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Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential

to investigate development, toxicity, as well as genetic and infectious disease in ways

currently limited by the availability of primary tissue. With the added advantage of patient

specificity, which can play a role in all of these areas. Many iPSC differentiation protocols

focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of

more closely mimicking in vivo systems including; the formation of tissue like architecture

and interactions/crosstalk between different cell types. Ultimately such models have the

potential to be used clinically and either with or more aptly, in place of animal models.

Along with the development of organotypic and micro-tissue models, there will be a need

to co-develop imaging technologies to enable their visualization. A variety of liver models

termed “organoids” have been reported in the literature ranging from simple spheres or

cysts of a single cell type, usually hepatocytes, to those containing multiple cell types

combined during the differentiation process such as hepatic stellate cells, endothelial

cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These

allow specific functions or readouts to be examined such as drug metabolism, protein

secretion or an improved phenotype, but because of their relative simplicity they lack

the flexibility and general applicability of ex vivo tissue culture. In the liver field these are

more often constructed rather than developed together organotypically as seen in other

organoid models such as brain, kidney, lung and intestine. Having access to organotypic

liver like surrogates containingmultiple cell types with in vivo like interactions/architecture,

would provide vastly improved models for disease, toxicity and drug development,

combining disciplines such as microfluidic chip technology with organoids and ultimately

paving the way to new therapies.
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INTRODUCTION

Organoids are in vitro cellular systems that self-organize through
mechanisms similar to in vivo, they recapitulate the structure
and in many cases the function of the in vivo tissue in question,
ultimately providing utility in both the clinical and basic research
arenas (1, 2). An ever-expanding number of examples of organoid
models that have been derived from both adult primary cells
and pluripotent stem cells (PSCs) (3, 4). In this review we will
focus on the recent developments in liver based organoid models
from iPSCs, highlighting both potential and limitations, with
a brief comparisons to other areas of the organoid field. An
advantage of deriving organoids from primary material is that
the starting material can be sourced with the desired phenotype
and functional maturity, this being a limitations of PSC derived
progeny which tend to have mixed fetal/adult features (5, 6).
However, access to primary tissue still remains a fundamental
barrier, especially with respect to organs where invasive surgery
is required for sampling. Thus, giving credence to the utilization
of PSCs, as the attributes of both pluripotency and self-renewal
provide a solution to the dearth of primary material albeit with
the above limitations.

Some examples of the potential myriad uses for discrete
in vitro tissue units include model systems for both disease
and development. In contrast to current monolayer models a
successfully differentiated organoid can mimic the multicellular
complexity and 3D architecture that provides normal organ
function including cell to cell and cell to ECM interactions
(7–9). Both toxicity and drug development are areas requiring
improved hepatic models. The liver is the primary site of
xenobiotic metabolism and hepatotoxicity is a leading cause
of drug development failure (10). Here organoids can offer a
potential advantage over non-humanmodels as they can examine
species-specific effects with the aim of reducing or replacing
the animal models currently used, importantly addressing
potential species differences. In fact the U.S. Environmental
Protection Agency announced plans to end the use of dogs,
mice, rabbits, and other mammals for chemical and pesticide
testing by 2035 (https://www.epa.gov/research/administrator-
memo-prioritizing-efforts-reduce-animal-testing-september-
10-2019). This carries with it obvious ethical advantages related
to animal welfare as well as offering better translation to clinical
trials and removing key physiological species differences in
terms of expression of drug metabolizing enzymes such as the
cytochrome P450s (CYP450s) (11). Here too is an area where
the use of iPSC technology could find a particular niche. For
example, the genes encoding the CYP450 enzymes are sites
of genetic variability within human populations leading to a
spectrum of phenotypes from ultrafast-metabolizers to poor
metabolism of certain drugs and compounds (12). For example
CYP450 2D6 converts codeine to morphine, pain relief may be
minimal for a poor metabolizer while an ultra-rapid metabolizers
administered a “normal dose” could lead to a life threatening
overdose of morphine (13). Differentiating organoids from iPSCs
derived from these different populations would potentially allow
for a more “personalized” use of current drug regimes and the
ability to better target future drug development. Extending this

further, iPSC derived organoids could offer highly personalized
patient specific drug testing. Similarly these techniques can be
used to model genetic disease in an organ specific manner using
iPSCs derived from donors of a certain genotype to generate
the required organoids or by introducing the genetic lesions
into control iPSCs, using genome editing approaches such
as clustered regularly interspaced short palindromic repeats
(CRISPR) (14, 15).

Further developments could allow organoids to play a role
in regenerative medicine with the ultimate goal of providing
transplantable organs or be used to seed bio-artificial liver
devices, analogous to kidney dialysis machines, or form the
active functional unit of an implantable device, thereby providing
temporary function allowing the livers highly regenerative
capacity to repair itself by relieving the burden (16). Current
organoid systems tend to be carried out at the lab scale, which
is not in alignment with the above requirement of massive
amounts of organoids. Some groups have addressed this issue
and have moved to scaling the process (17). This goal however
is severely hampered by being prohibitively expensive to produce
the required numbers of organoids, due to the heavy reliance
of recombinant growth factors. Further considerations in this
area include the need to develop human sized individual units of
tissue, as demonstrated with heart sheets (18), and the associated
requirement for oxygen, nutrients, and vascularization (either
artificial or cell based) these larger units would necessitate, as
current protocols tend to generate organoids at the micrometer
scale. Tissue engineering techniques can be envisioned using
organoids as the fundamental building blocks to construct bigger
organs, combined with the use of ECM and/or biomaterials as
scaffolds. Another area gaining momentum is “Organ-on-Chip”
technology, combining organoid technology with the control
and automation possible with chip-based technology (19, 20).
Also providing a platform to both characterize and analyse the
organoids function in an “online” format, allowing individual
tissue types (organoids) to be grown in the same systems
facilitating the construction of more complex models.

The following review will provide an overview of liver
development and architecture and how current organoid models
have been developed, with in vivo development in mind. In
addition, why there is a necessity for these models, highlighting
current model limitations, also we will cover current application
of organotypic approaches in disease modeling. Finally we will
address the status of optical imaging approaches to visualize
large 3D structures. However, we will primarily focus on liver
organoid models and will not describe the other tissue models
that are available, but one can explore some examples of different
organoid models in the following reviews (3, 21–24).

MAIN

Liver Development and Architecture
In vitro protocols for differentiating PSCs to hepatic cells rely on
prior knowledge of how a liver develops during embryogenesis.
Beginning with the formation of the three germ layers which
occurs during gastrulation, the definitive endoderm (DE) arises
via an epithelial to mesenchymal transition (EMT) at the anterior
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of the primitive streak in response to WNT and Nodal signaling
(25–27). The DE then folds to form the gut tube (28) of
which, the ventral foregut is the site of hepatogenesis (29,
30). Hepatic specification is induced by signaling from two
adjacent mesodermal sources the cardiac mesoderm and the
septum transversum mesenchyme (STM) (31–33), leading to the
formation of hepatoblasts, which are a bipotent cell type that give
rise to the parenchymal cells of the liver, namely the hepatocytes
and cholangiocytes (34, 35). On formation of the liver bud, it
is colonized by hematopoietic cells that produce the cytokine,
oncostatin M (OSM) which along with glucocorticoid hormones,
HGF and Wnt, drive liver maturation (36), this process of
maturation continues throughout the postnatal period (37).

The apical surfaces of adjacent hepatocytes form channels
known as canaliculi. Bile acids, produced from cholesterol in
the hepatocytes, are secreted into the canaliculi (38). The biliary
system contains both intra- and extra-hepatic structures both
lined with cholangiocytes. The biliary epithelial cells (BECs) of
the intra-hepatic bile ducts (IHBD) make up ∼3% of the adult
liver cell population (39) and drain the canaliculi. Bile flows from
the IHBDs of the liver lobes into the hepatic duct, then to the
gallbladder in the cystic duct, and finally to the gut through the
common bile duct, see Figure 1 (40). Portal vein branches are
the sites of IHBD formation, which occurs in several distinct
stages. First the hepatoblasts adjacent to the portal mesenchyme
differentiate to cholangiocytes, forming rings around the portal
vein known as the ductal plate (40–42). The ductal plate then
becomes bilayered due to lumen formation at discrete locations
between the cholangiocytes and their adjacent hepatoblasts,
resulting in asymmetrical ductal structures (43). The lumen
surrounding the hepatoblasts differentiate to cholangiocytes,
while the remaining ductal plate cells lose their cholangiocyte
markers. The ducts mature sequentially along a radial axis as well
as on an axis that runs in their direction of growth from the hilum
to the periphery of the liver (43, 44).

As well as endoderm derived hepatocytes and cholangiocytes
of the parenchyma, the liver contains a mesodermal derived
population. The development of the liver requires interactions
between the germ layers from the earliest stages and the
mesodermal cell types are later incorporated giving rise to the
stromal cells of the adult liver, which have crucial functional
roles. During human development hepatic specification of the
foregut endoderm has occurred by 4 weeks post conception
(wpc), with invasion of the adjacent STM at 5 wpc (45, 46).
This event mixes the endoderm and mesoderm lineage cells of
the liver, with the STM trapped between the growing cords of
hepatoblasts (46). The cells of STMwill become themesenchymal
cells of the adult liver, the vasculature of the STM gives rise
to the sinusoids of the liver, which then further develop by
angiogenesis (45, 47, 48). The stromal cells have been shown
to interact with other hepatic cell types, for example hepatic
stellate cells (HSCs) express HGF (49), interacting with β-
catenin, promoting hepatocyte proliferation. The STM derived
liver mesenchyme further differentiates forming both transient
and adult liver cell types; the mesothelial cells (MCs), sub-MCs,
HSCs and myofibroblasts (50). HSCs are found between the liver
sinusoidal epithelial cells (LSECs) and the hepatocytes in the

space of Disse (51). HSCs are also characterized by their ability
to store vitamin A and long dendritic processes that extend along
the sinusoid (52).

Blood enters the liver from both the portal vein and hepatic
artery, and flows out through the central vein (53, 54), connecting
the two are the hepatic sinusoids a microvasculature system
specific to the liver. Vasculogenesis of endothelial cell (EC)
precursors within the STM leads to the formation of capillaries
that later form the LSECs (47, 48). The LSECs line the sinusoid
and interface the circulation with hepatocytes. They are highly
endocytotic (55) and involved in both development (56) and
regeneration (57) of the liver. In the adult liver LSECs make
up 2.5% of the parenchyma, surrounding the single cell cords
of hepatocytes on their basolateral surface and found in close
association with the HSCs (39). After acquisition of a fenestrated
phenotype LSECs remain distinct from other endothelial cell
types found within the liver, with features such as a minimal
basement membrane, loose cell junctions, close association
with Kupffer cells and open fenestrations arranged in sieve
plates (54, 58). These features allow the transfer of large
molecules between the hepatocytes and the bloodstream such
as hormones and albumin (39). Functional heterogeneity is
observed within the liver parenchyma due to zonal expression of
hepatocyte specific genes relative to their position on a portal-
central axis, this zonation is also seen in the endothelial cell
population (59). An overview of liver architecture is presented
in Figure 1.

The Need for Hepatocytes/Liver Cells?
The utility of liver cell types is hampered by the overarching
shortage of primary material, as high quality liver tissue is ear-
marked for transplantation purposes where possible, leaving
less optimal samples for research use. This is compounded
by recent advances, which have increased the pool of viable
tissue for transplantation (60, 61). Further difficulties in using,
or even benchmarking to, primary cells include the rapid loss
of function of hepatocytes and other hepatic cell types during
in vitro culture, particularly in monolayer (58, 62), as well as
limited proliferation potential of HSCs, combined with loss of
their quiescent state in vitro (63, 64). This is in addition to the
much greater loss that is seen when comparing isolated cells
to whole in vivo tissue activity (65) which makes a broader
point about the effectiveness of models composed of dismantled
individual parts of a whole system. However, this loss of in
vivo function and activity, combined with shortage of material,
means that even a simple monolayer, single cell type model
that can recapitulate features of in vivo function would be
greatly in demand to replace current systems based on cancer
cell lines with limited function such as HepG2 and HepaRG
(66). This is also the case for HSC cell lines, which have an
activated phenotype and also limited function (67, 68). All of
which drives the need for more representative tissue models.
To that end there has been a “tour de force” by the stem
cell field to produce surrogates of the above using human
pluripotent stem cell (hPSC) approaches, these will be expanded
upon below.
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FIGURE 1 | Shows the structural organization of the liver at different scales. The two lobes of the liver consist of hexagonal units known as lobules, these consist of a

central vein surrounded by portal triads resulting in an axis, referred to as liver zonation, along which hepatocyte and sinusoidal function varies. The portal triads

consist of mesenchymal cells surrounding the portal vein (PV), hepatic artery (HA), and the cholangiocyte lined intra-hepatic bile ducts (IBD). These are joined to the

hepatic canaliculi by the Canals of Hering. The microvasculature of the liver, known as the sinusoid, interfaces the blood supply with the hepatocytes and is also the

location of the hepatic stellate cells and Kupffer cells.

The Rational of Differentiation Protocols
iPSC derived organoid models tend to build on protocols first
developed for monolayer differentiation with the additional use
of extracellular matrices (ECMs), and/or suspension culture
to achieve 3D growth. A rational for differentiating PSCs to
specific cell type is to mimic the developmental pathway of the
desired cell type. Based on developmental studies, the formation
of the required cell type can be broken down into discreet
stages (though a continuous process) characterized by specific
expression patterns. Using this information we can mimic these
stages in a spatial-temporal manner in vitro, by the addition
of growth factors, which has proven an effective process as
evidenced by the stepwise differentiation of pancreatic cells
through an endoderm stage (69, 70). This rational applied
to monolayer hepatocyte differentiation from hPSCs results in
shared features between many different groups’ protocols (71–
75). These methods can result in relatively pure populations of
hepatocytes but with the caveat that they more closely match a
fetal rather than adult phenotype (6). However, in the context
of scaling the high cost of recombinant growth factors makes

these approaches prohibitive. To address this, a number of groups
have explored small molecules to act as growth factor surrogates.
For example in the hepatocyte field a number of protocols have
now been published that are as equally effective as their growth
factor counterparts (76–78), although still less widely used. The
power of producing hepatocyte like cells (HLCs) from patient
derived hiPSCs, allows one to model or phenotypically reproduce
genetic disorders, in the liver field a number of diseases have been
investigated such as glycogen storage disease, alpha-1-antitrypsin
deficiency, and familial hypercholesterolemia to name a few (79–
81). For an overview of human iPSC disease models see Siller
et al. (82). In addition with the emergence of genome editing and
gene therapy approaches, there is the potential to correct these
disorders (83, 84) both in vitro and in vivo.

Moving to a 3D culture format offers potential advantages.
In vivo the polarity of hepatocytes and their arrangement with
ECs and BECs in a 3D architecture are necessary for both the
endocrine and exocrine functions of the liver (39). To fully
recapitulate liver physiology and function using hPSCs may
require a mixed population of hepatic cells, which exhibit the
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correct polarity and arrangement in a 3D context. Additionally,
3D culture techniques have been shown to support primary
hepatocytes in a differentiated state (85) for extended periods
as compared to monolayer culture (62) and may offer the same
advantages to hPSC models.

Organoids—A Definition and Examples
In the literature there are a variety of 3D culture systems loosely
termed “organoids,” some are distinctly organotypic; by virtue
of complexity, organization, formation through developmentally
recognizable stages (86) or presenting distinct features of an
organ (87), while others are formed from aggregates of either
single or multiple terminally differentiated cell types, and some
lie somewhere in between the two. Here we would like to offer
a definition of an “organoid,” as something that undergoes a
developmentally relevant process, changing with time, in an
autonomous manner resulting in organized heterogeneity and
hence complexity, or more succinctly, self-organized 3D cultures
derived from stem cells. As an organ is a distinctly organized
unit, a parenchyma of cells with associated extracellular matrix,
stroma and a specific architecture all of which make functional
contributions, they are qualitatively different from homogenous
masses of cells or even teratomas as they contain multiple cell
types representative of a mixture of tissues. Below we will discuss
the different types of 3D cell culture systems available in order of
increasing organotypic complexity and we provide an overview
of the organoid models discussed below in Table 1 and Figure 2.

Aggregates
It is well-established that in 2D, primary hepatocytes rapidly lose
metabolic function (93) and that forming aggregates of these
cells has beneficial effects with regards to both longevity and
function (94). This has been translated to hPSC derived HLCs
by a number of groups including Ogawa and colleagues who
formed aggregates and cultured these with the small molecule 8
bromo- cAMP which promoted a more mature phenotype (95).
An interesting report from the Suzuki lab (96) utilizing iHEPs
generated through transdifferention of mouse dermal fibroblasts
exhibited a more mature phenotype on aggregation. This was
driven by activation of the HIPPO pathway, leading to the
expression of a battery of liver-enriched transcription factors.
These models are extremely simplistic and attempts have been
made to invoke a more liver like complement of cell types,
which can then be used to model states that are dependent on
multiple cell types as in liver disease. Liver fibrosis can lead to
cirrhosis and hepatocellular carcinoma, as a result such models
are of great clinical interest. Coll and colleagues (88) produced
iPSC derived hepatic stellate cells (iHSC) using retinol to drive a
HSC phenotype from a mesothelial precursor population. When
compared to primary material they shared many features such
as retinol storage in lipid droplets, activation in response to
cytokines and wound healing capability. The iHSCs were then
aggregated into 3D spheroids with the immortal hepatoma cell
line, HepaRG, which was originally isolated from a female patient
diagnosed with hepatocarcinoma and hepatitis C (97, 98). This
resulted in iHSCs with a quiescent phenotype along with an

improved hepatocyte gene expression profile with respect to the
HepaRG cells. Treatment of these spheroids with fibrogenic and
hepatotoxic compounds resulted in signs of fibrosis such as iHSC
activation, extracellular matrix (ECM) secretion and deposition,
highlighting the interaction between the two cell types within
the organoids and illustrating their use as a disease and toxicity
model. These cultures could potentially be used to investigate
mechanism and treatment, as well as investigating the interplay
between hepatocytes and HSCs.

The inclusion of two liver cell types demonstrates the
advantages of increased complexity in the model over a single
cell system. This is exemplified by uncovering a previously
unknown hepatotoxic effect of APAP, transmitted via the
HepaRG population to activate the HSCs. However, there are
clear limitations to the model, most notably a lack of organotypic
features, as compared to in vivo i.e., the lack of the space of Disse
where HSCs would reside, along with a non-physiological ratio
of HSC to hepatocytes (HSC making up 50% of the spheroids,
compared to 5–8% observed in the liver) (99). In addition
HepaRG are an immortalized line and are not functionally
equivalent to primary human hepatocytes (PHH), for example
widespread gene expression difference were observed when
compared to PHH (100). Another critical component missing
from this model are the immune cells of the liver, both resident
and circulating, which in vivo are a source of cytokines released
in response to inflammation playing a key a role in fibrosis.
Interestingly the authors note a difference in organization of
the spheroids as compared to their primary control, where
the HSCs formed a separate core, while in the iPSC derived
aggregates the HSCs were mixed throughout. This demonstrates
that even similar cell aggregates can result in drastically different
organization, and invites the possibility that some of these
organotypic limitations could be addressed by using iPSC-
hepatocyte in place of the HepaRG.

Condensation
A different and novel approach developed by the Takebe
laboratory used a combination of iPSC derived hepatic endoderm
and immature non-parenchymal liver cell analogs [mesenchymal
stem cells (MSC) and endothelial cells], to mimic the formation
of the liver bud (101). In short to mimic the endoderm
derived parenchymal cells of the liver invading the mesoderm
as in vitro. Subsequent investigations showed bud formation
was driven by the contractile ability (condensing) of the MSC
population, while ECM stiffness was also important (102). The
incorporation of endothelial cells allows the formation of a
network throughout the bud, leading to anastomosis when
implanted after just 48 h. The process of transplantation appeared
to promote maturation, implied by loss of alpha-fetoprotein
expression, while maintaining albumin expression. The mature
buds exhibited adult liver like features, including the formation
of hepatic cord-like structures, tight junctions, along with key
functions and human specific drug metabolism. In addition
increased survival was observed in a drug induced liver failure
model, which the authors note as the first demonstration
of a functional organ from hPSCs. This MSC driven bud
formation acts as a “proof of concept” and was proposed as a
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TABLE 1 | Overview of 3D Liver models.

References Cell

sources

Cell types

represented

Characteristics/

Functionality

Applications/Model

use

Advantages Limitations Developmental stage

Coll et al. (88) iPSC

HepaRG

• Stellate cell

• Hepatocyte

• Retinol Storage

• Activatable HSCs

• ECM production

• Drug metabolism

• Fibrosis response

• Toxicity

• Improved phenotype

of both cell types

over mono culture

• Use of cell line as

parenchyma

• No tissue-like

organization

• Lipid storage and quiescent

phenotype suggests mature

HSC function

• Omics reveals differences

to primary cells

Takebe et al. (17) iPSC • Hepatocyte

• Endothelial

cell

• Mesenchyme

• Broad hepatocyte

function (e.g.,

metabolism, protein

secretion)

• Functional vasculature

• Source of potentially

transplantable

organs, survival

improvement after

liver failure

• Vascular network

• Multiple cell types

• Scalable production

• Function relies on in

vivo transplantation

• Lack of biliary or

kupffer cell types

• Formed at an early hepatic

endoderm stage, followed

by subsequent in vivo

functional maturation

Wu et al. (89) iPSC • Hepatocyte

• Cholangiocyte

• Endothelial

cell

• Organized BEC and

bile acid production

• Hepatocyte functions

• Hepatobiliary

functions

• Multiple cell types

capable of structure

formation and

coordinated function

• Low levels of

hepatocyte function

• Fetal liver-like organization

and functional level

Guan et al. (90) iPSC • Hepatocyte

• Cholangiocyte

• Mesenchymal

cell (low

abundance)

• Secondary organoid

formation

• Broad hepatocyte

function (bile acid

and albumin

secretion, CYP

metabolism, etc.)

• Liver development

and regeneration

• Biliary disease-ALGS

• Expandable by

secondary organoid

formation due to

progenitor population

• Long term

maintenance

• Some HSC activation

in routine culture

• Similar to PHH and liver

tissue by transcriptome

analysis

Ouchi et at. (91) iPSC • Hepatocyte

• Stellate cell

• Cholangiocyte

• Kupffer cell

• CYP3A4 expression

• Vitamin A storage

• LPS response

• Hepatocyte lipid

accumulation

• HSC activation

• NAFLD

• Fibrosis response

• Wolmans disease

• Multiple cell types

• Capable of

inflammatory

response

• Low Kupffer cell

number

• Some HSC activation

in routine culture

• High inter-batch

variability

• Fetal-like hepatocyte

activity

Huch et al. (92) Biliary

Epithelial

• Hepatocyte

• Cholangiocyte

• High CYP3A4 activity

• Phase I and II

metabolic activity

• A1AT deficiency

• ALGS

• Genetically stable

• Long term

maintenance

• Only parenchymal

cell model

• Mixed fetal and adult

hepatocyte functions
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FIGURE 2 | Illustrative examples of different types of 3D culture models. Top left, showing a simple aggregate of a single cell type. Top right, showing aggregates of

mixed cell types but limited structural organization as achieved by condensation of pre-differentiated cells. Bottom left, representing the hepatobiliary organoids

recapitulating the structure and interactions of the liver parenchymal cells. Bottom right, showing organoids containing both parenchymal and non-parenchymal cells

of the liver necessary for modeling inflammation and liver disease.

potential supply of donor organs for transplant that are both
vascularised and functional but with a reliance on in vivo
maturation. The authors propose the process is recapitulating
organotypic interactions between the liver bud cell types,
however qualitatively it appears to be inspired by development
rather than mimicking the in vivo process, resulting in a unique
organization between the cell types, lacking liver features such as
the sinusoids. This approach appears to be broadly applicable for
the generation of a diverse array of tissue buds including: kidney,
pancreas, intestine, heart, lung, and brain (102).

An interesting conclusion from these studies was that the use
of more immature organ buds appeared to generate functionally
better “tissue” after transplantation than those derived from
more mature sources. This potentially highlights a specific
niche for immature cell types, therefore taking advantage of
a common iPSC differentiation limitation (102). The goal of
these studies was to generate organ surrogates, however the
reliance on primary MSCs and endothelial cells (HUVECs) was
a roadblock for standardization and scaling. To address these
limitations, with transplantation in mind, the authors developed

an iPSC version of the liver bud. For the MSCs an iPSC-
STM differentiation protocol was developed generating cells
with markers associated with the STM (ALCAM, WT1), while
maintaining the ability to drive condensation. Combined with
ECs from a previously published protocols and custom large
scale culture plates they successfully generated 108 buds which
were subsequently transplanted and shown to give a significant
survival improvement in a liver failure model (17).

Whilst this system generates vascularised functional
parenchymal tissue, there are some clear organotypic limitations
to the liver bud model. Notably, the absence of cholangiocytes
and biliary structures would be expected as input endoderm
was derived from HE cells. This may be a consequence of
starting from a monolayer differentiation of iPSC-HE, efficiently
directing all the cells to the same fate and removing the required
heterogeneity. The inability tomodel the biliary system also raises
the question of what happens to the bile produced in these liver
buds post-transplantation? The absence of a portal area, where
the biliary tree is located in vivo, may also prevent establishment
of zonation in the liver buds. An additional component not
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described is LSEC specific features or heterogeneity expected
within the liver endothelial cells, which may be a consequence
of following a non-liver specific iPSC-EC based protocol, or the
use of human umbilical vein endothelial cells (17). Whilst an
STM like population was used in this follow-up model (17) it
was lacking a description of potential stellate specific functions
or activity, such as retinol storage or ability to become activated,
along with the organization seen between these cells types in
the liver, the sinusoid and space of Disse etc. These limitations
may preclude the use of this system to model diseases involving
inflammation, fibrosis or the biliary system, admittedly not
proposed by the authors. These features are however available in
other models discussed below revealing the need for a plurality
of models for different uses with their various advantages
and disadvantages.

Hepatobiliary Organoids
A perhaps more physiological model is described by Wu and
colleagues (89). The authors produce hepatobillary organoids
by adapting established hepatocyte differentiation, to induce
both endoderm and mesoderm tissues in the same culture,
relying on transforming growth factor beta (TGFβ) induction to
form separate hepatocyte and cholangiocyte populations from a
single source. The hepatobiliary organoids were then matured
using a standard base media supplemented with a proprietary
cholesterol (MIX). This model recapitulates some of the stages of
hepatogenesis, such as formation of bipotent precursors and their
subsequent resolution to both lineages (as well as the formation
of endothelial cells) and the organization of these cell types
into appropriate structures such as lumen surrounding cysts and
tubes. The BEC were shown to have an apical basal polarity
and cilia, while bile acid was found within cystic structures.
This is indicative of a functional multicellular system, as the
bile would need to be produced by the hepatocytes flowing
through canaliculi like structures before being emptied into and
concentrated in the ductal cavity. The biliary cells first formed
rings and then further developed in to tubular or cystic structures
growing out of the culture. The formation of these structures was
shown to be linked to NOTCH signaling and was hypothesized
to be associated with the previously noted endothelial cells,
reminiscent of the cross talk between cell types observed during
development in vivo, where the mesenchyme plays this role
(103–105). The resulting culture showed increased expression
of markers of maturity for both hepatocyte and biliary lineages,
however they share the same shortcomings of many iPSC derived
progeny, presenting with low levels of CYP450 activity, whilst
matching or exceeding those of fetal liver, they were a fraction
of adult liver levels.

The above model does fit the organoid label, exhibiting
complex multi-cell type features such as bile production,
flow, and concentration in tissue approximate structures. The
approach itself appears rather unorthodox as the cells were
cultured as a mono-layer and subsequently allowed to overgrow
during the differentiation procedure to form 3D masses, in
contrast to more common methods of embedding within an
ECM. The authors highlight the lack of need for a supporting
mesenchyme or fibroblast cell types and the absence of ECM or
biomaterial, ultimately reducing cost, and complexity. However,

the lack of mesenchymal cell types might not be an advantage for
making a comprehensive organoid.

Another hepatobiliary model has been developed by Guan
et al. (90). They used iPSCs to generate 3D organoids following
stages resembling in vivo liver development which again contain
both hepatocytes and cholangiocytes organized into epithelia
and duct-like structures surrounding a lumen, referred to
as hepatobiliary organoids. The hepatobiliary organoids were
formed using iPSCs in suspension in the presence of an ECM,
matrigel, and a cocktail of growth factors and small molecules,
allowing the formation of complex organoids, via posterior
foregut, over a 20 day period, these were termed HO1s. These
organoids were then dissociated to single cells and embedded into
matrigel leading to the formation of secondary organoids termed
HO2s. These organoids were shown to follow developmentally
relevant liver stages; endoderm, liver bud, hepatoblast formation.
The HO1 stage generated three types of spheroid, parenchymal,
ductal, or a mixture of both. Transcriptome analysis of HO1
group revealed a greater degree of similarity to liver tissue than to
primary hepatocytes ascribed to the presence of cholangiocytes.
Interestingly the HO2s showed signs of improved maturity
such as increased expression of CYP3A4, TTR, and TDO2 with
decreased expression of AFP. Both HO groups exhibited liver
functions such as production and accumulation of bile acids,
albumin secretion, CYP3A4 metabolism and were effective at
secondary organoid formation, a route for potential scalable
culture. As in theWu protocol described above non-parenchymal
cell types were observed but minimally characterized, here the
authors identified a mesenchymal population comprising 1–2%
of the organoids, by virtue of αSMA staining. This marker is
associated with HSCs during the development of the liver in vivo
and it seems a potential oversight to not further characterize these
cells and consider their effects within the culture.

The ability to form secondary organoids (HO2s) was proposed
as a model for liver growth (as well as regeneration), which
occurs postnatally by an increase in lobule number (106). The
authors identified a SOX9/CK7+ population in the HO1s, these
markers are shared by a progenitor cell type thought to be
capable of regenerating the liver in vivo (107). These cells
could be expanded and passaged multiple times under specific
growth conditions. Further characterisation lead to speculation
these were either a liver progenitor or reactive cholangiocyte
population, based on expression of CK8, HNF4α, CK19, EPCAM,
and SOX9, along with decreased hepatocyte marker expression.
All of which suggest dedifferentiation to an earlier developmental
stage. Interestingly this population could then be differentiated
to hepatocytes and cholangiocytes, with a small population
remaining positive for the above progenitor marks, associated
with the ductal structures. This highlights a similarity to an in
vivo conjectured liver progenitor population associated with the
canals of herring (107), suggesting a recapitulation of this niche
occurs as part of the formation of a hepatobiliary organoids.

Adult Organoids
Liver organoids formed from primary cells have been generated
by Clevers and colleagues (87, 92) using EPCAM+ biliary
epithelial cells, this expands on previous work using a LGR5+
stem cell population isolated from the intestine (7, 87). They
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show that these organoids recapitulate some of the epithelial
features of the original organ; arranged as polarized cysts,
and though derived from the ductal cells the organoids show
hepatobiliary features and could be directed to a hepatocyte-
like phenotype (92). These organoids were clonally derived,
expandable and could be maintained for several months. More
recent work in the area has developed hepatocyte derived
organoids (Hep-Orgs) from both adult and fetal liver (108),
which resulted in a more distinct hepatocyte (as opposed to
biliary or hepatobiliary) phenotype. These include structural
features such as MRP2+ bile canaliculi and tight junctions along
with albumin secretion and CYP3A4 activity levels comparable
to those from primary human hepatocytes (PHHs). Levels of
AFP secretion were initially high but were found to decrease
over time which supports the authors hypothesize that the Hep-
Orgs are derived in a process analogous to the regenerative
response of the liver, as the usual fetal associated AFP secretion
is also induced after hepatectomy. The absence of cholangiocyte
function was demonstrated by a lack of the MDR1 activity
seen in the Hep-orgs while there was only a low number of
cholangiocytes generated.

A limitation of the adult cell derived organoids is the lack of
heterogeneity in the starting populations, as they are expanded
from epithelial cells this removes the chance for endothelial
or mesenchymal cell types, which would potentially contribute
to future complexity and a more organotypic model. This is
in turn has implications for their potential use in modeling
diseases such as fibrosis, NAFLD and HCC where inflammation
and the cellular microenvironment are involved (109, 110), or
development that relies on the presence of multiple cell types
and lineages. Their suitability and capability to model monogenic
disorders such as ALGS and A1AT deficiency has already
been demonstrated (92). Points worth further investigating
are whether the primary derived organoids form following a
process that more closely resembles regeneration rather than
development, with the data from Hep-Orgs suggesting the
former, and whether a more tissue-like parenchymal model can
be developed that includes both hepatocytes and cholangiocytes
organized as in vivo (e.g., with duct structures). A clear
disadvantage of organoids derived from primary sources is the
difficulty in acquiring and harvesting the required material
in comparison to using PSCs. While use of iPSC derived
organoids share the advantage of being derivable from the
desired donor or genotype but in a non-invasive manner. Where
the adult derived organoids seem to have a clear advantage
is in the genomic stability and potential longevity of their
cultures (87, 92). With maintenance of functional cultures
demonstrated for up to 1 year is in contrast to the primary
material that rapidly lose function, as well as the majority of
iPSCs derived organoids which have shorter functional windows.
The genomic stability of the adult organoids, seen at both
the sequence and chromosome levels, is also in contrast to
that of iPSC organoids that often harbor genetic abnormalities
thought to be caused by reprogramming (111). The process of
reprogramming and the generation of useable patient specific
iPSCs is also a long and costly addition when compared to
generating primary organoids. More in depth reviews on adult

liver organoids and their use in disease modeling can be
found here: (112, 113).

Inclusion of Non-parenchymal Cells
A more organotypic model than the mostly parenchymal
hepatobiliary organoids should include significant numbers of
the stromal cells of the liver an example of which has been
demonstrated by Ouchi et al. (91). Their organoids are produced
in a similar manner to that described above, via a foregut
differentiation step, but generating mesenchymal as well as
epithelial cell types, which then have the potential to become the
necessary stromal cells. These foregut spheroids were embedded
in matrigel and further differentiated to a hepatic lineage and
the resulting termed human liver organoids (HLOs). RNAseq
revealed their hepatic nature with respect to lipid homeostasis
genes, though they still form a distinct cluster away from both
hepatocytes and fetal liver. Both immunostaining and FACs
analysis showed populations with parenchymalmarkers as well as
those associated with mesenchyme and macrophages, though the
high expression of EPCAM suggested a distinctly early phenotype
for the hepatocyte-like cells. Single cell RNAseq (scRNAseq) used
to further analyse the HLOs found that the majority of the
cells (∼60%) were hepatocytes and that they expressing portal
over central markers, although these markers may also represent
an earlier pre-zonal hepatocyte rather than a specific portal
phenotype as hepatocyte zonation continues to develop through
adolescence (114). Approximately 30% of the cells identified
through scRNAseq had a HSC-like expression signature, with
a small number of biliary and even smaller number of Kupffer
cells, representing a considerable organ specific cell type diversity.
Basic functional activity of the hepatocytes revealed inducible
CYP3A4 expression though further characterisation was lacking
perhaps due to the fetal characteristics of the hepatocyte-like
cells. The HSC cells were shown to be able to store vitamin A
after retinol treatment, a crucial function of the stellate in vivo.
To investigate the activity of the Kupffer population the authors
treat their organoids with LPS and see an activation response
in the stellate population which is interpreted as being Kupffer
mediated, though the same assay produced a similar response in
the Coll paper described above which did not contain a Kupffer
population suggesting that such a response is not indicative of
a macrophage population. Additionally, LPS directly activates
HSCs through TLR4/CD14 (115), by enhancing the effects of
TGFβ (116) showing its unsuitability as an assay to distinguish
between Kupffer and HSC mediated responses.

APPLICATION OF ORGANOIDS IN
DISEASE MODELING AND
REGENERATION

Biliary Model
An example that highlights the current uses and future potential
of liver organoids in disease modeling and regenerative medicine
is that developed by Guan et al. described above. Its utility is
exemplified by modeling Alagille syndrome (ALGS), a defect
caused by impaired NOTCH signaling. The study aimed to
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elucidate the mechanism of the disease and the cell types
involved. Hepatobiliary organoid (HOs) were generated from
ALGS patient iPSCs and via CRISPR engineered lines and
compared to controls. This revealed an absence of duct structures
and reduced cholangiocyte marker expression from patient
organoids. Further, reduced expression of Jagged 1 (JAG1)
expression was observed during the HO development, along
with an absence during the structure forming stage compared to
control. JAG1 is a notch ligand and mutations in this gene lead to
ALGS and impaired bile duct formation. The ALGS HOs lacked
the ability to form secondary organoids, indicating an impaired
regenerative capacity. This was further validated by rescue using
CRISPR in isogenic controls. Demonstrating the principle that
genome engineering can be used to generate and repair disease
lines. This allowed unique insights into the mechanistics of ALGS
revealing that it is not caused by immune mediated damage and
explaining the timing and pattern of bile duct paucity in vivo as
the inability of the ducts to spread into the newly forming lobes
of the liver. In contrast to their initial fetal formation, which is
driven by mesenchymal tissue. Leading the authors to conclude
that postnatal bile duct expansion is driven by the hepatoblasts.

Steatosis Model/Fibrosis
Over the last decades the incidence of non-alcoholic fatty
liver disease (NAFLD) has risen sharply worldwide. Currently,
a number of model systems are utilized including animal
based models [reviewed in Lau et al. (117)] and primary or
immortalized cell-based models [reviewed Müller and Sturla
(118)]. The above however have limitations in that the physiology
of animals is significantly different to that of humans, combined
with the ethical considerations and in the case of primary cells
very limited in there availability. The iPSC field has been evolving
with a number of models being developed to investigate liver
steatosis and liver diseases, however the majority of these exploit
standard 2D culture systems to investigate NAFLD (119, 120).
This has led to the field to develop more organotypic models
that reflect the organ. Examples include the development of a
hybrid iPSC and immortalized cell aggregate system by Coll et al.
(88) and the more sophisticated 3D organoid model developed
by Ouchi et al. (91) both described above.

The Ouchi et al. hepatic organoid model shows the advantages
of HSCs in an organotypic setting that in combination with
Kupffer cells, the resident liver macrophage, highlights the
modeling complexities attainable in these systems. The authors
developed multicellular organoids with hepatocyte, stellate, and
Kupffer analogs, which in response to free fatty acid treatment
show signs of steatohepatitis, including steatosis, inflammation,
and fibrosis. They also demonstrated that organoid stiffness
correlates with fibrosis severity and recapitulated steatohepatitis
using iPSCs derived from patients with a specific genetic
dysfunction and subsequently rescued it showing the potential
for their organoids to be used to model and investigate diseases.
Treatment with free fatty acids was found to increase lipid
accumulation by the hepatocytes of the HLOs, with oleic
acid treatment causing hepatocyte enlargement (ballooning),
a hallmark of steatohepatitis. This treatment caused increased
expression of IL6, IL8, and TNFα in the HLOs. After 5–7

days of continuous steatohepatitis induction, the HLOs showed
markers of fibrosis such as increased αSMA staining and collagen
deposition along with decreased vitamin A storage. Interestingly
this steatosis response to oleic acid was found to be absent
from aggregate spheroids generated from cell lines suggesting
it is a feature specific to an organotypic system. Using patient
derived iPSCs the authors modeled Wolmans disease, which
is a genetic disorder that causes lipid accumulation followed
by steatohepatitis and fibrosis, in the HLOs. Currently only
treatable using an expensive drug, the authors were able to
reverse this phenotype by treatment with FGF19 supressing lipid
accumulation and increasing the survival of the steatosis HLOs.
Thus, demonstrating the utility of their steatosis and fibrosis
model and highlighting a potential alternative treatment for
the disease.

The incorporation of stellate and Kupffer cells into the model
gives it a unique niche as well as the demonstration that some
features are unique to organotypic models. The authors also
highlight that mixed co-culture aggregates such as the Coll model
and the Takebe liver bud model show signs of inflammation
and fibrosis during routine culture which they speculate is due
to unsuitable culture conditions for the multiple cell types,
which will limit their use in inflammatory modeling. The array
of cell types in the HLOs gives lots of potential for future
use and development lacking only an endothelial population
from previously demonstrated models. Though other hepatic
functions besides lipid homeostasis were not well-characterized
and the organization of the cell types is left unreported, such as
do biliary cells form structure, how and where are the Kupffer
cell located etc? Also noted by the authors is batch variability,
particularly with respect to αSMA positive cells, as a potential
limitation of the model.

Liver-On-Chip
The use of chip based or microphysiological (MPS) culture
systems offers many promising advantages in terms of control
of environment, reproducibility, feedback and automation when
compared to traditional manual cell culture. Many variants
of in vitro liver model have and can be translated to these
continuously advancing culture systems, though currently most
examples use aggregates of primary cells or hepatic cell lines
(121–123) which represent a more simplistic cellular model than
the organotypic complexity approached in the above described
organoids. There are also many description of liver-chips which
use the physical structure of the chip itself, or bioprinting, to
force organization on multiple different cell types (124–126)
thus engineering organotypic complexity into the system, these
however fall outside the organoid topic of this review.

Overview of Optical Microscopy Imaging
of Organoids
An area developing in parallel with advancement of organoid
technology is the rise of novel volume high-resolution optical
imaging approaches (127–132). Powerful imaging approaches
will allow the probing of cellular and subcellular complexity
within organoids. Furthermore, volume imaging methods will
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potentially enable characterization of the architecture of whole-
mount tissues in 3D (132). The superior qualities of 3D imaging
are of a great importance to further our understanding of
cellular composition, cell shape, cell-fate decisions and cell–cell
interactions of intact biological samples, especially pertinent for
the organoid field (127, 131, 132).

3D Imaging
It is worth noting, that organoids are 3D objects and may
be relatively large in size. Thus, it is demanding to perform
high volume 3D imaging of organoids while minimizing
phototoxic effects and supporting their physiological integrity as
experimental models. On one hand, there is a need to visualize
an organoid as a whole object and, on the other hand, probe the
cellular complexity of organoids at the subcellular level. Imaging
of relatively large objects requires deep 3D tissue imaging.
Ideally, one desires to achieve a micrometric optical sectioning
capacity and sub-micrometric spatial resolution in combination
with a large field of view combined with a high frame rate,
and low level phototoxicity (133). However, all techniques have
their advantages and limitations. In this section we briefly
discuss existing technologies in organoid imaging along with
their limitations.

In order to achieve imaging of large and sensitive specimens,
like organoids, it is essential to minimize exposure of the
sample to light and perform fast and contrasted signal recording.
Indeed, organoids can be up to 3mm in size (134). A major
problem in optical imaging of thick 3D biological samples is the
loss of contrast due to multiple scattering (135). Thus, wide-
field epifluorescence microscopy is unsuitable for such purposes
having a maximum 700µm depth of penetration (136, 137).
Confocal laser scanning microscopy (CLSM) systems improve
the depth of imaging (up to 1,000µm), but they are relatively
slow in making image (∼1 s for a single frame) (127, 138).
Indeed, for initial imaging of fixed samples a basic confocal
microscope is sufficient (139). One can derive basic information
about organoid structure and function using CLSM systems.
However, major drawbacks of CLSM systems are out-of-focus
fluorescence excitation, out-of-focus photo-bleaching and photo-
damage (133).

Implementation of a spinning disk scanner containing a
set of confocal pinholes facilitates high-speed acquisition and
removes the speed-limiting disadvantage of a single-beam CLSM
(140). As a result, spinning disk confocal microscopy (SDCM)
significantly reduces phototoxicity, and additionally enables
high-resolution imaging by utilization of low-noise combined
with high-dynamic-range detectors [e.g., charge-coupled device
(CCD) cameras] (141, 142). Spinning disk confocal systems in
combination with silicone oil-immersion objectives allow super-
fast image acquisition (up to ∼0.5ms for a single frame) (143).
Moreover, silicone oil-immersion objectives, due to significant
reduction of spherical aberration, produce brighter and higher
resolution 3D images of biological samples, especially at deeper
sample depths (improving depth of imaging up to 2,000µm)
(143). This technique has enabled high-contrast 3D live-cell
imaging of a mouse embryo over∼4 days for example (143).

Multiphoton microscope systems outperform CLSM having
much deeper levels of imaging to about 2,000µm below the
surface (144, 145). Multiphoton systems utilize much longer
wavelengths of light to excite fluorescence specimens and scatter
less as they scan through tissue (144, 145). Interestingly, if
one combines multiphotonmicroscope with ultra-long-working-
distance optics and proprietary clearing reagents, it is possible to
image up to 8,000µm (8mm) deep in fixed specimens (146).

As it stands for now, light sheet fluorescence microscopy
(LSFM) is the best technique to rapidly acquire optical sections
in thick specimens (147). LSFM utilizes a laser light-sheet that
illuminates a plane of optical section and views tissues with
subcellular resolution (148). Due to such fast optical sectioning
LSFM is able to image thicker tissues (>1 cm) with reduced
photobleaching and phototoxicity of a specimen (148–150).
However, spot-scanning microscopes still outperform LSFM in
the axial resolution (133). Additionally, to get light-sheet image
sampling one needs an orthogonal arrangement of excitation
and collection objectives (133). This creates another limitation
of LSFM, to achieve proper image quality it is important to have
non-standard procedures for embedding and holding the sample
(133). This in turn creates challenges in experimental variability,
especially with samples submerged in liquid media.

DISCUSSION

Whilst many 3D liver models are described as organoids these
are clearly not all equally organotypic, a point previous reviews
have not addressed. Our aim here is to give an overview of
these different models whilst distinguishing and clarifying these
qualitative differences between them and to provide a framework
to assess and compare future studies. We would also hope to
highlight and persuade the reader for the need of organ level
complexity, as we believe it to be crucial to investigate features
not possible in more simplistic systems.

The different types of models explored above reveal that more
physiological approaches are important to accurately recapitulate
the complexities of disease/development, which involve multiple
cell types and their coordination into physiologically relevant
structures. By comparing these different studies we see
that the complexity demonstrated by multiple cell systems
allow improved toxicity and metabolism studies, as well as
engraftment, fibrosis, and inflammation models. Additionally
the mimicking of liver structure and organization can be used
to investigate development and physiology and hence disease
that arise through disruption of these processes, here made
particular use of by the hepatobiliarymodels (Alagille syndrome).
These examples serve to highlight the inadequacy of 2D liver
models except for use in specific circumstances and whilst more
simple models can often fulfill the purpose they are designed
for, complex structure and physiologymimicking systems present
many possibilities for repurposing and future applications.

Drug metabolism by CYP450 enzymes is used in several
of these examples as a way of demonstrating hepatic
phenotype/maturity and hence successful differentiation of
this cell type. However organoid models are capable of more
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sophisticated uses which may aid drug development, however
the field is currently hampered in vitro by the use of low activity
hepatocytes [e.g., Ouchi et al. (91)].

An interesting insight raised by the Takebe laboratory is signs
of inflammation in their organoid models, a feature we also have
observed (151), resulting in inter-batch variability with respect
to signs of HSC-like cell activation. This could have effects on
the use of the models for fibrosis, inflammation, toxicity and
disease studies all of which could be envisaged to involve cytokine
response. Suggesting the need to develop culture conditions that
can provide a quiescent state in vitro.

A more general question still to be addressed when
examining organoid models is whether the in vitro organoid
forming processes are following in vivo development or a
distinctly different culture system induced “development.” If
these processes are found to vary between different protocols then
each will have to be assessed independently as to whether the
model being used complements and enhances in vivo studies.

One of the most prominent and perhaps most challenging
limitations of current organoid models and PSC differentiation
per se is the tendency for the expression of immature or fetal
markers, for example the expression of AFP or high levels of
CYP450 3A7, in differentiated hepatocytes and an overall lack
of liver zonation. There are many potential and overlapping
causes for this such as; too short culture times–as zonation
and liver development continue in the postnatal period and
through adolescence taking years to become established in vivo,
lack of required complexity in the model and also a lack
of exposure to a microbiome, although limited attempts to
recreate microbial cues have been attempted with lithocholic
acid and vitamin K2 albeit with a focus on maturity and not
zonation (152). These possible causes are not limited to PSC
derived liver models as isolated hepatocytes are known to rapidly
dedifferentiate in vitro, a problem which may share a common
cause. It seems reasonable to speculate therefore that as organoid
models increase in complexity, becoming more tissue-like and
more closely mimicking the physiological environment, this
may aid in their maturation too. However, a developmentally
immature phenotype could be a feature inherent to using PSCs
due to residual expression of PSC gene regulatory networks in
differentiated cells, as determined by comparison of pre-existing
datasets covering the differentiation of different cell types from
ESCs (153). Overcoming this limitation is paramount for in vitro
use and could be transformative for the use of PSC derived liver
organoids inmetabolism and toxicity studies as adult hepatocytes
currently out perform PSC derived cells by several orders of
magnitude. The recent study from Boon et al. (154) shows that
at least a part of this maturation conundrum, in a liver specific
setting, can be addressed by altering the metabolic status of the
cells by the addition of extracellular amino acids at levels beyond
nutritional needs. This pushes both iPSC derived hepatocytes and
other hepatic cell lines to a phenotype closer to that of primary
human hepatocytes, of particular interest in terms of xenobiotic
metabolism and toxin sensitivity.

The scarcity of primary tissue means in vitro organoid
models are often lacking in functional comparisons to primary
hepatocytes or tissue. This is the case for many organoid

studies were functional attributes are limited, often compared
to immortalized lined such as HepG2 or to cryopreserved
hepatocytes (89, 92). Some studies have no functional data
comparison to primary material (91), andmany studies only look
at the usual suspects albumin and CYP3A4 (90). Also functional
niches are highlighted were adult levels are achieved in the case
of albumin and urea levels (17), or albumin and CYP3A4 (108).
Additionally, for example Albumin secretion levels are often used
as a proxy for differentiation quality but are rarely the actual
function desired in the model. CYP3A4 function is often noted
(see above) however other peri-central associated markers in
contrast are lacking in many characterisations, which along with
phase II enzymes and non-CYP based metabolic enzymes would
be required to model xenobiotic function, this is potentially as a
lack of zonation may preclude their high level expression. These
functional assays are particularly relevant to the liver as toxicity
and xenobioticmetabolism are key to drug development, which is
often the suggested goal of liver organoids. Functional limitations
and broad equivalence between iPSC hepatocyte differentiations
has long been noted (73), however the improvements provided by
some of the organoidmodels here (multiple cell types, in vivo-like
organization, long term culture maintenance) may provide the
advances required for greater functional maturation, and though
this has yet to be comprehensively demonstrated there are signs
that this is the case [e.g., transcriptomic comparisons (90, 91)]. As
the current gold standard is PHH activity rather than whole liver
functionality and cell death or damage is a common readout, any
such comparison with organoids for toxicity may benefit from
a hepatocyte specific marker to allow an accurate comparison,
such assays have already been investigated with co-cultures in
mind (155). This lack of parity with respect to characterisation
highlights the necessity for standardization in the context of
basic functional attributes of organoids that will be accepted and
applied by the research community.

Another limiting factor for future use is the scale of
production and its associated costs. Most differentiation
protocols are not optimized for industrial scale production/use
and heavily rely on expensive recombinant proteins, which
could be prohibitive. This is also a consideration for potential
clinical applications, where the standard therapeutic scale
is considered to be 10∧9 hepatocytes or more per patient
(156). Undefined conditions including serum use, growth
factors and ECM present as barriers to transplantation and
regenerative medicine. A future idealized organoid model would
therefore be generated via small molecules and both serum
and ECM free.

Other ingredients yet to be incorporated include red andwhite
blood cells, save for the Kupffer cells, these cell types may be
expected to help form part of the complexity required to mimic
in vivo function and additionally follow correct development of a
liver model, as the liver is an early site of haematopoiesis during
its development, along with the vasculature of the liver. Whilst
endothelial cells have been noticed, their in vivo diversity and
complexity have yet to be captured wherein they are organized
into veins, arteries and zonated sinusoids. Achieving this may be
critical in establishing hepatocyte zonation and mimicking the
acinar unit.
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A consideration of non-liver organoids can reveal imminently
achievable possibilities directing future work as well as the
potential of combinatorial organoid models leaving room for
rapid advancement into areas previously covered. An example
of this is the innervated intestine organoids from Workman and
colleagues (9). The enteric nervous system (ENS) is a crucial
functional part of the intestine and was incorporated into human
intestinal organoids by inclusion of neural crest cells resulting in
an innervated organoid with ENS functions capable of modeling
genetic diseases. A similar approach may result in improved
liver organoids, as the human liver unlike that of rodents each
hepatocyte is in contact with a nerve cell making innervation a
crucial part of the in vivo liver architecture so far neglected (157).
In fact innervation has been shown to be a driver of maturation
in a number of tissues including muscle and pancreatic islets
(158, 159). Therefore, innervation may well be one more piece
in the puzzle of maturation.

A recent development is the generation of boundary
organoids, Koike and colleagues describe hepato-biliary-
pancreatic organoids (falling slightly outside of the scope of
the main body of this review) formed by combining individual
foregut-midgut organoids, then allowing them to differentiate
together, essentially recapitulating an area of the embryo as
opposed to a single organ (160). This adds extra dimension of
complexity to the model but invariably removes specificity. With
this comes the caveat that scaled up production of this technique
seems more complicated and the resulting organoids currently
showed limited maturation and function. They are perhaps best
suited, as suggested by the authors, to studying development
and its associated diseases. Combining distinct organoid tissue
models in co-culture is another area of potential interest
particularly with respect to toxicity and drug development. Here
the liver organoids could be paired with any other organ, by
integrating the xenobiotic biotransformation potential of the
liver allows metabolite influence to be examined on the target
tissue directly. This is perhaps best realized in the field of “Organ
on a chip” (OoC), or microphysiological devices. Currently
the majority of systems use simple cell models, therefore the
integration of organoids would potentially benefit both the
complexity and the utility of the chip. OoC devices would allow
closer control of the cell environment, further enhanced by
integration of sensors/online readouts allowing continuous
measuring and sampling using techniques such as mass spec
and electrophoresis (161). Microfluidics can be used to more
precisely mimic in vivo conditions in the context of oxygen,
flow rate and sheer stress, important parts of the hepatic niche.
With the clear potential to investigate a portal-central vein axis,
along with the establishment of zonation, gradients of signaling
and oxygen. Such devices will allow combinations of different
organoids in pairs, or more, to examine interactions with drugs
by combining liver with the target organ(s) e.g., brain to study
effects of drugs on neurons or nervous control of hepatocyte
function, pancreas to examine energy and endocrine systems, or
gut to investigate the entero-hepatic axis. These co-cultivation
experiments require the presence of the necessary machinery for
the organ-crosstalk and therefore add another layer of organoid
characterization. For example, exploring signaling between

adipose tissue and liver organoids would require the correct
repertoire of signaling receptors and secretion profiles (162).
These technologies can be further refined toward personalized
medicine, using patient specific iPSCs to derive the organoids
and combining multiple such organoids on a chip resulting in the
ultimate in vitromodel for drug testing and disease modeling.

The application of organoid technology to study disease,
development etc., requires functional readout in different
formats including biochemical, genomic and transcriptional.
As discussed above visual assessment has been co-developing
with 3D culture systems and has come on leaps and bounds.
Recent advancements in fluorescence microscopy clearly state
that the diffraction barrier is no longer the ultimate challenge in
obtaining biological super-resolution images (163). For example,
MINFLUX nanoscopy was reported to achieve unprecedented
resolution in the range of 1 to 3 nm for structures in both
fixed and living cells (163). However, the challenge for high-
resolution, super-resolution and even standard confocal optical
microscopy is photo-damage (127, 164, 165). Unfortunately, to
date live-cell super-resolution localizationmicroscopy has largely
ignored phototoxic effects (166). In fact, articles mentioning
terms related to fluorescence microscopy revealed that <6% of
articles mention phototoxicity (166). To achieve super-resolution
requires high irradiation intensities (kW cm−2 range) (165, 167).
Such high illumination intensities generate toxic free radicals
from exogenous dyes and endogenous chromophores, leading to
cellular damage and cell death (165, 168–170). More specifically
laser-damaged mitochondria are a source of oxidative stress
triggering cell death (165, 168, 169). Therefore, a fundamental
understanding of the mechanisms of light-induced phototoxicity
will provide the approaches to minimize photo-damage. The
field is already addressing some of these issues such as using
reactive oxygen species (ROS) scavenging buffers (168, 169, 171)
and also minimizing pre-imaging stress of cells, by limiting
overexpression of tag proteins and titration of fluorescent dyes
(165, 172). Indeed even simple adjustments such as limiting
laser intensities (173), performing microscopy under optimal cell
culture conditions (165, 172) and the use of far-red excitation
wavelengths can all reduce photo-damage (168), especially when
then combined with increased scanning speed (138, 172, 174).
These technological limitations will continue to co-develop with
organoid research being addressed as and when required.
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