization ofM2, which accelerates tumor

progression. On the other side, treatment increasing FAO boosts

the effect of anti-PD-1 therapy. So how to balance the level of lipid

metabolism manipulation, the specific mechanism and strategy

deserve further studies, this may become the novel breakthrough

encountering the obstacles of immunotherapy.
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