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INTRODUCTION 
 

Almost all systemic blood vessels are surrounded by 

perivascular fat, whose density changes as a surrogate 

marker of localized inflammation [1]. 

 

Perivascular fat encases the carotid artery without an 

intervening fascial barrier. Limited work has 

attempted to identify the significance of pericarotid 

fat. A previous study showed that the fat density 

around symptomatic internal carotid artery (ICA) 

stenosis is increased in patients with ischemic events 

secondary to carotid disease [2]. In addition, a recent 
study showed that the presence and density of 

pericarotid fat could be used as an indirect marker of 

carotid plaque instability [3]. 

Cerebral small vessel disease (CSVD) is common in the 

population, especially among elderly individuals [4–6]. 

Magnetic resonance imaging (MRI) can identify many 

features of CSVD, including lacunes, white matter 

hyperintensities (WMHs), and dilated perivascular 

spaces (PVSs) [4, 7]. 

 

The relationship between perivascular fat and adjacent 

tissues and organs is complex and likely bidirectional. 

For instance, epicardial adipose tissue is associated with 

metabolic disorders, arterial wall inflammation and 

subsequent atherogenesis [7, 8]. In addition, the 

association with pericardial fat may depend on the 

particular location of fat relative to the pericardium, and 

fat distribution surrounding the aorta may also be 

important [9]. Pathological changes surrounding vessels 
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difference in the pericarotid fat density in different grades of PVSs. The patients with acute ischemic stroke had 
a significantly higher mean pericarotid fat density than those without stroke. In conclusion, our study provides 
evidence suggesting that an increased pericarotid fat density is associated with the presence and degree of 
WMHs and lacunes. Our findings suggested that features that appear to extend beyond the vessel lumen of the 
ICA may be linked to CSVD. 
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seem to be associated with nearby parenchymal 

alterations. 

 

Whether pericarotid fat is correlated with CSVD has not 

been investigated. The aim of the current study was to 

investigate the distribution pattern of pericarotid fat and 

its association with the imaging markers of CSVD. 

 

RESULTS 
 

Baseline characteristics 

 

In total, 572 subjects were included. As shown in Table 

1, the average age of the patients was 66 (59, 74) years, 

and 65.2% of the patients were males. The overall mean 

HU of the pericarotid fat was -77.32±13.03, and the 

overall maximum HU was -62.48±14.55. Pericarotid fat 

was weakly correlated with age (mean HU R=0.116 

P=0.006 and maximum HU R=0.100 P=0.017). In 

addition, the patients with hypertension had a 

significantly higher mean pericarotid fat density  

(-76.72±13.13 vs. -79.34±12.55, P=0.008, Supple-

mentary Table 1), and the patients with hyperlipidemia 

had a significantly higher mean pericarotid fat density (-

76.40±12.50 vs. -78.75±13.71, P=0.040, Supplementary 

Table 1). 

 

Pericarotid fat and MRI markers of CSVD 

 

An increased pericarotid fat density was associated with 

the presence of lacunes (mean HU P=0.005 and 

maximum HU P=0.023, Tables 2, 3 and Figure 1A, 1B) 

and a higher WMH grade (both mean and maximum 

HU P<0.001, Tables 2, 3 and Figure 1C, 1D), and both 

remained significantly different after adjusting for the 

other clinical parameters, except for the maximum HU 

in WMHs (Grade 1). Although there was a difference in 

the maximum HU across different grades of PVSs, the 

difference disappeared after adjusting for the other 

clinical parameters (Table 3). There was no significant 

difference in the mean HU across the different grades of 

PVSs (Table 2). 

 

There were 377 (65.9%) patients with acute ischemic 

stroke (AIS). The patients with AIS had a significantly 

higher pericarotid fat density than those without AIS 

(mean HU P=0.002 and maximum HU P=0.013, Table 

1). The difference in the mean HU remained after 

adjusting for the different clinical parameters between 

the groups, while the difference in the maximum HU 

disappeared (mean HU AOR (95% CI), 1.179 (1.003-

1.387), P=0.040 and maximum HU P=0.097). 

 

In the sensitivity analysis of the 192 patients without 

stroke, there was a significantly higher pericarotid fat 

density in the lacune group and the higher WMH grade 

group (Table 4). In 377 patients with stroke, the 

pericarotid fat density was higher in the high WMH 

grades, while there was no significant difference by 

lacunes and PVSs (Table 4). 

 

Pericarotid fat density in patients with extracranial 

ICA stenosis 

 

Forty-three subjects had extracranial ICA stenosis, and 

we recorded the value at the maximum stenosis slice. 

The pericarotid fat in the slice with maximum stenosis 

had a higher density than that near the origin of the ICA 

(mean HU -67.33±12.34 vs. -72.62±12.58, P=0.008 and 

maximum HU -52.39±11.48 vs. -56.89±13.05, 

P=0.008). In addition, the mean HU and maximum HU 

in these two places were strongly correlated (R=0.680, 

P<0.001 and R=0.626, P<0.001, Figure 2). 

 

Because the number of patients with extracranial ICA 

stenosis was small, we could not perform a separate 

analysis of the association between the perivascular fat 

density and MRI markers of CSVD limited to these 

patients. 

 

DISCUSSION 
 

This study provides an objective assessment of the 

association between the pericarotid fat density and 

imaging markers of CSVD. An increased pericarotid fat 

density was associated with the presence of lacunes and 

a higher WMH grade in all subjects. There was no 

significant difference in the pericarotid fat density 

across different grades of PVSs. The patients with AIS 

had a significantly higher pericarotid fat density. The 

pericarotid fat density in the maximum stenosis slice 

was higher than that near the origin of the ICA in 

patients with extracranial ICA stenosis. 

 

Although some previous studies have suggested that 

visceral fat accumulation is related to the presence of 

various markers of CSVD, including WMHs and 

lacunes [10–12], it is more likely to be mediated by 

adiposity-related risk factors, such as hypertension, 

diabetes or dyslipidemia. It is generally known that 

visceral adipose tissue accumulation is positively 

associated with cardiovascular disease. In the present 

study, although we found that the pericarotid fat density 

was associated with CSVD risk factors, such as age, 

hypertension and hyperlipidemia, the association 

between the pericarotid fat density and CSVD remained 

significant after adjusting for these clinical parameters. 

Thus, pericarotid fat is an independent risk factor for 

CSVD. 

 

We found that the pericarotid fat density was associated 

with the presence of lacunes and higher WMH grades. 
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Table 1. Baseline characteristics of the participants. 

Characteristics All (n=572) Without AIS (n=195) With AIS (n=377) P 

Age, years 66 (59, 74) 64 (58, 70) 68 (60, 76) <0.001 

Male, n (%) 373 (65.2%) 131 (67.2%) 242 (64.2%) 0.555 

Hypertension 440 (76.9%) 141 (72.3%) 299 (79.3%) 0.041 

Diabetes mellitus 225 (39.3%) 70 (35.9%) 155 (41.1%) 0.201 

Hyperlipidemia 348 (60.8%) 115 (58.7%) 233 (61.8%) 0.444 

Coronary heart disease 152 (26.6%) 53 (27.2%) 99 (26.3%) 0.855 

Atrial fibrillation 145 (25.3%) 41 (21.0%) 114 (30.2%) 0.018 

Current smoking 186 (32.5%) 48 (24.6%) 138 (36.6%) 0.003 

Drinking 98 (17.1%) 36 (18.5%) 62 (16.5%) 0.572 

Medication     

  Antihypertensive therapy 285 (49.8%) 88 (45.1%) 197 (52.3%) 0.089 

  Antidiabetic therapy 149 (26.0%) 47 (24.1%) 102 (27.1%) 0.497 

  Statins 125 (21.9%) 40 (20.5%) 85 (22.5%) 0.546 

  Antithrombotic therapy 145 (25.3%) 38 (19.5%) 107 (28.4%) 0.018 

Mean HU of pericarotid fat  -77.32±13.03 -79.64±12.83 -76.11±12.99 0.002 

Maximum HU of pericarotid fat  -62.48±14.55 -64.60±14.98 -61.38±14.22 0.013 

The values are presented as the mean ± SD or median (interquartile range) for continuous variables and as 
a number (percentages) for categorical variables. 
Abbreviations: AIS, Acute ischemic stroke; HU, Hounsfield Units. 

Table 2. Association between the mean HU of perivascular fat density and neuroimaging markers of 
CSVD. 

Characteristics  N 
Mean HU 

Value P  AOR (95% CI) P 

Lacunes 
- 363 -78.35 (-89.13, -69.08)* 

0.005 
   

+ 209 -74.39 (-86.33, -65.07)*  1.218 (1.038, 1.430) 0.016 

WMHs 

Grade 0 143 -82.36 (-91.33, -71.25)*# 

<0.001 

   

Grade 1 236 -78.02 (-89.13, -67.58)*@  1.366 (1.083, 1.725) 0.009 

Grade 2-3 193 -72.79 (-82.18, -63.45)#@  1.396 (1.146, 1.702) 0.001 

PVS 

Grade 0 141 -78.83±12.35 

0.067 

   

Grade 1 323 -77.50±13.16  1.066 (0.870, 1.307) 0.538 

Grade 2-4 108 -74.79±13.24  1.189 (0.957, 1.476) 0.118 

The results are adjusted for age, sex, hypertension, diabetes, dyslipidaemia, atrial fibrillation, coronary artery 
disease, smoking, and drinking. Quantitative data were divided into several layers by per standard deviation 
increase. 
For WMHs, *Grade 0 vs Grade 1, <0.05; #Grade 0 vs Grade 2-3, <0.01; @Grade 1 vs Grade 2-3, <0.01. 
Abbreviations: CSVD, cerebral small vessel disease; PVS, perivascular spaces; WMHs, white matter 
hyperintensities; HU, Hounsfield Units; AOR, adjusted odds ratio; CI, confidence interval. 

Although the relationship between carotid artery disease 

and CSVD has been gradually revealed [13–15], the 

pathophysiologic mechanisms underlying the 

relationship between pericarotid fat and CSVD have not 

been fully established. Increasing studies have 

identified that perivascular fat has endocrine and 

paracrine functions, and the pathophysiological charac-

teristics seem to be distinct in different anatomical 

locations and metabolic statuses [7, 8, 16]. 

One possible explanation is that pericarotid fat is a 

vascular risk factor that predisposes individuals to 

developing CSVD. Previous studies have revealed that 

both asymptomatic and symptomatic carotid athero-

sclerosis and compliance are associated with imaging 

markers of CSVD [7, 17, 18], and this phenomenon is 

more obvious in the ipsilateral hemisphere with  

ICA stenosis than the contralateral hemisphere [18].  

It is conventionally believed that perivascular fat 
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Table 3. Association between the maximum HU of perivascular fat density and 
neuroimaging markers of CSVD. 

Characteristics  N 
Maximum HU 

Value P  AOR (95% CI) P 

Lacunes 
- 363 -63.53±14.73# 

0.023 
   

+ 209 -60.66±14.10#  1.173 (1.020, 1.386) 0.047 

WMHs 

Grade 0 143 -66.44±13.72* 

<0.001 

   

Grade 1 236 -63.43±15.10#  1.126 (0.902, 1.405) 0.294 

Grade 2-3 193 -58.38±13.47*#  1.356 (1.118, 1.645) 0.002 

PVS 

Grade 0 141 -64.10±13.54* 

0.025 

   

Grade 1 323 -62.86±14.85  1.033 (0.845, 1.263) 0.753 

Grade 2-4 108 -59.22±14.55*  1.257 (1.012, 1.561) 0.083 

The results are adjusted for age, sex, hypertension, diabetes, dyslipidaemia, atrial fibrillation, 
coronary artery disease, smoking, drinking, and drugs. Quantitative data were divided into several 
layers by per standard deviation increase. 
For Lacunes, - vs +, #<0.01. 
For WMHs, *Grade 0 vs Grade 2-3, <0.05; #Grade 1 vs Grade 2-3, <0.01. 
For PVS, *Grade 0 vs Grade 2-4, <0.05. 
Abbreviations: CSVD, cerebral small vessel disease; PVS, perivascular spaces; WMHs, white matter 
hyperintensities; HU, Hounsfield Units; AOR, adjusted odds ratio; CI, confidence interval. 

has a detrimental effect on the vessel [8, 19]. For 

example, inflammatory changes in the fat surrounding 

the coronary artery are associated with high-risk  

plaque changes and coronary artery disease [2, 20]. In 

addition, an increased density of pericarotid fat was 

recently described in high-risk vulnerable carotid 

atherosclerotic plaque [2]. Thus, it can be inferred that 

the structural and functional changes in upstream large 

 

 
 

Figure 1. Association between pericarotid fat and MRI markers of CSVD. Pericarotid fat density was associated with the presence of 
lacunes, (A) for mean HU, and (B) for maximum HU. Pericarotid fat density was associated with the different grades of WMHs, (C) for mean 
HU, and (D) for maximum HU. In the box-and-whisker plots, the lower and upper ends of the box represent the 25th and 75th percentiles, 
and the peripheral lines extending to the outer fences represent the 10th and 90th percentiles, respectively. *<0.05; **<0.01. Abbreviation, 
WMHs, white matter hyperintensities, HU, hounsfield unit. 
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Table 4. Association between the perivascular fat density and neuroimaging 
markers of CSVD in patients with or without stroke. 

Characteristics 
Without AIS  With AIS 

Mean HU Maximum HU  Mean HU Maximum HU 

Lacunes 
- -81.50±12.22# -66.44±14.68#  -76.70±13.15 -61.77±14.51 

+ -75.31±13.29# -75.31±14.91#  -75.23±12.73 -60.79±13.81 

WMHs 

Grade 0 -83.19±12.05# -69.14±13.55#  -80.81±11.69*# -65.16±13.68* 

Grade 1 -80.62±12.69* -65.36±15.34*  -76.04±13.27* -62.00±14.83 

Grade 2-3 -74.29±12.42#* -58.79±13.92#*  -73.02±12.69# -58.24±13.37* 

PVS 

Grade 0 -80.63±12.00 -66.32±13.37  -77.65±12.50 -62.64±13.54 

Grade 1 -80.55±13.18 -65.63±15.59  -76.08±12.95 -61.57±14.35 

Grade 2-4 -75.58±12.62 -59.14±14.69  -74.38±13.63 -59.27±14.59 

For Lacunes, #<0.01. For WMHs, *<0.05; #<0.01. 
Abbreviations: AIS, Acute ischemic stroke; CSVD, cerebral small vessel disease; PVS, 
perivascular spaces; WMHs, white matter hyperintensities; HU, Hounsfield Units. 

arteries affected by perivascular fat may alter the 

hemodynamics of small vessels downstream in the brain 

and might be linked to the pathogenesis of CSVD [21]. 

Notably, the relationship between the vascular wall and 

the surrounding adipose tissue is complex and likely 

bidirectional; for example, inflamed human vessels 

exert paracrine effects on the surrounding perivascular 

fat, preventing local intracellular lipid accumulation 

[22]. 

 

Another possible explanation is the direct 

communication between adipose tissue and the 

surrounding tissue. The perivascular fat of the ICA may 

have a profound influence on adjacent tissues through 

locally secreted biochemical factors, such as a paracrine 

fat organ in other parts [8, 9, 19]. Recent data support 

the role of perivascular fat density changes as a 

histopathologic marker of low-grade inflammation  

[23, 24]. Inflammation could impair endothelial 

function, leading to damaged regulation of vascular tone 

and the vasodilatory response, resulting in insufficient 

perfusion in the small perforating artery area and 

causing parenchymal changes, which are two potential 

mechanisms accounting for WMHs and lacunes. 

 

We did not observe a significant correlation between 

pericarotid fat and the degree of PVSs. PVSs are 

extensions of the extracerebral fluid-filled spaces that 

follow the typical course of a vessel as it passes  

through gray or white matter, which is considered a 

passive anatomical structure secondary to transient 

vasoconstriction and vasodilation of the vessel it sur-

rounds [25]. Our study suggested that pericarotid fat 

may not play a major role in the formation of dilated 

PVSs. 

 

We found that the patients with AIS had a significantly 

higher mean pericarotid fat density than those without 

AIS. Our finding is similar to recent findings suggesting 

an increased density in the pericarotid fat surrounding 

 

 
 

Figure 2. The correlation between density of pericarotid fat in the maximum stenosis slice and near the origin of the ICA.  
(A) for mean HU. (B) for maximum HU. Abbreviation, HU, hounsfield unit, ICA, internal carotid artery. 
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the stenotic ICAs of patients with ischemic events 

compared with that of patients who were asymptomatic 

[18]. As mentioned above, pericarotid fat is directly 

wrapped around the carotid artery, and a higher density 

of pericarotid fat is a marker of carotid atherosclerotic 

plaque instability and vascular inflammation, which are 

risk factors for ischemic stroke. Recent studies have 

suggested that certain vulnerable plaques may present a 

risk factor for acute embolic infarction even though they 

do not cause any hemodynamically significant stenosis 

[26]. Our findings may have implications for identifying 

vulnerable plaques. Previous studies demonstrated that 

inflammatory signals secreted by the vascular wall of 

vulnerable plaques may prevent lipid accumulation by 

influencing the biological processes of adipocyte 

differentiation, proliferation and lipolysis [27, 28]. 

Thus, the density of perivascular fat could be increased 

due to decreased lipid accumulation under active vessel 

inflammation. Similarly, perivascular fat surrounding 

the proximal segments of the major coronary arteries 

had a striking value in the prognosis of cardiac death 

and nonfatal myocardial infarction and was associated 

with an increased risk of fatal heart attacks [29, 30]. The 

above results highlight the need for more tailored 

therapy for a subset of patients with a higher 

perivascular fat density to prevent recurrent stroke. 

 

In the patients with extracranial ICA stenosis, we found 

that the pericarotid fat density in the maximum stenosis 

slice had a larger mean HU and maximum HU than 

those near the origin of the ICA. A previous study 

found a significantly increased pericarotid fat density 

around the stenotic ICA compared with that around the 

nonstenotic ICA on the same axial slice [18]. Combined 

with our research, these results further suggest that the 

presence of significant carotid artery stenosis is 

associated with increased perivascular fat inflammation. 

In addition, we found that the pericarotid fat density has 

correlations between the origin of the ICA and 

maximum stenosis. Because the origin of the ICA can 

easily and consistently be located in individuals, the 

density of fat in this place appears to be a marker of 

pericarotid fat. 

 

Our study has some limitations. First, due to the cross-

sectional nature of the study, causality cannot be 

determined. Future prospective studies could be helpful 

in confirming the cause-effect relationship. Second, we 

included a large proportion of stroke patients and 

limited the age to between 50 and 80 years. The 

prevalence of WMHs and lacunar infarcts might be 

overestimated, and these patients were older. Neck CTA 

is usually performed because of suspected cerebro-
vascular disease. In addition, the MR images were 

evaluated by a single observer, and such analyses could 

be more rigorous when performed by several observers. 

Third, because Asian populations have a higher 

proportion of intracranial atherosclerotic stenosis [31, 

32], which is also related to the imaging markers of 

CSVD, intracranial atherosclerotic stenosis should be 

considered. Fourth, the measurement of fat density on 

CT can be affected by variability in the ROI placement. 

We chose to measure the average from bilateral ICAs 

from 3 discontinuous sections to reduce the degree of 

variation. 

 

Nevertheless, to the best of our knowledge, this study 

was the first to investigate the association between 

pericarotid fat and CSVD and suggest that features that 

appear to extend beyond the vessel lumen of the ICA 

may be linked to CSVD. This information has 

implications for whether targeted medical intervention 

for perivascular fat can be effective in preventing 

diseases of the carotid artery and progression of CSVD. 

 

In conclusion, our study provides evidence suggesting 

that an increased pericarotid fat density is associated 

with the presence and degree of WMHs and lacunes. It 

is necessary to identify potential biological pathways 

supporting the association between pericarotid fat 

changes and CSVD. 

 

MATERIALS AND METHODS 
 

Patient recruitment 

 

We screened patients consecutively at our department 

from January 1, 2016, to December 31, 2019, to identify 

subjects meeting the following inclusion criteria: 1) an 

interval between the screened neck CTA and cranial 

MRI no longer than 3 months and 2) an age between 50 

and 80 years. The exclusion criteria were as follows: 1) 

severe malacia lesion, extensive or old infarction, 

hemorrhage, atrophy or tumor; 2) other diseases that 

may cause white matter lesions, such as multiple 

sclerosis, vasculitis, and connective tissue diseases; or 

3) poor imaging quality or partially missing images. 

 

This study was approved by the ethics committee of the 

Taizhou Central Hospital (approval number, 2020L-12-

04). The study protocol conforms to the ethical 

guidelines of the 1975 Declaration of Helsinki. 

Informed patient consent was exempted because this 

was a retrospective study based on routine clinical data. 

 

Data collection and determination 

 

The demographics, clinical features, and vascular risk 

factors were extracted from the patients’ medical 

records. The risk factors were defined as follows: 

hypertension (systolic/diastolic blood pressure > 140/90 

mmHg over repeated measurements or a medical 
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history of hypertension), diabetes mellitus (fasting 

blood glucose > 7.0 mmol/L, hemoglobin A1c > 6.5%, 

self-reported diabetes mellitus, or the use of oral 

antidiabetic drugs or insulin), hyperlipidemia (serum 

triglycerides > 1.7 mmol/L, low-density lipoprotein > 

3.4 mmol/L, high-density lipoprotein cholesterol < 0.8 

mmol/L, or the use of statins), current smoking 

(currently smoking or quit smoking within 1 year of 

admission), and drinking (> 2 standard alcoholic 

beverages consumed per day). 

 

Neuroimaging acquisition and processing 

 

Computed tomography angiography (CTA) was 

performed using a 64-slice Discovery CT750 HD (GE, 

USA) with the following parameters: 100 kVp, 3 mAs, 

section thickness 0.625 mm, interval 0.625 mm, and 

display field of view (DFOV) 250 × 250 mm. 

Intravenous iodinated contrast (Ioversol Injection, 1.5-2 

ml/kg; Hengrui Medicine Co., Ltd., China) was 

administered at a rate of 4.0 mL/s. 

 

The MRI examinations were performed using a 1.5T 

MR-Signa HDx MRI system (GE, USA). The MRI 

images were obtained after axial scanning using the 

following parameters: time repetition (TR)/time echo 

(TE)=8200/109 ms, slice thickness (ST) = 5 mm, DFOV 

= 165 × 240 mm for T2-weighted images; TR/TE = 

464/14 ms, ST = 4 mm, and DFOV = 225 × 240 mm for 

T1-weighted images; and TR/TE = 3400/94 ms, ST = 5 

mm, and DFOV = 230 × 230 mm for diffusion-

weighted imaging (DWI). 

 

Pericarotid fat density analysis 

 

The density of the pericarotid fat surrounding the 

extracranial ICA can be measured via Hounsfield units 

(HU) on routine CTA imaging. We referred to an 

established approach previously described in [2] using 

predefined image display settings (window width, 500 

HU; window center, 100 HU). We placed 2 regions of 

interest (ROIs) (3 mm2 in diameter) in the perivascular 

fat on both sides of the ICAs (Figure 3). The ROIs 

were placed at least 1 mm from the outer margin of the 

carotid artery wall to exclude the carotid artery wall 

and surrounding soft-tissue structures. The HU values 

were recorded from 3 discontinuous slices near the 

origin of the ICA, and then, the mean and maximum 

HU values were measured. In addition, if North 

American Symptomatic Carotid Endarterectomy  

Trial (NASCET)-defined ICA stenosis was present,  

we recorded the value at the maximum stenosis  

slices [33]. 

 

The evaluation of the density of the pericarotid fat was 

performed by a neuroradiologist blinded to the clinical 

data. To test the reliability of the measurements, a 

second neuroradiologist blinded to the clinical data and 

initial measurements re-evaluated a subset of patients 

with extracranial ICA stenosis. The average value of the 

two data points was calculated and used. The intraclass 

correlation coefficient (ICC) values of the mean and 

maximum HU from the two observers were 0.808 (0.67, 

0.89) and 0.842 (0.73, 0.91), respectively. A Bland-

Altman analysis was performed as shown in 

Supplementary Figure 1. Our measurements were 

simple and showed high reproducibility, suggesting that 

interreader differences are likely relatively modest using 

this technique. 

 

Assessment of MRI markers of CSVD 

 

All imaging markers of CSVD were defined according 

to the neuroimaging standards as usual [7, 34]. The 

presence of lacunes, WMHs, and PVSs was observed 

independently outside the acute infarct area (based on 

 

 
 

Figure 3. Pericarotid fat density analysis. Two regions of interest (3 mm2 in diameter) were placed in the pericarotid fat surrounding the 

origin of the internal carotid artery. (A) right internal carotid artery. (B) left internal carotid artery. 
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DWI). Briefly, lacunes were defined as round or ovoid, 

subcortical, fluid-filled cavities (signal similar to 

cerebrospinal fluid) of 3-15 mm in diameter situated in 

the subcortical white matter, basal ganglia, or brain 

stem. Cerebral WMH was defined as a focal ≥3 mm 

lesion without definite hypointensity on T1-weighted 

images and with hyperintensity on fluid-attenuated 

inversion recovery (FLAIR) and T2-weighted images 

and rated according to the Fazekas scale from 0 to 3 

[35]. PVSs were defined as cerebrospinal fluid (CSF)-

like signal lesions that were round, ovoid, or linear and 

1-3 mm in diameter situated in the centrum semiovale 

and basal ganglia and rated on a validated 

semiquantitative scale from 0 to 4 [36]. In this study, we 

counted PVSs only in the basal ganglia because the 

PVSs in this region seemed to be specifically associated 

with CSVD [37]. One neuroradiology board-certified 

expert in our hospital who was blinded to the clinical 

data reviewed all brain MR images. 
 

Statistical analysis 
 

The normally distributed data are presented as the mean 

± standard deviation (SD), and the nonnormally 

distributed data are presented as the median 

(interquartile range). The categorical data are presented 

as frequencies and percentages. The clinical and 

neuroimaging characteristics of the groups were 

compared using Student’s t-test, paired t-test, analysis 

of variance with Bonferroni correction, Mann–Whitney 

U test or Pearson's chi-square test as appropriate. The 

correlations were measured using a Spearman 

correlation analysis. We calculated the ICC and 

corresponding 95% CI to evaluate the degree of 

interreader reliability. In the multivariate analyses, the 

associations between the perivascular fat density 

(independent variable) and MRI markers of CSVD 

(dependent variables) were investigated using a binary 

logistic regression (for the presence of lacunes) and 

ordinal logistic regression (for WMHs and PVSs). The 

severity of WMHs and PVSs was trichotomized 

because of the small number of samples with a more 

severe degree (mild [degree 0], moderate [degree 1], 

and severe [degrees 2-3 for WMHs and degrees 2-4 for 

PVSs]). The quantitative data were divided into several 

layers per standard deviation increase. The results are 

expressed as the adjusted ORs (multivariate analysis) 

along with their 95% confidence intervals (CIs). All 

data were analyzed using SPSS 20.0 (IBM, Chicago, IL, 

USA). Two-sided P-values<0.05 were considered 

statistically significant if not otherwise specified. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. The Bland-Altman analysis for the two evaluation. (A) for mean HU, and (B) for maximum HU. 

Abbreviation, HU, hounsfield unit. 
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Supplementary Table 
 

Supplementary Table 1. Association between the perivascular fat density and CSVD risk 
factors 

Characteristics 
Mean HU  Maximum HU 

No Yes P  No Yes P 

Male, n (%) -76.89±13.34 -77.55±12.88 0.564  -61.52±14.68 -62.99±14.48 0.249 

Hypertension -79.34±12.55 -76.72±13.13 0.043  -64.63±13.96 -61.84±14.68 0.054 

Diabetes mellitus -78.01±12.73 -76.26±13.45 0.117  -62.99±14.57 -61.70±14.53 0.301 

Hyperlipidemia -78.75±13.71 -76.40±12.50 0.040  -63.82±15.47 -61.62±13.89 0.079 

Coronary heart disease -77.58±13.00 -76.59±13.13 0.423  -62.77±14.60 -61.68±14.46 0.426 

Atrial fibrillation -77.76±12.82 -76.14±13.57 0.188  -63.04±14.40 -60.99±14.91 0.134 

Current smoking -77.87±13.22 -76.18±12.60 0.148  -63.05±14.80 -61.30±13.99 0.179 

Drinking -77.34±13.05 -77.23±13.03 0.941  -62.36±14.70 -63.06±13.88 0.668 

 


