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Abstract

Objectives

We aimed to build a machine learning predictive model to predict the risk of prolonged

mechanical ventilation (PMV) for patients with Traumatic Brain Injury (TBI).

Methods

This study included TBI patients who were hospitalized in a level 1 trauma center between

January 2014 and February 2019. Data were analyzed for all adult patients who received

mechanical ventilation following TBI with abbreviated injury severity (AIS) score for the head

region of� 3. This study designed three sets of machine learning models: set A defined

PMV to be greater than 7 days, set B (PMV > 10 days) and set C (PMV >14 days) to deter-

mine the optimal model for deployment. Patients’ demographics, injury characteristics and

CT findings were used as predictors. Logistic regression (LR), Artificial neural networks

(ANN) Support vector machines (SVM), Random Forest (RF) and C.5 Decision Tree (C.5

DT) were used to predict the PMV.

Results

The number of eligible patients that were included in the study were 674, 643 and 622

patients in sets A, B and C respectively. In set A, LR achieved the optimal performance with

accuracy 0.75 and Area under the curve (AUC) 0.83. SVM achieved the optimal perfor-

mance among other models in sets B with accuracy/AUC of 0.79/0.84 respectively. ANNs

achieved the optimal performance in set C with accuracy/AUC of 0.76/0.72 respectively.

Machine learning models in set B demonstrated more stable performance with higher pre-

diction success and discrimination power.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abujaber A, Fadlalla A, Gammoh D,

Abdelrahman H, Mollazehi M, El-Menyar A (2020)

Using trauma registry data to predict prolonged

mechanical ventilation in patients with traumatic

brain injury: Machine learning approach. PLoS ONE

15(7): e0235231. https://doi.org/10.1371/journal.

pone.0235231

Editor: Hans-Peter Simmen, University Hospital

Zurich, SWITZERLAND

Received: March 14, 2020

Accepted: June 10, 2020

Published: July 8, 2020

Copyright: © 2020 Abujaber et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

shared publicly because of institutional restriction

and regulation. Data are available from the MRC

Institutional Data Access / Ethics Committee

(contact via research@hamad.qa) for researchers

who meet the criteria for access to confidential

data.

Funding: The author(s) received no specific

funding for this work.

http://orcid.org/0000-0003-2584-953X
https://doi.org/10.1371/journal.pone.0235231
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235231&domain=pdf&date_stamp=2020-07-08
https://doi.org/10.1371/journal.pone.0235231
https://doi.org/10.1371/journal.pone.0235231
http://creativecommons.org/licenses/by/4.0/
mailto:research@hamad.qa


Conclusion

This study not only provides evidence that machine learning methods outperform the tradi-

tional multivariate analytical methods, but also provides a perspective to reach a consensual

definition of PMV.

Background

Patients with severe traumatic brain injury (TBI) are prone to impaired arousal which war-

rants protecting their airway by mechanical ventilation (MV) [1]. Therefore, they are at a

higher risk of prolonged mechanical ventilation (PMV) than any critical patients [2]. In 2007,

the European Respiratory Journal published the weaning from mechanical ventilation guide-

lines to describe the entire process of liberating patients from the ventilator [3]. Nonetheless,

due to the lack of robust evidence in the literature, there were no clear recommendations

about the weaning process in the neurocritical care settings which made the decision to extu-

bate the patient a complex decision [2].

Although MV is a lifesaving intervention, it has several complications such as ventilator-

induced lung injury, ventilator associated pneumonia (VAP), prolonged hospitalization and

mortality [4, 5]. These risks increase with the PMV [5, 6]. Approximately, 30% of critically ill

patients requires PMV [5, 7, 8]. It is predicted that more than 600,000 patients per year will

require PMV in 2020 [9]. Several strategies, such as minimizing the sedation and performing

daily spontaneous breathing trials have been adopted to mitigate the risks associated with the

MV and to prevent the PMV [10, 11].

Hence, predicting patients at risk for PMV is of utmost importance to help clinicians design

individualized plans of care that mitigate the risk of PMV. This includes the decision of early

use of tracheostomy which has been proven beneficial when MV is still required [8, 12–14].

There are several studies that aimed to determine the significant predictors of PMV. However,

it remains difficult to determine a set of key predictors due to the differences in patients’ clini-

cal features and clinical settings. Furthermore, there is no consensus on the definition of PMV.

The PMV period in the published literature ranges from 5 hours to 1 year with > 21 days

being the most common definition for PMV [15]. Table 1 shows examples of the previously

published literature in predicting PMV highlighting the patients’ characteristics, PMV dura-

tion, used predictors and the predictive models’ performance measures.

In a recent Cochrane systematic review, the early tracheostomy (<10 days from the start of

MV) was found to be associated with significant improvement of patient’s treatment outcomes

[17]. This finding supports the previous randomized clinical trial by Young et al. who found

that early tracheostomy replacement (< 10 days) is beneficial to the patients and is associated

with improved outcomes [18]. Besides the favorable clinical outcomes, early tracheostomy is

associated with improved economic outcomes such as reduced intensive care unit (ICU) cost

[19] and reduced hospital length of stay [17]. Furthermore, early tracheostomy was found to

significantly improve the patient‘s quality of life (QOL) compared to the endotracheal ventila-

tion when prolonged ventilation is required [20]. Therefore, defining the PMV to be longer

than 10 days could be of a great value if early liberation from MV, early tracheostomy replace-

ment, improving quality of life and cost-effectiveness were concerned. Most of the previously

published studies that aimed to predict PMV, used the conventional multivariate techniques

particularly logistic regression and yielded low to moderate accuracies (0.53–0.75) and Area

under the curve (AUC) between 0.65and 0.75 [8, 14]. The implementation of the machine

PLOS ONE Prediction of prolonged mechanical ventilation in patients with brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 2 / 17

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0235231


learning to predict the PMV has achieved a relatively higher performance than the conven-

tional predictive models with accuracy of 0.832 and AUC of 0.82 [8]. Accordingly, we decided

in this study to evaluate the predictive performance of selected machine learning models when

PMV is defined as> 10 days. At the same time, we conducted another two sets of predictive

models in which PMV is defined as> 7days and> 14 days in order to compare the predictive

performance of the machine learning models in the three sets.

Methodology

This study utilized the trauma registry data to design supervised machine learning algorithms

to predict the PMV (> 7 days, > 10 days and > 14 days) for patients who received MV follow-

ing moderate to severe TBI. We hypothesized that the machine learning algorithms outper-

form the conventional multivariate predictive techniques in terms of accuracy, sensitivity,

specificity, and precision, Negative Predictive Value (NPV), F-score and AUC. Also, consistent

with the Cochrane‘s systematic review results, we hypothesized that defining PMV to be

greater than 10 days might help optimize the prediction performance of the machine learning

models used in this study.

The study was conducted in accordance with the Cross-Industry Standard Process for Data

Mining (CRISP-DM) that provides a definition of typical phases of the data mining projects.

CRISP-DM breaks the data mining process into six phases: business and data understanding,

data preparation, modeling, evaluation and deployment [21]. Fig 1 summarizes the methodol-

ogy that was followed in this study.

Table 1. Examples of past literature on predicting PMV.

Study Patient group PMV

duration

Predictors Predictive

technique

Model‘s

performance

(AUC)

Parreco et al.

(2018) [8]

All ventilated level 3 ICU patients

(2001–2012)

>7days Oxford Acute Severity of Illness Score (OAISIS),

Sequential Organ Failure Assessment, Simplified

Acute Physiology Score (SAPS), Simplified Acute

Physiology Score II (SAPS II), Acute Physiology

Score III, and logistic organ dysfunction score

(LODS), Sepsis Related Organ Failure Assessment

(SOFA)

Gradient-Boosted

Decision Tree

Algorithm

Mean AUC

0.820 ± 0.016

Chang et al

(2018) [16]

ICU patients who survived the Sepsis/

Septic shock and respiratory failure

>21 days Demographics Acute Physiology, Age, Chronic

Health Evaluation (APACHE II) Comorbidities Lab

findings (hematology, liver function, coagulation,

Urea Electrolytes, Arterial blood gases) Ventilator

settings

Logistic

Regression

AUC 0.725

Agle et al. (2006)

[12]

Torso trauma patients who met

specific criteria for shock resuscitation

and required 48 hours of mechanical

ventilation

>14 days Demographics, Facial trauma, chest trauma severity

(abbreviated injury score AIS), ventilatory settings.

Logistic

Regression

AUC 0.79

Clark and Lettieri

(2013) [5]

Adult patients requiring MV support

in a medical intensive care unit (ICU)

>14 days Demographics, vital signs, laboratory values

(hematology, renal and liver function tests, HCO3),

APACHE 2

Logistic regression AUC 0.75

Dimopoulou et al.

(2003) [13]

Adult patients with thoracic trauma

requiring MV support in a intensive

care unit (ICU)

>7 days Demographics, injury characteristics, Injury severity

score, AIS of the other associated injuries (head,

neck, face, pelvis and extremities) and ventilatory

settings

Logistic regression Not declared

Figueroa- Casas

et al. (2015) [14]

ICU patients receiving MV >7 days Demographics, SOFA score on intubation,

comorbidities, location before ICU admission,

diagnosis category

Logistic regression AUC 0.65–0.70

https://doi.org/10.1371/journal.pone.0235231.t001
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We constructed three sets of predictive models based on the definition of the PMV. Set A

defines PMV as> 7 days, set B defines PMV as> 10 days and set C defines PMV as>14 days.

Business and data understanding. Not all the registry data were usable in this study.

Therefore, to better understand and choose meaningful variables, we explored the definition

of each variable in the trauma registry data dictionary. In addition, we reviewed the literature

in order to determine which among the enormous number of variables need to be considered

a predictor and which among them to be imputed if in case they have missing values [22].

Head Abbreviated Injury Scale Score (HAIS) was used to classify the severity of TBI. Head AIS

of 3 and 4 were considered moderate severity and HAIS 5 was considered severe TBI [23, 24].

Data preparation. The study was approved by the Institutional Review Board (IRB) of

Hamad Medical Corp. (HMC) in Qatar. This retrospective study targeted all adult patients

who were admitted to level 1 trauma center at Hamad General Hospital (HGH) in the period

from January 2014 to February 2019 and registered in the trauma registry (a prospectively col-

lected standardized and well maintained data with robust quality assurance). A total of 2318

patients with TBI were registered in the trauma registry for the given period.

The following inclusion criteria were followed to select the patient‘s record:

• Adult patients older than 14 years with TBI.

• Patients whose Abbreviated Injury Score for head region (HAIS)� 3

• Patients who underwent intubation following the injury either at the scene by the ambulance

crew or in the hospital within the first 24 hours from the arrival to the hospital.

• On the other hand, the exclusion criteria were:

Fig 1. Research methodology.

https://doi.org/10.1371/journal.pone.0235231.g001
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• Patients with any regional injuries that have AIS greater than the HAIS to ensure that the

TBI assumes the highest effects on the dependent variable.

• All patients who died or discharged within 7 days for set A, within 10 days for set B and

within 14 days for set C.

Due to the criticality of the subject, we decided that all records with missing values to be

deleted. Therefore, no imputation was needed. All variables that have no predictive power (e.g.

health record number, date of admission and date of disposition) or those that were severely

imbalanced (e.g. gender: where female patients were approximately 4% in the three data sets)

were excluded. Subsequently, 674 records in set A, 643 records in set B, and 622 records in set

C were eligible for the study. Fig 2 explains the records inclusion and exclusion procedure.

The retrieved data included the following variables: age, gender, race, mechanism of injury,

vital signs upon arrivals (blood pressure and heart rate) Glasgow Coma Score (GCS) on arrival

to the emergency department (ED), CT scan findings, injury severity score (ISS), the AIS per

body region, intubation status and location, date/time of injury, time of admission to the ED,

patients known comorbidities, performed procedures, blood transfusion, in-hospital compli-

cations, outcome and date of disposition.

Outcome measure

The dichotomous outcome measure for this study is the prolonged mechanical ventilation

(PMV). PMV is defined as the stay on mechanical ventilatory support for> 7 days in set A, >

10 days in set B and> 14 days in set C from the initial intubation that was performed within

the first 24 hours from the injury. PMV0 means that the patient was extubated before the sets’

period and PMV1 means that the patient stayed on MV longer than the sets’ period.

Prediction models

A group of supervised machine learning techniques were utilized to help us to compare their

performance with each other and with previous studies in order to recommend the model that

achieves the optimal performance and highest practicality in supporting the clinical decision.

Logistic regression (LR), Random Forrest (RF) Artificial neural networks (ANNs), C.5 Deci-

sion Tree (C.5 DT) and Support vector machines (SVMs) were selected to provide base line

comparative performance. SPSS modeler 18.2 was used to conduct the analysis.

To prevent overfitting and to validate the models’ performance, we partitioned the data

into training set (70%) and testing set (30%) and the overfit prevention was set at 30%. The

data partitioning was executed automatically by the analytical software based on the partition

command that we provided. Table 2 explains the data partitions.

Logistic Regression (LR). LR is a typical technique for predicting binary, binomial or

multinomial outcomes [22]. Step-wise LR was used in this study to control the effect of con-

founding variables and to measure the independent risk factors for post-TBI PMV [25].

Random Forrest (RF). RF is a powerful supervised machine learning technique that is

used widely for classification problems [22, 26]. RF is proven to have improved accuracy in

comparison to other machine learning techniques. The reason is that RF uses bootstrapping to

grow a forest of uncorrelated trees with a high degree of randomness in feature selection

which contributes to reducing errors significantly [27].

Support Vector Machines (SVM). SVM is a powerful classification machine learning

algorithm that can be used for linear and non-linear data sets [28]. When using SVM for classi-

fication purpose, it is very important to decide which kernel function better achieves the
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optimal hyperplane that separates the classes [29]. Linear kernel was used in this study as it

provided a better predictive performance in the preliminary assessment.

Artificial Neural Networks (ANN). ANNs are widely used machine learning techniques

that perform powerfully in classification and pattern identification [28]. Scholars consider

ANNs a black-box analytical model. Nonetheless, their great potentials in supporting clinical

Fig 2. Records inclusion and exclusion procedure.

https://doi.org/10.1371/journal.pone.0235231.g002
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practice through the engagement with the evidence-based medicine are undeniable [30].

Multi-layer perception (MLP) ANN is used for this study as it outperformed the Radial Basis

Function (RBF) in the preliminary analysis. The typical MLP network consists of an input

layer that consists of the input nodes or predictors, and an output layer that consists of neu-

rons. It also has one or more layer of neurons that are usually called hidden layers as they are

inaccessible [31]. The neural network is usually optimized by partitioning the data into sepa-

rate training and test data sets which help prevent the overfitting. The training continues until

the error is no further reducible [32] when used for classification, ANNs is seen as a set of con-

nected input/output units in which each connection has a weight associated with it. This

weight represents the strength of the connection between the units [33].

C.5 Decision Tree (DT). C. 5 DT is the successor of the C. 4.5 DT classification data min-

ing algorithm. Decision tree is a “classification algorithm in which each non-leaf node indi-

cates a test on an attribute of the input cases; each branch corresponds to an outcome of the

test; and each leaf node indicates a class prediction” [22]. Generally, DTs are powerful, logical

and easy to interpret and to understand classification algorithms [34].

Results

In set A (PMV> 7days), 674 eligible cases were included. Of them, 404 (59.9%) have ventilator

days greater than 7 days. The overall mean age was 32.3 years and the mean age for patients

with PMV was 33.6. Fifty-three percent of the patients sustained chest trauma. Of them,

61.7%, 24% and 46.5% sustained lung contusion, hemothorax and pneumothorax, respectively.

The most common TBI diagnosis was subdural hemorrhage (SDH) (25%) and more than 30%

of them developed midline shift on the computed tomography head images.

In set B (PMV>10 days), 643 eligible cases were included. Of them, 290 (45%) have ventila-

tor days greater than 10 days. The overall mean age was 32.1 years and the mean age of patients

Table 2. Data partitions.

Set A PMV >7 days Set Proportion Number of cases Ventilator days� 7 Ventilator days > 7

Training set 70% 472 183 289

Testing set 30% 202 87 115

Total 100% 674 270 404

Set B PMV >10 days Set Proportion Number of cases Ventilator days� 10 Ventilator days > 10

Training set 70% 446 239 207

Testing set 30% 197 114 83

Total 100% 643 353 290

Set C PMV >14 days Set Proportion Number of cases Ventilator days� 14 Ventilator days > 14

Training set 70% 432 312 120

Testing set 30% 190 138 52

Total 100% 622 450 172

https://doi.org/10.1371/journal.pone.0235231.t002

Table 3. Sample characteristics-continuous variables.

Model Set B (PMV >10 days)

Variable N Mean SD Mean when PMV >10

Age 643 32.1 12.9 33.6

ISS 643 26.8 9.5 29.5

ED SBP 643 128.2 26.1 126.6

ED HR 643 101.8 24.6 103.4

https://doi.org/10.1371/journal.pone.0235231.t003
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with PMV was 33.6 years. Almost half of the patients sustained chest trauma. Of them, 63%,

22% and 43% sustained lung contusion, hemothorax and pneumothorax, respectively. SDH

was the most common TBI diagnosis (25%) and 29% of them had midline shift. Tables 3 and

4 show the sample characteristics in set B.

In set C (PMV >14 days), 622 eligible cases were included. Of them, 172 (28.5%) have ven-

tilator days greater than 10 days. The overall mean age was 32 years and the mean age for

patients with PMV was 33.9 years. There were 329 patients (52.9%) sustained chest trauma. Of

them, 64% suffered lung contusion, 22.8% had hemothorax and 42% had pneumothorax. One

quarter of the patients sustained SDH and 28.8% of them had midline shift.

Performance of the data mining techniques

Table 5 shows the performance evaluation metrics for the five machine learning techniques in

the test data partition. All models achieved moderate accuracy (0.66–0.79). Nevertheless, since

accuracy alone is insufficient measure to evaluate the overall model‘s performance, AUC, pre-

cision, NPV, sensitivity, specificity and F-score measures were taken into consideration. In set

A, LR and SVM achieved relative similar performance in all performance metrics. Nonetheless,

LR is the preferred model for deployment as it demonstrated higher discrimination power that

is of great importance to the classification function (AUC 0.83 vs. 0.80) and due to its parsi-

mony. LR achieves similar performance with fewer numbers of dimensions. In Set B, SVM

achieved the highest performance. In set C, ANNs and SVM achieved similar performance.

ANNs is the preferred model as it gives higher accuracy, specificity and positive predictive

power (precision).

Comparing the discrimination power between the three sets, set B that defines PMV to be

greater than 10 days performs better than Sets A and C with AUC ranging from 0.77 to 0.84

while set A (PMV > 7days) AUC ranges from 0.65 to 0.83 and set C (PMV > 14 days) AUC

ranges from 0.65 to 0.75. This implies that the discrimination power and the accuracy were

more optimized when PMV was defined to be greater than 10 days.

Prolonged mechanical ventilation predictors

In set A (PMV > 7days), LR model used 7 predictors to classify the patients into two classes

based on their mechanical ventilation dependency period. In machine learning, the contribu-

tion of every predictor to the reduction of error and to the overall model‘s capacity to produce

accurate predictions is usually presented in the form of predictor‘s importance [27]. The first

predictor is usually the most important predictor of the model’s capacity, then the other pre-

dictors importance values are ranked in relation to the first ranked predictor. Fig 3A shows

the predictors importance in LR. Receiving blood during resuscitation scored the highest pre-

dictor importance value (0.24).

In set B (PMV > 10 days), the SVM used all the 27 predictors to classify the patients into

the two outcome classes. Development of VAP scored the highest predictor importance value

of 0.16. Fig 3B ranks the top ten predictors based on the predictor importance index.

In set C (PMV > 14 days), ANNs used all the 27 predictors to classify the patients into the

two classes. Injury Severity Score (ISS) scored the highest predictor importance value (0.12)

Fig 3C ranks the top ten predictors based on their importance.

Obviously, machine learning techniques in set B demonstrated more stable performance a

higher discrimination power as presented by AUC. It is uncommon to define PMV to be

greater than 10 days. The driver for selecting 10 days stems from the fact that the earlier libera-

tion from MV is associated with improved patient outcomes. In addition, 10 days were identi-

fied to be the optimal period to perform a tracheostomy if ventilatory support is still required
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Table 4. Sample characteristics (set B)—nominal and ordinal variables.

Variable Category Count/% PMV = 0 PMV = 1

Race Asian 365/56.8% 218/59.7% 147/40.3%

Other 278/43.2% 135/48.6% 143/51.4%

Mechanism of Injury (MOI) MVC 247/38.4% 128/51.8% 119/48.2%

Fall 159/24.7% 100/62.9% 59/37.1%

Pedestrian 125/19.4% 59/47.2% 66/52.8%

Other 112/17.4% 66/58.9% 46/41.1%

Multiple rib fractures No 497/77.3% 294/59.2% 203/40.8%

Yes 146/22.7% 59/40.4% 87/59.6%

Lung contusion No 427/66.4% 246/57.6% 181/42.4%

Yes 216/33.6% 107/49.5% 109/50.5%

Hemothorax No 567/88.2% 325/57.3% 242/42.7%

Yes 76/11.8% 28/36.8% 48/63.2%

Pneumothorax No 495/77% 297/60% 198/40%

Yes 148/23% 56/37.8% 92/62.2%

Midline shift No 456/70.9% 264/57.9% 192/42.1%

Yes 187/29.9% 89/47.6% 98/52.4%

TBI diagnosis/ CT findings Sub-Dural Hemorrhage (SDH) 162/25.2% 89/54.9% 73/45.1%

Extra-Dural Hemorrhage (EDH) 141/21.9% 100/70.9% 41/29.1%

Sub-Arachnoid Hemorrhage (SAH) 53/8.2% 24/45.3% 29/54.7%

Brain Contusion 93/14.5% 63/67.7% 30/32.3%

Diffuse Axonal Injury (DAI) 93/14.5% 28/30.1% 65/69.9%

Other 56/8.7 34/60.7% 22/39.3%

Cerebral Edema 45/7% 15/33.3% 30/66.7%

Head AIS (HAIS) 3 225/35% 153/68% 72/32%

4 157/24.4% 86/54.8% 71/45.2%

5 281/40.6% 114/34.2% 147/65.8%

Face AIS (FAIS) 0 313/48.7% 169/54% 144/46%

1 74/11.5% 36/48.6% 38/51.4%

2 (AIS 3–5) 256/39.8% 148/57.8% 108/42.2%

Chest AIS (CAIS) 0 302/47% 197/65.2% 105/34.8%

1 (AIS 1–2) 100/15.5% 42/42% 58/58%

2 (AIS 3–5) 241/37.5% 114/47.3% 127/52.7%

Abdomen AIS (AAIS) 0 515/80.1% 301/58.4% 214/41.6%

1 (AIS 1–5) 128/19.9% 52/40.6% 76/59.4%

Spine AIS (SAIS) 0 443/68.9% 262/59.1% 181/40.9%

1 (AIS 1–5) 200/31.1% 91/45.5% 109/54.5%

Glasgow Coma Score (GCS) category 13–15 85/13.2% 56/65.9% 29/34.1%

9–12 72/11.2% 53/73.6% 19/26.4%

� 8 486/75.6% 244/50.2% 242/49.8%

Known comorbidities No 537/83.5% 311/57.9% 226/42.1%

Yes 106/16.5% 42/39.6% 64/60.4%

Intubation location In-hospital 231/35.9% 142/61.5% 89/38.5%

Pre-hospital 412/64.1% 211/51.2% 201/48.8%

Blood transfusion No 235/36.6% 189/80.4% 46/19.6%

Yes 408/63.5% 164/40.2% 244/59.8%

Ventilator Associated Pneumonia (VAP) No 478/74.3% 311/65% 167/35%

Yes 165/25.7% 42/25.5% 123/74.5%

(Continued)
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[18]. Therefore, defining PMV as>10 days seems to be more beneficial to early devise an indi-

vidualized patient treatment plan.

Discussion

Predicting prolonged mechanical ventilation (PMV) in patients with TBI is of utmost impor-

tance. This importance stems from the fact that early liberation from mechanical ventilation

yields improved outcomes [8, 17]. Nevertheless, predicting PMV is proven to be a difficult

mission due to several factors such as lack of consensus on the PMV definition and the poor

outcomes of the conventional analytical techniques that were used to make predictions. The

traditional statistical techniques help clinicians predict PMV by 59% of the time only [8, 14].

Hence, it is very important to help clinicians early identify patients at risk for PMV in order

to design an individualized care plan and to decide early tracheostomy to helps patient achieve

better outcomes if MV is still required. The lack of a consensual definition of PMV makes the

determination of the optimal MV duration and the tracheostomy decision very difficult. We

opted for the 10 days to be the cutoff point to differentiate between the PMV and the non-

PMV based on a prior Cochrane review which found that 10 days is the optimal duration

when moving patients to tracheostomy will result in better outcomes [17]. Therefore, planning

early tracheotomy when PMV can be predicted and possibly transferring the patient to the

most appropriate institution for PMV and managing its complications is important.

This study demonstrated that the application of supervised machine learning techniques

yields moderate overall performance for all the machine learning models in the three sets.

Table 4. (Continued)

Variable Category Count/% PMV = 0 PMV = 1

Sepsis No 583/90.7% 343/58.8% 240/41.2%

Yes 60/9.3% 10/16.7% 50/83.3%

Total 643/100% 353/54.9% 290/45.1%

https://doi.org/10.1371/journal.pone.0235231.t004

Table 5. Performance of the prediction models.

Set A (PMV > 7days) Number of predictors Accuracy Area Under the Curve Precision Negative Predictive Value Sensitivity Specificity F-Score

Logistic Regression 7 0.75 0.83 0.77 0.72 0.80 0.68 0.78

Support Vector Machine 23 0.76 0.80 0.77 0.74 0.83 0.67 0.79

Random Forrest 23 0.73 0.77 0.77 0.69 0.76 0.70 0.76

Artificial Neural Networks 23 0.69 0.78 0.72 0.66 0.77 0.60 0.74

C.5 Decision Tree 19 0.66 0.65 0.70 0.60 0.70 0.61 0.70

Set B (PMV > 10 days) Number of predictors Accuracy Area Under the Curve Precision Negative Predictive Value Sensitivity Specificity F-Score

Support Vector Machine 23 0.79 0.84 0.75 0.82 0.76 0.82 0.75

Artificial Neural Networks 23 0.77 0.84 0.71 0.81 0.76 0.77 0.73

Logistic Regression 7 0.75 0.82 0.70 0.78 0.69 0.79 0.70

Random Forrest 23 0.75 0.80 0.67 0.84 0.81 0.71 0.73

C.5 Decision Tree 17 0.71 0.77 0.66 0.75 0.65 0.75 0.65

Set C (PMV > 14 days) Number of predictors Accuracy Area Under the Curve Precision Negative Predictive Value Sensitivity Specificity F-Score

Artificial Neural Networks 23 0.76 0.72 0.64 0.77 0.27 0.94 0.38

Support Vector Machine 23 0.74 0.74 0.54 0.77 0.29 0.91 0.38

Logistic Regression 6 0.73 0.75 0.52 0.77 0.29 0.90 0.37

Random Forrest 23 0.71 0.73 0.47 0.80 0.46 0.80 0.47

C.5 Decision Tree 10 0.71 0.65 0.43 0.76 0.25 0.88 0.32

https://doi.org/10.1371/journal.pone.0235231.t005
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Nevertheless, set B achieved more stable performance and higher discrimination power than

sets A and C with average AUC 0.813 for the five prediction models compared to average

AUC of 0.76 for set A and average AUC of 0.72 for set C. SVM was the chosen prediction tech-

nique for set B with accuracy of 0.79 and AUC of 0.84. The importance of this finding is that

the optimal prediction performance is achieved when PMV is defined as>10 days which is the

optimal period for early tracheostomy [17, 18].

The machine learning techniques in the three sets achieved better performance than the tra-

ditional predictive techniques that recorded mild accuracies ranging between 0.60–0.69 and

mild AUCs ranging between 0.52 and 0.67. This proves that the machine learning techniques

outperform the conventional analytical techniques and can provide more support to the clini-

cians to make higher quality decisions that improve the patient treatment outcomes.

In set B, the SVM achieved the optimal performance with accuracy of 0.79 and AUC of

0.84. In addition, it performed moderately in the other measures (precision = 0.75,

NPV = 0.82, sensitivity = 0.76, specificity = 0.82 and F-score = 0.75). The development of VAP

ranked first in predictor importance (0.16). Three quarters of patients who developed VAP

ended up with PMV> 10 days compared to 35% of patients who didn’t develop VAP. Ventila-

tor associated pneumonia (VAP) is known to be associated with poor outcomes including

PMV and mortality [35]. This finding may not necessarily help early prediction of PMV as

VAP is not a condition that a patient presents with when sustains TBI. However, knowing that

VAP contributes significantly to the PMV warrants the early implementation of the preventive

measures such as VAP bundle of care [36] which is becoming the standard of quality care in

critical care medicine.

The need for blood transfusion during resuscitation ranked second in predictor importance

with a score of 0.15. Almost 59.8% of patients who received blood for resuscitation needed

PMV compared to 19.6% of the patients who didn’t require blood for resuscitation. The need

to administer blood transfusion to resuscitate patients who sustain severe trauma could indi-

cate the severity of injury and perhaps a hypovolemic shock that contributes to poor patient‘s

outcomes. This coincides with Ghiani and colleagues [37] who reported that blood transfusion

is independently correlated with worse outcomes. Nevertheless, they concluded that blood

transfusion is an indicator for disease severity rather than directly impacting the prognosis. Lai

et al. (2013) found that the low hemoglobin level is associated with difficult weaning from MV

and may lead to PMV [38]. Also, Zubrow et al. (2018) found that transfusion of Red Blood

Cells (RBCs) in pediatrics with acute respiratory distress syndrome is associated with PMV

[39].

The GCS at the ED is a significant predictor with predictor importance score of 0.1. In this

study, 49.8% of patients who presented to the ED with GCS� 8 stayed on MV longer than 10

days compared to 34.1% of patients who presented to the ED with GCS 13–15 and 26.4% of

those who had GCS of 9–12. This finding is consistent with the previous literature which

proves that patients with lower GCS are at higher risk for post TBI complications including

death [13, 40].

TBI diagnosis (CT scan finding) scored predictor importance of 0.09. 69% of patients who

had diffuse axonal injury (DAI) and 66.7% of those who had cerebral edema stayed on

mechanical ventilator longer than 10 days. Both cerebral edema and DAI were found to be

associated with significant mortality and morbidity [41, 42].

Fig 3. A. Predictor importance chart- Logistic regression (PMV> 7 days). B. Predictor importance chart- Support

Vector Machine (PMV> 10 days). C. Predictor importance chart- Artificial Neural Networks (PMV> 14 days).

https://doi.org/10.1371/journal.pone.0235231.g003
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Furthermore, it is found that the greater the HAIS the greater the risk for PMV. Almost

66% of patients who had HAIS = 5 ended with PMV compared to 32% and 45.2% for HAIS 3

and 4 respectively. It is well documented that the severer the TBI, the higher the risk of comor-

bidities and mortality [25]. The same applies on predicting the PMV[13].

Also, chest AIS scored 0.04 in predictor importance. 58% of patients whose chest AIS 1 and

2 and 52.7% of those whose chest AIS 3–5 had PMV. Previous literature found that chest AIS

helps predict the PMV [12]. Okabe found that the severity of blunt chest trauma is significantly

associated with the risk of PMV [43].

Sepsis was also found to be among the top ten important predictors for the PMV (predictor

importance = 0.04). 83.3% of patients who suffered sepsis following TBI had PMV>10 days.

Like VAP, patients may not present to the ED with sepsis right after the TBI. However, know-

ing that sepsis contributes significantly to the PMV warrants the early implementation of the

preventive measures (the 6-hour sepsis bundle) that is a standard of critical care medicine

[44].

Furthermore, 62.2% of patients who sustained pneumothorax stayed on MV longer than 10

days. Pneumothorax scored 0.04 in predictor importance. It is evident in the literature that

pneumothorax and prolonged chest tube duration are associated with poor outcomes such as

PMV and increased ICU length of stay and mortality [45].

In this study, midline shift is ranked number nine (predictor importance 0.04). Midline

shift is defined as the “displacement of septum pellucidum in relation to the midline in milli-

meters” [46]. 52.4% of patients who sustained midline shift had PMV compared to 42.1% of

those who didn’t have midline shift. Midline shift is a commonly used variable in predicting

post TBI‘s unfavorable outcomes (e.g. CRASH and IMPACT tools) [47–49].

The tenth ranked predictor was abdominal AIS (predictor importance 0.03). 59.4% of

patients who had abdominal trauma with AIS (1–5) had PMV compared to 41.6% of those

who didn’t sustain abdominal injury. Although Blaser et al found that there is a strong correla-

tion between the intra-abdominal hemorrhage and the ICU length of stay and the PMV [50],

the severity of the abdominal injury as measured by the AIS was found insignificant predictor

of PMV in other studies [12, 13]. This could be attributed to different data processing and

inclusion criteria that were followed in the every study.

Wellbeing and economic values

Predicting PMV is proven beneficial in several aspects. Besides the proven clinical value

added, predicting PMV supports the decision of early tracheostomy that is proven economi-

cally beneficial. PMV is associated with several complications that contribute to increasing

ICU and hospital length of stay that is associated with significantly high cost. Early tracheos-

tomy is associated with reduced ICU and hospital length of stay [17, 51]. It is estimated that

the average daily cost of ICU in the USA ranges between $1300 and $9400 depending on the

specialization and complexity of patient disease [52]. The daily cost in the ICU increases when

mechanical ventilation is required [53]. Therefore, it was found that the early tracheostomy

contributes to a significant reduction in the ICU daily cost compared to delayed tracheostomy

[19].

Usually, patients’ treatment plans don’t concentrate merely on addressing the acute and the

chronic healthcare problems. They focus strongly on enhancing the patient’s quality of life

(QOL). Patients who require mechanical ventilation suffer severe deterioration in the QOL

[54]. It was found that early liberation from ventilator or early tracheostomy are associated

with enhanced QOL [20]. Therefore, this study adds value in several aspects that include clini-

cal, wellbeing and economic aspects.
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Limitations

This study faced several challenges. The size of the sample (674, 643 and 622 records) are con-

sidered small for studies that use machine learning techniques. The relatively small sample size

has complicated the data processing, partitioning, and model training, validation and testing.

Nevertheless, the size of data set that are used and the variables that are included in the study

are still comparable with the previous studies. Therefore, the validity of the results shouldn’t be

a problem. Also, the data are abstracted from a well validated trauma registry. So, there are sev-

eral potentially useful predictors that are unobtainable such as laboratory results, ventilator set-

tings, and received medication. Secondly, the lack of agreed upon definition for PMV

complicates the classification mission. There are no previous studies that define PMV to be 10

days. This cut-off is determined based on the result that tracheostomy that is done after 10

days of MV is considered late tracheostomy and is associated with unfavourable outcomes.

Finally, there are only few studies that aim to predict PMV using machine learning approach.

Accordingly, it is difficult to benchmark this study with previous studies that utilize machine

learning and to benefit from innovative data processing techniques that are used in prior

research. The deployment of the model to support clinical decision making is another signifi-

cant challenge. This is due to several reasons such as the questionable reliability of the non-tra-

ditional predictive techniques that stems to a certain extent from the lack of awareness among

the clinicians about the artificial intelligence potentials in supporting clinical decision-making

process. Importantly, unlike the logistic regression for instance, the standardized coefficients

and the odds ratios pertaining to each predictor in the SVM are not obtainable. This makes the

results interpretation more complex than the traditional computational techniques.

Conclusions

The importance of mechanical ventilation in the critical care settings is increasing due to the

increasing demand on the critical care intervention worldwide. Nonetheless, dependence on

mechanical ventilation is associated with several serious outcomes. Therefore, the early libera-

tion from mechanical ventilator is of utmost importance. Predicting patients at risk of PMV

helps clinicians devise personalized care plans in order to mitigate the risk of PMV and to

timely decide tracheostomy if in case ventilatory support is still required. Predicting patients at

risk of PMV will not only help improve patients‘clinical outcomes, but also helps reduce the

critical care cost and enhance patients’ QOL.

The study showed that it is possible to improve the predictive power when using machine

learning approach. Nevertheless, more important than making the prediction is to enhance

the quality of data in the registry or the electronic medical records which help improve the

quality of predictions. Moreover, deploying such models into clinical practice and making

them available in a user-friendly way to the clinicians to support their decision-making is of

great value.

Author Contributions

Conceptualization: Ahmad Abujaber, Adam Fadlalla, Diala Gammoh, Husham Abdelrah-

man, Monira Mollazehi, Ayman El-Menyar.

Data curation: Ahmad Abujaber, Monira Mollazehi.

Formal analysis: Ahmad Abujaber, Adam Fadlalla.

Methodology: Ahmad Abujaber, Adam Fadlalla, Diala Gammoh, Husham Abdelrahman,

Monira Mollazehi, Ayman El-Menyar.

PLOS ONE Prediction of prolonged mechanical ventilation in patients with brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 14 / 17

https://doi.org/10.1371/journal.pone.0235231


Supervision: Adam Fadlalla, Diala Gammoh, Husham Abdelrahman, Ayman El-Menyar.

Writing – original draft: Ahmad Abujaber.

Writing – review & editing: Ahmad Abujaber, Adam Fadlalla, Diala Gammoh, Husham

Abdelrahman, Monira Mollazehi, Ayman El-Menyar.

References
1. Cinotti R, Bouras M, Roquilly A, Asehnoune K. Management and Weaning from Mechanical Ventilation

in Neurologic Patients. Annals of Translational Medicine. 2018; 6(19):1–5.

2. Asehnoune K, Roquilly A, Cinotti R. Respiratory Management in Patients with Severe Brain Injury. Criti-

cal care. 2018; 22(1):76–. https://doi.org/10.1186/s13054-018-1994-0 PMID: 29558976

3. Boles J, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from Mechanical Ventilation.

European Respiratory Journal. 2007; 29(5):1033. https://doi.org/10.1183/09031936.00010206 PMID:

17470624

4. Wang C, Lin H, Chang Y, Maa S, Wang J, Tang W, et al. Predictive Factors of In-Hospital Mortality in

Ventilated Intensive Care Unit. Medicine. 2017; 96(51):e9165–e. https://doi.org/10.1097/MD.

0000000000009165 PMID: 29390449

5. Clark P, Lettieri C. Clinical Model for Predicting Prolonged Mechanical Ventilation. Journal of Critical

Care. 2013; 28:880.e1–.e7.

6. Esteban A, Frutos-Vivar F, Muriel A, Ferguson N, Penuelas O, Abraira V, et al. Evolution of Mortality

Over Time in Patients Receiving Mechanical Ventilation. American Journal of Respiratory and Critical

Care Medicine. 2013; 188(2):220–30. https://doi.org/10.1164/rccm.201212-2169OC PMID: 23631814

7. Esteban A, Anzueto A, Frutos F, Alı́a I, Brochard L, Stewart T, et al. Characteristics and Outcomes in

Adult Patients Receiving Mechanical VentilationA 28-Day International Study. The Journal of the Ameri-

can Medical Association. 2002; 287(3):345–55. https://doi.org/10.1001/jama.287.3.345 PMID:

11790214

8. Parreco J, Hidalgo A, Parks J, Kozol R, Rattan R. Using Artificial Intelligence to Predict Prolonged

Mechanical Ventilation and Tracheostomy Placement. Journal of Surgical Research. 2018; 228:179–

87. https://doi.org/10.1016/j.jss.2018.03.028 PMID: 29907209

9. Zilberberg M, de Wit M, Shorr A. Accuracy of Previous Estimates for Adult Prolonged Acute Mechanical

Ventilation Volume in 2020: Update Using 2000–2008 Data. Critical Care Medicine. 2012; 40(1):18–20.

https://doi.org/10.1097/CCM.0b013e31822e9ffd PMID: 21926594

10. Girard T, Kress J, Fuchs B, Thomason J, Schweickert W, Pun B, et al. Efficacy and Safety of a Paired

Sedation and Ventilator Weaning Protocol for Mechanically Ventilated Patients in Intensive Care (Awak-

ening and Breathing Controlled trial): A Randomised Controlled Trial. Lancet. 2008; 371(9607):126–34.

https://doi.org/10.1016/S0140-6736(08)60105-1 PMID: 18191684

11. Luetz A, Goldmann A, Weber-Carstens S, Spies C. Weaning from Mechanical Ventilation and Sedation.

Current Opinion in Anaesthesiology. 2012; 25(2):164–9. https://doi.org/10.1097/ACO.

0b013e32834f8ce7 PMID: 22246460

12. Agle S, Kao L, Moore F, Gonzalez E, Vercruysse G, Todd R. Early Predictors of Prolonged Mechanical

Ventilation in Major Torso Trauma Patients who Require Resuscitation. The American Journal of Sur-

gery. 2006; 192:822–7. https://doi.org/10.1016/j.amjsurg.2006.08.051 PMID: 17161101

13. Dimopoulou I, Anthi A, Lignos M, Boukouvalas E, Evangelou E, Routsi C, et al. Prediction of Prolonged

Ventilatory Support in Blunt Thoracic Trauma Patients. Intensive Care Medicine. 2003; 29:1101–5.

https://doi.org/10.1007/s00134-003-1813-0 PMID: 12802485

14. Figueroa-Casas J, Dwivedi A, Connery S, Quansah R, Ellerbrook L, Galvis J. Predictive Models of Pro-

longed Mechanical Ventilation Yield Moderate Accuracy. Journal of Critical Care. 2015; 30:502–5.

https://doi.org/10.1016/j.jcrc.2015.01.020 PMID: 25682346

15. Rose L, McGinlay M, Amin R, Burns K, Connolly B, Hart N, et al. Variation in Definition of Prolonged

Mechanical Ventilation. Respiratory Care. 2017; 62(10):1324. https://doi.org/10.4187/respcare.05485

PMID: 28611229

16. Chang Y, Huang K, Chen Y, Wang C, Wang Y, Tseng C, et al. Ventilator Dependence Risk Score for

the Prediction of Prolonged Mechanical Ventilation in Patients Who Survive Sepsis/Septic Shock with

Respiratory Failure. Scientific reports. 2018; 8(1):5650–. https://doi.org/10.1038/s41598-018-24028-4

PMID: 29618837

17. Andriolo B, Andriolo R, Saconato H, Atallah A, Valente O. Early Versus Late Tracheostomy for Critically

Ill Patients. Cochrane Database for Systematic Reviews. 2015; 1:Cd007271.

PLOS ONE Prediction of prolonged mechanical ventilation in patients with brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 15 / 17

https://doi.org/10.1186/s13054-018-1994-0
http://www.ncbi.nlm.nih.gov/pubmed/29558976
https://doi.org/10.1183/09031936.00010206
http://www.ncbi.nlm.nih.gov/pubmed/17470624
https://doi.org/10.1097/MD.0000000000009165
https://doi.org/10.1097/MD.0000000000009165
http://www.ncbi.nlm.nih.gov/pubmed/29390449
https://doi.org/10.1164/rccm.201212-2169OC
http://www.ncbi.nlm.nih.gov/pubmed/23631814
https://doi.org/10.1001/jama.287.3.345
http://www.ncbi.nlm.nih.gov/pubmed/11790214
https://doi.org/10.1016/j.jss.2018.03.028
http://www.ncbi.nlm.nih.gov/pubmed/29907209
https://doi.org/10.1097/CCM.0b013e31822e9ffd
http://www.ncbi.nlm.nih.gov/pubmed/21926594
https://doi.org/10.1016/S0140-6736(08)60105-1
http://www.ncbi.nlm.nih.gov/pubmed/18191684
https://doi.org/10.1097/ACO.0b013e32834f8ce7
https://doi.org/10.1097/ACO.0b013e32834f8ce7
http://www.ncbi.nlm.nih.gov/pubmed/22246460
https://doi.org/10.1016/j.amjsurg.2006.08.051
http://www.ncbi.nlm.nih.gov/pubmed/17161101
https://doi.org/10.1007/s00134-003-1813-0
http://www.ncbi.nlm.nih.gov/pubmed/12802485
https://doi.org/10.1016/j.jcrc.2015.01.020
http://www.ncbi.nlm.nih.gov/pubmed/25682346
https://doi.org/10.4187/respcare.05485
http://www.ncbi.nlm.nih.gov/pubmed/28611229
https://doi.org/10.1038/s41598-018-24028-4
http://www.ncbi.nlm.nih.gov/pubmed/29618837
https://doi.org/10.1371/journal.pone.0235231


18. Young D, Harrison D, Cuthbertson B, Rowan K. Effect of Early vs Late Tracheostomy Placement on

Survival in Patients Receiving Mechanical Ventilation: The TracMan Randomized Trial. The Journal of

the American Medical Association. 2013; 309(20):2121–9. https://doi.org/10.1001/jama.2013.5154

PMID: 23695482

19. Herritt B, Chaudhuri D, Thavorn K, Kubelik D, Kyeremanteng K. Early vs. late tracheostomy in intensive

care settings: Impact on ICU and hospital costs. J Crit Care. 2018; 44:285–8. https://doi.org/10.1016/j.

jcrc.2017.11.037 PMID: 29223743

20. Pandian V, Bose S, Miller C, Schiavi A, Feller-Kopman D, Bhatti N, et al. Exploring Quality of Life in Crit-

ically Ill Tracheostomy Patients: A Pilot Study. ORL Head & Neck Nursing. 2014; 32(1):6–8, 10–3.

21. Bellazzi R, Zupan B. Predictive Data Mining in Clinical Medicine: Current Issues and Guidelines. Inter-

national Journal of Medical Informatics. 2008; 77:81–97. https://doi.org/10.1016/j.ijmedinf.2006.11.006

PMID: 17188928

22. Zolbanin H, Delen D, Hassan Z. Predicting Overall Survivability in Comorbidity of Cancers: A Data Min-

ing Approach. Decision Support Systems. 2015; 74:150–61.

23. Rau C, Kuo P, Wu S, Chen Y, Hsieh H, Hsieh C. Association between the Osteoporosis Self-Assess-

ment Tool for Asians Score and Mortality in Patients with Isolated Moderate and Severe Traumatic

Brain Injury: A Propensity Score-Matched Analysis. International Journal of Environmental Research

and Public Health. 2016; 13(12).

24. Savitsky B, Givon A, Rozenfeld M, Radomislensky I, Peleg K. Traumatic Brain Injury: It Is All About Defi-

nition. Brain Injury. 2016; 30(10):1194–200. https://doi.org/10.1080/02699052.2016.1187290 PMID:

27466967

25. Rau C, Kuo P, Chien P, Huang C, Hsieh H, Hsieh C. Mortality Prediction in Patients with Isolated Moder-

ate and Severe Traumatic Brain Injury Using Machine Learning Models. PLOS ONE. 2018; 13(11):

e0207192. https://doi.org/10.1371/journal.pone.0207192 PMID: 30412613

26. Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Decision Tree and Random Forest

Models for Outcome Prediction in Antibody Incompatible Kidney Transplantation. Biomedical Signal

Processing and Control. 2019; 52:456–62.

27. Archer K, Kimes R. Empirical Characterization of Random Forest Variable Importance Measures.

Computational Statistics & Data Analysis. 2008; 52(4):2249–60.

28. Dag A, Oztekin A, Yucel A, Bulur S, Megahed F. Predicting Heart Transplantation Outcomes through

Data Analytics. Decision Support Systems. 2017; 94:42–52.

29. Cui S, Wang D, Wang Y, Yu P, Jin Y. An Improved Support Vector Machine-Base Diabetic Readmission

Prediction. Computer Methods and Programs in Biomedicine. 2018; 166:123–35. https://doi.org/10.

1016/j.cmpb.2018.10.012 PMID: 30415712

30. Hale A, Stonko D, Brown A, Lim J, Voce D, Gannon S, et al. Machine-Learning Analysis Outperforms

Conventional Statistical Models and CT Classification Systems in Predicting 6-month Outcomes in

Pediatric Patients Sustaining Traumatic Brain Injury. Neurosurgical Focus. 2018; 45(5):E2. https://doi.

org/10.3171/2018.8.FOCUS17773 PMID: 30453455

31. Shi H, Hwang S, Lee K, Lin C. In-Hospital Mortality After Traumatic Brain Injury Surgery: A Nationwide

Population-Based Comparison of Mortality Predictors Used in Artificial Neural Network and Logistic

Regression Models. Journal of Neurosurgery. 2013; 118(4):746–52. https://doi.org/10.3171/2013.1.

JNS121130 PMID: 23373802

32. Das A, Ben-Menachem T, Cooper G, Chak A, Sivak M, Gonet J, et al. Prediction of Outcome in Acute

Lower-Gastrointestinal Haemorrhage Based on an Artificial Neural Network: Internal and External Vali-

dation of a Predictive Model. Lancet. 2003; 362(9392):1261–6. https://doi.org/10.1016/S0140-6736(03)

14568-0 PMID: 14575969

33. Han J, Kamber M, Pie J. Data Mining: Concepts and Techniques. 3rd ed. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.; 2012.

34. Lakshmi B, Indumathi T, Ravi N. A Study on C.5 Decision Tree Classification Algorithm for Risk Predic-

tions During Pregnancy. Procedia Technology. 2016; 24:1542–9.

35. Jovanovic B, Milan Z, Markovic-Denic L, Djuric O, Radinovic K, Doklestic K, et al. Risk Factors for Venti-

lator-Associated Pneumonia in Patients with Severe Traumatic Brain Injury in a Serbian Trauma Centre.

International Journal of Infectious Diseases. 2015; 38:46–51. https://doi.org/10.1016/j.ijid.2015.07.005

PMID: 26166697

36. Hellyer T, Ewan V, Wilson P, Simpson A. The Intensive Care Society Recommended Bundle of Inter-

ventions for the Prevention of Ventilator-Associated Pneumonia. Journal of the Intensive Care Society.

2016; 17(3):238–43. https://doi.org/10.1177/1751143716644461 PMID: 28979497

37. Ghiani A, Sainis A, Sainis G, Neurohr C. Anemia and Red Blood Cell Transfusion Practice in Prolonged

Mechanically Ventilated Patients Admitted to a Specialized Weaning Center: An Observational Study.

PLOS ONE Prediction of prolonged mechanical ventilation in patients with brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 16 / 17

https://doi.org/10.1001/jama.2013.5154
http://www.ncbi.nlm.nih.gov/pubmed/23695482
https://doi.org/10.1016/j.jcrc.2017.11.037
https://doi.org/10.1016/j.jcrc.2017.11.037
http://www.ncbi.nlm.nih.gov/pubmed/29223743
https://doi.org/10.1016/j.ijmedinf.2006.11.006
http://www.ncbi.nlm.nih.gov/pubmed/17188928
https://doi.org/10.1080/02699052.2016.1187290
http://www.ncbi.nlm.nih.gov/pubmed/27466967
https://doi.org/10.1371/journal.pone.0207192
http://www.ncbi.nlm.nih.gov/pubmed/30412613
https://doi.org/10.1016/j.cmpb.2018.10.012
https://doi.org/10.1016/j.cmpb.2018.10.012
http://www.ncbi.nlm.nih.gov/pubmed/30415712
https://doi.org/10.3171/2018.8.FOCUS17773
https://doi.org/10.3171/2018.8.FOCUS17773
http://www.ncbi.nlm.nih.gov/pubmed/30453455
https://doi.org/10.3171/2013.1.JNS121130
https://doi.org/10.3171/2013.1.JNS121130
http://www.ncbi.nlm.nih.gov/pubmed/23373802
https://doi.org/10.1016/S0140-6736(03)14568-0
https://doi.org/10.1016/S0140-6736(03)14568-0
http://www.ncbi.nlm.nih.gov/pubmed/14575969
https://doi.org/10.1016/j.ijid.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26166697
https://doi.org/10.1177/1751143716644461
http://www.ncbi.nlm.nih.gov/pubmed/28979497
https://doi.org/10.1371/journal.pone.0235231


BMC Pulmonary Medicine. 2019; 19(1):250. https://doi.org/10.1186/s12890-019-1009-1 PMID:

31852456

38. Lai Y, Ruan S, Huang C, Kuo P, Yu C. Hemoglobin Levels and Weaning Outcome of Mechanical Venti-

lation in Difficult-to-Wean Patients: A Retrospective Cohort Study. PLoS One. 2013; 8(8):e73743.

https://doi.org/10.1371/journal.pone.0073743 PMID: 24015310

39. Zubrow M, Thomas N, Friedman D, Yehya N. RBC Transfusions Are Associated With Prolonged

Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome. Pediatric Critical Care Medi-

cine. 2018; 19(2):e88–e96. https://doi.org/10.1097/PCC.0000000000001399 PMID: 29194281

40. Mena J, Sanchez A, Rubiano A, Peitzman A, Sperry J, Gutierrez M, et al. Effect of the Modified Glas-

gow Coma Scale Score Criteria for Mild Traumatic Brain Injury on Mortality Prediction: Comparing Clas-

sic and Modified Glasgow Coma Scale Score Model Scores of 13. The Journal of Trauma. 2011; 71

(5):1185–93. https://doi.org/10.1097/TA.0b013e31823321f8 PMID: 22071923

41. Vieira R, Paiva W, de Oliveira D, Teixeira M, de Andrade A, de Sousa R. Diffuse Axonal Injury: Epidemi-

ology, Outcome and Associated Risk Factors. Frontiers in Neurology. 2016; 7:178. https://doi.org/10.

3389/fneur.2016.00178 PMID: 27812349

42. Jha R, Kochanek P, Simard J. Pathophysiology and Treatment of Cerebral Edema in Traumatic Brain

Injury. Neuropharmacology. 2019; 145:230–46. https://doi.org/10.1016/j.neuropharm.2018.08.004

PMID: 30086289

43. Okabe Y. Risk Factors for Prolonged Mechanical Ventilation in Patients with Severe Multiple Injuries

and Blunt Chest Trauma: A Single Center Retrospective Case-Control Study. Acute Medicine and Sur-

gery. 2018; 5(2):166–72. https://doi.org/10.1002/ams2.331 PMID: 29657729

44. Kim H, Park S. Sepsis: Early Recognition and Optimized Treatment. Tuberculosis and Respiratory Dis-

eases. 2019; 82(1):6–14. https://doi.org/10.4046/trd.2018.0041 PMID: 30302954

45. Kao J, Kao H, Chen Y, Yu W, Pan S, Wang J, et al. Impact and Predictors of Prolonged Chest Tube

Duration in Mechanically Ventilated Patients with Acquired Pneumothorax. Respiratory Care. 2013; 58

(12):2093. https://doi.org/10.4187/respcare.02273 PMID: 23651575

46. Jacobs B, Beems T, van der Vliet T, Diaz-Arrastia R, Borm G, Vos P. Computed Tomography and Out-

come in Moderate and Severe Traumatic Brain Injury: Hematoma Volume and Midline Shift Revisited.

Journal of Neurotrauma. 2011; 28(2):203–15. https://doi.org/10.1089/neu.2010.1558 PMID: 21294647

47. Wong G, Teoh J, Yeung J, Chan E, Siu E, Woo P, et al. Outcomes of Traumatic Brain Injury in Hong

Kong: Validation with the TRISS, CRASH, and IMPACT Models. Journal of Clinical Neuroscience.

2013; 20(12):1693–6. https://doi.org/10.1016/j.jocn.2012.12.032 PMID: 23993210

48. Han J, King N, Neilson S, Gandhi M, Ng I. External Validation of the CRASH and IMPACT Prognostic

Models in Severe Traumatic Brain Injury. Journal of Neurotrauma. 2014; 31(13):1146–52. https://doi.

org/10.1089/neu.2013.3003 PMID: 24568201

49. Bartels R, Meijer F, van der Hoeven H, Edwards M, Prokop M. Midline Shift in Relation to Thickness of

Traumatic Acute Subdural Hematoma Predicts Mortality. BMC Neurology. 2015; 15(1):220.

50. Blaser A, Regli A, De Keulenaer B, Kimball E, Starkopf L, Davis W, et al. Incidence, Risk Factors, and

Outcomes of Intra-Abdominal Hypertension in Critically Ill Patients-A Prospective Multicenter Study

(IROI Study). Critical care medicine. 2019; 47(4):535–42. https://doi.org/10.1097/CCM.

0000000000003623 PMID: 30608280

51. Trouillet J, Luyt C, Guiguet M, Ouattara A, Vaissier E, Makri R, et al. Early Percutaneous Tracheotomy

versus Prolonged Intubation of Mechanically Ventilated Patients After Cardiac Surgery: A Randomized

Trial. Annals of Internal Medicine. 2011; 154(6):373–83. https://doi.org/10.7326/0003-4819-154-6-

201103150-00002 PMID: 21403073

52. Gershengorn H, Garland A, Gong M. Patterns of Daily Costs Differ for Medical and Surgical Intensive

Care Unit Patients. Annals of the American Thoracic Society. 2015; 12(12):1831–6. https://doi.org/10.

1513/AnnalsATS.201506-366BC PMID: 26393984

53. Dasta J, McLaughlin T, Mody S, Piech C. Daily Cost of an Intensive Care Unit Day: The Contribution of

Mechanical Ventilation. Critical Care Medicine. 2005; 33(6):1266–71. https://doi.org/10.1097/01.ccm.

0000164543.14619.00 PMID: 15942342

54. Huttmann S, Magnet F, Karagiannidis C, Storre J, Windisch W. Quality of Life and Life Satisfaction are

Severely Impaired in Patients with Long-Term Invasive Ventilation Following ICU Treatment and Unsuc-

cessful Weaning. Annals of Intensive Care. 2018; 8(1):38. https://doi.org/10.1186/s13613-018-0384-8

PMID: 29549456

PLOS ONE Prediction of prolonged mechanical ventilation in patients with brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0235231 July 8, 2020 17 / 17

https://doi.org/10.1186/s12890-019-1009-1
http://www.ncbi.nlm.nih.gov/pubmed/31852456
https://doi.org/10.1371/journal.pone.0073743
http://www.ncbi.nlm.nih.gov/pubmed/24015310
https://doi.org/10.1097/PCC.0000000000001399
http://www.ncbi.nlm.nih.gov/pubmed/29194281
https://doi.org/10.1097/TA.0b013e31823321f8
http://www.ncbi.nlm.nih.gov/pubmed/22071923
https://doi.org/10.3389/fneur.2016.00178
https://doi.org/10.3389/fneur.2016.00178
http://www.ncbi.nlm.nih.gov/pubmed/27812349
https://doi.org/10.1016/j.neuropharm.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30086289
https://doi.org/10.1002/ams2.331
http://www.ncbi.nlm.nih.gov/pubmed/29657729
https://doi.org/10.4046/trd.2018.0041
http://www.ncbi.nlm.nih.gov/pubmed/30302954
https://doi.org/10.4187/respcare.02273
http://www.ncbi.nlm.nih.gov/pubmed/23651575
https://doi.org/10.1089/neu.2010.1558
http://www.ncbi.nlm.nih.gov/pubmed/21294647
https://doi.org/10.1016/j.jocn.2012.12.032
http://www.ncbi.nlm.nih.gov/pubmed/23993210
https://doi.org/10.1089/neu.2013.3003
https://doi.org/10.1089/neu.2013.3003
http://www.ncbi.nlm.nih.gov/pubmed/24568201
https://doi.org/10.1097/CCM.0000000000003623
https://doi.org/10.1097/CCM.0000000000003623
http://www.ncbi.nlm.nih.gov/pubmed/30608280
https://doi.org/10.7326/0003-4819-154-6-201103150-00002
https://doi.org/10.7326/0003-4819-154-6-201103150-00002
http://www.ncbi.nlm.nih.gov/pubmed/21403073
https://doi.org/10.1513/AnnalsATS.201506-366BC
https://doi.org/10.1513/AnnalsATS.201506-366BC
http://www.ncbi.nlm.nih.gov/pubmed/26393984
https://doi.org/10.1097/01.ccm.0000164543.14619.00
https://doi.org/10.1097/01.ccm.0000164543.14619.00
http://www.ncbi.nlm.nih.gov/pubmed/15942342
https://doi.org/10.1186/s13613-018-0384-8
http://www.ncbi.nlm.nih.gov/pubmed/29549456
https://doi.org/10.1371/journal.pone.0235231

