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Analysis of electromyographic (EMG) data is a cornerstone of research related to motor control in Parkinson’s disease. Nonlinear
EMG analysis tools have shown to be valuable, but analysis is often complex and interpretation of the data may be difficult.
A previously introduced algorithm (SYNERGOS) that provides a single index value based on simultaneous multiple muscle
activations (MMA) has been shown to be effective in detecting changes in EMG activation due to modifications of walking speeds
in healthy adults. In this study, we investigated if SYNERGOS detects MMA changes associated with both different walking speeds
and levodopa intake. Nine male Parkinsonian patients walked on a treadmill with increasing speed while on or off medication. We
collected EMG data and computed SYNERGOS indices and employed a restricted maximum likelihood linear mixed model to the
values. SYNERGOS was sensitive to neuromuscular modifications due to both alterations of gait speed and intake of levodopa. We
believe that the current experiment provides evidence for the potential value of SYNERGOS as a nonlinear tool in clinical settings,
by providing a single value index of MMA. This could help clinicians to evaluate the efficacy of interventions and treatments in
Parkinson’s disease in a simple manner.

1. Introduction

For many years, physiologists, physicians, and clinicians have
employed various techniques to understand how the brain
and, inmore general terms, the central nervous system (CNS)
control human movement. This complex system generates
different patterns of neuromuscular activity associated with
certain environmental conditions during performance of
various motor tasks [1–5]. In addition, it is well documented
that neuromuscular activities are altered by different factors
of physiological health or aging [6, 7]. A deep understanding
of the nervous system is necessary for adequate treatment of
impairments of the nervous system resulting fromneuromus-
cular disorders, for example, Parkinson’s disease [1, 2].

Surface electromyography (EMG) is a technique used
to investigate neuromuscular activity associated with move-
ment.The strategies bywhich theCNS controls humanmove-
ment can be revealed by studying the collective activation and
complex orchestration of motor units in response to changes
in external factors and internally generated movement goals
[8]. This approach is used extensively in basic research or in
clinical and rehabilitation settings, with the goal to evaluate
and monitor the state and responses of the neuromuscular
system in both healthy and pathological individuals [9–12].

It has been postulated that onemovement control strategy
used by the CNS is the activation of multiple muscles acting
in concert to achieve a specific movement [4, 5, 13, 14].
To investigate this strategy, it is essential to analyze EMG
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signals from multiple muscles simultaneously in order to
determine how neuromuscular activation characteristics are
modified under varying conditions. Traditional signal pro-
cessing analyses (i.e., EMG analyses) have shown diagnostic
responsiveness such as detecting neuromuscular fatigue but
may be limited in detection of multiple other physiological
characteristics and changes thereof [15]. This has likely
prevented investigators from detecting subtle but significant
changes in neuromuscular activities during initiation and
progression of neuromuscular disorders [16, 17]. For a better
understanding of symptoms of disease, earlier detection, or
the potentially subtle effects of treatments and interventions,
sophisticated nonlinear analysis tools are required.

In an earlier publication, we introduced a new analy-
sis technique (SYNERGOS) designed to quantify multiple
muscle coactivation (MMA) [18]. SYNERGOS is based on a
two-step method for assessing muscular multiple activation
quantification. The first step is using Recurrence Quantifi-
cation Analysis (RQA) to analyze the EMG signals of each
recorded muscle separately. The calculated percentage of
determinism (%DET) of the EMG signal obtained from each
muscle then serves as an input variable for the second step
of SYNERGOS in which the inputs are combined by an
algorithm that quantifies the level of MMA (Figure 1). A
major advantage of the algorithm is the simplicity of the
output, represented by a single value. A SYNERGOS index
of 100 represents the simultaneous activation of all measured
muscles at a theoretical maximum contraction level (100%).
Such a situation is extremely unlikely when considering any
voluntary contraction and is definitely not possible during a
dynamic movement, because absolute rigidity would prevent
any dynamic motor task. Lower values indicate less muscular
simultaneous activation and a less deterministic nature of
activation patterns.

Previously, we demonstrated that SYNERGOS is effective
in detecting changes in MMA induced by modifications
of task constraints (different walking and running speeds
on a treadmill) [18]. As shown in the earlier experiment,
changes in the quantity of SYNERGOS reflected changes in
the neuromuscular activity characteristics governed by the
CNS of healthy individuals, potentially to reduce the number
of degrees-of-freedom (DOF) used duringmotor task perfor-
mance. Monitoring the SYNERGOS indices provided a quick
and simple “snapshot” of the overall neuromuscular coordi-
nation and activity generated during a given movement.

As another step to investigate the potential of SYNERGOS
as a monitoring tool, it is necessary to test if the novel
technique is also sensitive to subtle changes of neuromuscular
activation, that is, the level of MMA, for example, in response
to pharmaceutical interventions in neuromuscular disease.
It is known that Parkinson’s disease affects movement and
gait patterns, due to the degeneration of motor areas in the
brain responsible for generation of coordinated, smooth, and
rhythmic motor patterns. However, levodopa intake alters
these patterns, as evidenced by biomechanical analysis of gait
[19].

Thus, we designed an experiment to investigate the
responsiveness of the SYNERGOS algorithm to the changes
in neuromuscular activities in individuals with Parkinson’s
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Figure 1: The schematic view of the SYNERGOS algorithm. EMG
signals are analyzed using the RQA, and the output for each
muscle, %DET, is imported into the SYNERGOS algorithm, which
eventually provides a single scalar index representing the state of
MMA.

disease after levodopa intake, during treadmill walking with
increasing speed. We hypothesized that increasing walking
speeds with or without levodopa would be reflected in
SYNERGOS as an increase in the index, indicating increased
activation of multiple muscles. Further, we hypothesized
that levodopa would be associated with a decrease in the
SYNERGOS index relative to the no levodopa conditions
across the increasing walking speeds, reflecting a more
efficient MMA strategy in patients due to lowering the
level of simultaneous muscle activities. These findings would
demonstrate the potential of the SYNERGOS index to serve
as a screening tool for the evaluation of the therapeutic
interventions in individuals with neuromuscular disorders or
those in rehabilitation settings.

2. Methods

Nine men diagnosed with Parkinson’s disease participated
in this study (Table 1). The subjects were recruited based on
three inclusion criteria: (1) a certified neurologist specialized
in movement neuromuscular disorders diagnosed the idio-
pathic Parkinson’s disease; (2) the participant was receiving
oral anti-Parkinsonian medications; (3) the participant was
required to be able to independently walk and be in the
early stages of Parkinson’s disease, as defined by stages 2
to 3 of the Hoehn and Yahr scale [20]. This study was
conducted in compliance with all the regulations of the
University of Houston and Baylor College of Medicine and
was approved by the Committees for the Protection of
Human Subjects (CPHS) at theUniversity ofHouston and the
Institutional Research Board of Baylor College of Medicine.
All participants were adequately provided with instructions
to understand the test protocols, risks, and benefits, and
written consent was obtained from each participant prior to
the start of data collection.

2.1. Apparatus. All walking experiments were conducted on
a motorized treadmill (Biodex Medical Systems Inc., RTM
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Table 1: Subjects’ initial measurements.

Age (years) Height (meters) Mass (kg) Walking speed (m/s) UPDRS III score∗ Hoehn and Yahr stage∗∗

76 ± 6 1.7 ± 0.1 71.9 ± 12 0.62 ± 0.4 28.6 ± 4.6 2.8 ± 0.7

∗Measured after the participants took medication.
∗∗Measured prior to medication intake.

Front Back

(a) (b)

Figure 2: Position of the EMG electrodes on the front of the right
leg (a) and back of the right leg (b). Muscle activity was measured at
the rectus femoris (RF), vastusmedialis (VM), tibialis anterior (TA),
biceps femoris (BF), lateral gastrocnemius (GA), and soleus (SO) of
the right leg.

4000, Shirley, NY). EMG signals were collected using six
preamplifier bipolar active electrodes (EMG preamplifier
SX230, Biometrics Ltd., Gwent, UK) with a fixed electrode
distance of 20mm placed on specific muscles of the right leg
(Figure 2), affixed with double-sided tape and athletic wraps.
The electrodes were connected to a DataLINKDLK900 base-
unit (Biometrics Ltd., Gwent, UK) of the EMG acquisition
system which was connected to a personal computer using
a Universal Serial Bus (USB) cable. To achieve acceptable
impedance level, the skin over the location of each electrode
was shaved and cleaned with alcohol swabs. EMG data were
collected at 1000Hz and passed through an amplifier with the
gain set at 1000.The amplification bandwidth was 20–460Hz
(input impedance = 100MΩ, common mode rejection ratio
>96 dB (∼110 dB) at 60Hz). A reference electrode was placed
above the right lateral malleolus bone and was secured with
elastic wrap and tapes. During the collection session, the
electrodes were not removed from the subjects until data
collection was completed.

A 6-camera Vicon motion capture device (Oxford Met-
rics, Oxford, UK) was used to collect three-dimensional
kinematic data from reflective markers that are placed on the
right hip, knee, ankle, heel, and toe at 120Hz to identify gait
cycles (gait events) by detecting the position/point-in-time of
each heel strike (i.e., right foot heel strike to the next right heel

Figure 3: Reflective markers were placed on the hip, knee, ankle,
heel, and toe (modified) to calculate the heel contact. In addition,
EMG sensors were located on the right rectus femoris, tibialis
anterior, lateral gastrocnemius, soleus, vastus medialis, and biceps
femoris, and two workout wraps were used to stabilize the EMG
sensors during faster gait speed.The subjects were instructed to hold
the safety bar installed on the treadmill to avoid excessive anterior-
posterior movements.

strike). Heel strikes were defined at the point of the maximal
anterior position of the heel marker during each gait cycle
[19]. Kinematic markers were located on the hip, knee, ankle,
heel, and toe. An electronic trigger was used to synchronize
EMG and kinematic data and to identify the times at which
treadmill speed increased (Figure 3). In this study, we only
utilized the kinematics data collected from the heel marker
to detect the changes in gait pattern and identify each gait
cycle. Identification of gait cycles is required to calculate the
SYNERGOS index as the EMG signals collected during the
study are selected for each gait cycle (EMGbins) and the RQA
was conducted on each bin of data and the outcomes were
combined by the use of SYNERGOS algorithm.

2.2. Protocol. The experiment was conducted during a single
collection session at the Laboratory of Integrated Physiology
located at the University of Houston. All subjects underwent
an initial interview and assessment. The participants had not
taken levodopa at least eight hours prior to participating in
this study “off medication”. At the outset of the protocol,
the participants were instructed to choose a comfortable
walking speed they felt was sustainable for up to two min-
utes and closely approximated their walking pace during
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“community-based” activities [19]. The choice of this “com-
fortable” gait speed was identified over a range of speeds by
changing the treadmill speed several times until the individ-
ual identified their unique self-selected speed. Participants
then rested for five minutes. The initial walking speed was
used as the starting treadmill speed during the “off” and “on”
states of levodopa. The experiment started with the subject
walking at the previous speed, which was then increased by
0.045m/s every five strides. Participants were instructed to
continue walking until they felt uncomfortable continuing
or up to a maximum of 180 seconds. Participants then
immediately took their Levodopa medication and rested for
45 minutes before repeating the protocol for the second trial,
the “on-medication” condition.

2.3. Data Processing. EMG and kinematic data were analyzed
using a customizedMatlab script (Mathworks, USA R2010b).
An initial surrogate testing was conducted according to
methods presented elsewhere, to justify the use of RQA as a
nonlinear tool in this experiment [18, 21–23]. Data processing
via the SYNERGOS algorithm was conducted according to
mathematical formulations described previously [18]. The
calculated %DET of the EMG signal obtained from each
muscle was used for computation of a single MMA value
as generated by applying the SYNERGOS algorithm. The
obtained single scalar value based on this processing tech-
nique indicates the overall activity among the set of multiple
muscles and was used for subsequent statistical analysis.

2.4. Statistical Analysis. To analyze the efficiency of the
SYNERGOS to detect the changes in MMA associated
with levodopa intake (i.e., “off” or “on” state of levodopa)
and changing gait speed, a restricted maximum likelihood
linear mixed model was employed. The model included
three fixed effects—speed, medication (“off” or “on”), and
speed-by-medication interaction—and two random effects—
subjects and measurement error (i.e., random within-subject
variation). Although this analytical approach accounts for
dependency, resulting from multiple measures within each
subject similar to repeated-measures analysis of variance, it
does not require equality in the number of measures for each
subject. As each individual initiated the walking with their
self-selected walking speed (different between the subjects)
and finished the protocol when they felt uncomfortable con-
tinuing (different between subjects), the number of measures
(i.e., gait speed increments) from each subject was different.
The fixed effects were used to test the experiment hypotheses.
The significance level was set at 𝑝 ≤ 0.05, and analysis was
conducted using SPSS 17.0.1 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Surrogate Testing. Three surrogate testing algorithms
were applied to each muscle within each gait cycle to justify
the use of RQA in the EMG analysis for both conditions
(i.e., off-medication and on-medication). These algorithms

Table 2: The mean and standard deviation (SD) of the SYNERGOS
index during off- and on-medication conditions.

Average SD
Off 23.74 9.17
On 20.86 9.44

were based on (1) time shuffled surrogate testing (2) Fourier
transform (FT), and (3) iterated amplitude adjusted Fourier
transform surrogate testing (IAAFT). Results of the surrogate
procedures for the condition in which the participants were
off medication and after they were medicated were tested
for potential differences. Under both conditions, the null
hypothesis was rejected by reaching a discriminant statistic of
more than 2 (𝜑 > 2 and 𝑝 < 5%).These results indicated that
a more complex nonlinear pattern did indeed exist in EMG
signals collected from the individuals, thereby justifying the
use of RQA to investigate the changes in the signals.

The tibialis anterior acts as the primary ankle dorsiflexor.
At heel contact, the ankle is positioned in a neutral or
minimal plantar flexed angle (3 to 5 degrees). The plantar
flexion ankle angle increases after heel contact, hence the
reduction in TA activation. The neuromuscular activities of
the TA increase from the midstance position throughout the
terminal stance, resulting in ankle dorsiflexion. This pattern
is shown in Figure 4(a) and the recurrence plot of the signal
in which the deterministic patterns are shown is depicted in
Figure 4(b). The shuffled EMG signal is shown in Figure 4(c)
and the corresponding recurrent plot in Figure 4(d). The
randomization of the signal resulted in scattered points
within the recurrent plot; this did not demonstrate any spe-
cific pattern. The shuffling process destroyed the underlying
pattern of the original signal. These outcomes indicate that
indeed the use of higher order analysis such as RQA might
be valuable to reveal nonlinear patterns embedded in the
collected EMG signals.

3.2. SYNERGOS Analysis. The overall SYNERGOS index
across all individuals and speeds whether on or off medi-
cation was 22.14 ± 9.42 (mean ± standard deviation). Data
is summarized in Table 2. The assumption of normality
was checked for the SYNERGOS indices calculated during
off- and on-medication conditions using the Kolmogorov-
Smirnov test. The SYNERGOS indices during both condi-
tions demonstrated a normal distribution (off medication:
𝐷(151) = .047, 𝑝 = 0.20, and on medication 𝐷(189) = 0.06,
𝑝 = 0.097).

The medication intake significantly reduced the overall
MMA quantified by SYNERGOS value, 𝐹(1, 255.11) = 13.834,
𝑝 < 0.001, hence confirming the hypothesis of this experi-
ment that the algorithm was able to detect subtle changes in
the MMA due to levodopa intake.

The outcome suggests that collective overall activity of
the monitored muscles was decreased during on-medication
condition when compared to the same subjects when per-
forming the task while “off” medication. Additionally, the
SYNERGOS index was able to reflect the subtle changes in
MMA associated with a slight increase in walking speed (i.e.,
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Figure 4: Neuromuscular activity of tibialis anterior (TA) muscle during a gait cycle depicted by EMG activity. (a) TA is active during the
initial phase of gait cycle (heel contact), with a reduction of activity towards the plantar flexion position. From the midstance toward the
terminal stance, the dorsiflexion of ankle is managed by higher activity of TA.The recurrence plots (RP) generated based on the original data
are shown in graph (b) indicating the existence of a specific pattern in TA activity during the gait cycle. This pattern is depicted by several
recurrent points located along particular diagonal lines which are parallel to the main diagonal line. The outcome of the RQA also verified
the existence of the aforementioned pattern (%REC = 1.93, %DET = 34.80, radius = 1.92 (maximum scale), and ApEn = 0.63). (c) contains the
randomized shuffled data of the signal shown in (a); (d) is the RP of the randomized signal which shows no significant determinism in the
shuffled data. The time delayed dimensional data in RP are randomly scattered around the main diagonal line and the recurrent points are
positioned along very short length. In addition, the outcome of RQA has shown significant reduction in determinism in the randomized data
(%REC = 0.44, %DET ≅ 0, radius = 1.92 (maximum scale), and ApEn = 1.93). The significant drop in the determinism of the signal detected
by decreasing %DET and increasing ApEn verified the nonlinear dynamics of the collected EMG signal.

increase of 0.045m/s, 𝐹(40, 255.091) = 13.834, 𝑝 < 0.001), as
shown in Figure 5.

The interaction effect of gait speed andmedication intake
was not significant, 𝐹(34, 255.017) = 48.075, 𝑝 > 0.05,
indicating the consistent behavior of the SYNERGOS index
in detecting changes in the state of MMA during different
pharmaceutical conditions.

4. Discussion

In this experiment, SYNERGOS was used to investigate the
changes in the overall neuromuscular activation of individu-
als with Parkinson’s disease in response to medication intake
and walking speed. The premise of SYNERGOS is that it
eventually can be used as a reliable and valid assessment
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Figure 5: The mean values of the SYNERGOS indices were com-
pared while on and off medication, during which lower MMA is
associated with medication intake.

algorithm in clinical settings to monitor the changes in
MMA over time or as a screening tool to identify potential
neuromuscular abnormalities early in the progression of a
disease state.

The SYNERGOS algorithm detected a significant change
in the quantified MMA after levodopa intake as indicated by
lower SYNERGOS indices.The changes in the biomechanical
aspects of the movement (i.e., more regularity of lower
extremity [19]) suggested that these individuals employed
different control strategies resulting in reduced MMA after
medication intake.Thismay be due to the fact that less overall
neuromuscular activities were recorded by EMG in each
epoch (i.e., gait cycle) after medication intake. It is suggested
that, in patients with Parkinson’s disease, the reciprocal
inhibition at the level of the spinal cord is compromised.
During each movement, disynaptic Ia reciprocal inhibition
function is to actively inhibit the antagonist motor neurons
while reducing the inhibition of the agonists motor neurons.
Parkinson’s disease causes abnormalities in the function of
disynaptic Ia reciprocal, hence resulting in the higher level
of coactivation of agonist and antagonist muscles which
ultimately thus increase the level of MMA in the Parkinson’s
disease individuals [24] which may lead to freezing gait
and movement rigidity. Levodopa however is prescribed to
overcome these symptoms by reducing the overall coactivity
of the muscles, hence resulting in more optimal movement
pattern.The current results suggest that Levodopamay in fact
increase reciprocal inhibition and therefore decreases overall
MMA.

During this experiment, participants performed a tread-
mill walking regimen in which the gait speed increased
every five strides. The outcome indicated that the small
changes in overall neuromuscular activities as a result of

subtle change in the kinematics of the movement (i.e., gait
speed) were reliably detected by the SYNERGOS algorithm.
Previous studies have indicated that the stability of the
human body decreases during higher gait speed which might
be correlated with higher risk of fall and injury [25–27].
Muscular cocontraction is a strategy used to stiffen the joints
resulting in the reduction of kinematic degrees of freedom
to enhance stability during dynamic movements that may
threaten postural stability [28]. During faster movements
kinematics (velocity and accelerations) and kinetics (i.e.,
forces, torque, and momentum) parameters are altered at
higher rates; therefore, a more reliable postural/movement
strategy is required to ensure relatively quicker response to
the variations imposed on the stability of the system.Thus, to
compensate for the required energy and balance to provide
moremovement stability during faster gait, the CNS activates
a higher number of motor units resulting in a higher level of
MMA. Increasing SYNERGOS indices are compatible with
the aforementioned observation of themotor control strategy.

There are some limitations to this study. Although SYN-
ERGOS enables simplicity of EMG analysis for clinical mea-
surement and monitoring, there is a trade-off with respect to
some temporal aspects of muscular activation. To perform
SYNERGOS analysis, epochs of signals (i.e., signals that are
obtained from a specific cycle, such as gait cycle or squat
cycle) are used; therefore, each SYNERGOS index represents
an estimation of MMA during a specific epoch. This unit
has less time resolution compared to the actual data. For
example, if the EMG signals are collected at 1000Hz, the data
contains 1000 data points per second. If we assume an epoch
with the length of one second, then only one SYNERGOS
index representing all detectable muscle activation can be
derived during that epoch. Although this process simplifies
and reduces the amount of data to be monitored, it also
limits the time resolution of the SYNERGOS index (e.g.,
1000 samples versus 1 sample). However, this issue may
provide the opportunity to record and store EMG signals
for a much longer time without facing physical memory
storage challenges. This will be valuable in longitudinal
studies requiring data recording over a long period of time.

Additionally, in our experiment, participants were
instructed to hold on to safety bars to further control their
balance during the protocol. This might have added a
systematic error to the results as the levodopa intake would
change the overall neuromuscular activities in both the lower
and the upper limbs. In this experiment, we did not measure
the neuromuscular activities of the upper body; hence, it is
impossible to draw a conclusion about the exact effect of the
contribution of the upper body muscles to the changes in the
neuromuscular activities of the lower body muscles while
on and off medication. Although SYNERGOS was capable
of detecting the significant decrease in MMA after levodopa
intake, the results might have been altered systematically
as the upper body control strategies were altered between
the two conditions (off versus on medication). Finally, in
our study we focused on the biomechanical aspects of the
changes in the body in response to levodopa intake. The
UPDRS score was assessed only after medication intake and
we did not assess the score prior to levodopa intake. Future
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studies may be conducted aiming at gait characteristics and
neuromuscular activation patterns when participants are
secured via a harness not requiring additional handle bars.

5. Conclusion

In this experiment, we demonstrated significant changes in
multiple muscle activation among individuals with Parkin-
son’s disease in response to levodopa and changes in walking
speed, assessed by SYNERGOS indices. The responsiveness,
consistency, and simplicity of monitoring of SYNERGOS
values indicate potential applicability of this algorithm in
clinical settings to assess changes in the overall neuromuscu-
lar activity in individuals with Parkinson’s disease as a result
of therapeutic interventions.
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