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The angiotensin peptides that control blood pressure are released from the non-inhibitory

plasma serpin, angiotensinogen, on cleavage of its extended N-terminal tail by the

specific aspartyl-protease, renin. Angiotensinogen had previously been assumed to

be a passive substrate, but we describe here how recent studies reveal an inherent

conformational mechanism that is critical to the cleavage and release of the angiotensin

peptides and consequently to the control of blood pressure. A series of crystallographic

structures of angiotensinogen and its derivative forms, together with its complexes with

renin show inmolecular detail how the interaction with renin triggers a profound shift of the

amino-terminal tail of angiotensinogen with modulation occurring at several levels. The tail

of angiotensinogen is restrained by a labile disulfide bond, with changes in its redox status

affecting angiotensin release, as demonstrably so in the hypertensive complication of

pregnancy, pre-eclampsia. The shift of the tail also enhances the binding of renin through

a tail-in-mouth allosteric mechanism. The N-terminus is now seen to insert into a pocket

equivalent to the hormone-binding site on other serpins, with helix H of angiotensinogen

unwinding to form key interactions with renin. The findings explain the precise species

specificity of the interaction with renin and with variant carbohydrate linkages. Overall,

the studies provide new insights into the physiological regulation of angiotensin release,

with an ability to respond to local tissue and temperature changes, and with the opening

of strategies for the development of novel agents for the treatment of hypertension.
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INTRODUCTION

Angiotensinogen, a non-inhibitory serpin (1, 2), has a key physiological function as the carrier of
the angiotensin peptides that control blood pressure. It acts in this way as a substrate, in what is
the first and rate-limiting step in the renin–angiotensinogen system (RAS), with the cleavage of the
N-terminal extension of angiotensinogen by the highly-specific aspartyl-protease renin. Cleavage
of the N-terminus releases a decapeptide, angiotensin-I, which is then subsequently processed
(Figure 1A) to give the sub-peptides that influence salt retention and vasoconstriction, and hence,
control blood pressure (3, 4). Although angiotensinogen is present in the plasma in relatively high
concentration (0.8µM), its primary function is now believed to occur at a cellular level (5); with
its direct role in the control of blood pressure (6) emphasized by the recent demonstration of the
hypotensive response to its siRNA suppression (7).
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STRUCTURAL MECHANISM

The role of angiotensinogen in the RAS was for long considered
as merely that of an inert substrate. The previous questioning
of this passive role (6, 8), suggesting an inherently active role
of angiotensinogen in the overall control of the release of
angiotensin and, hence, in the modulation of blood pressure, has
now been definitively confirmed by our recent structural studies
(9, 10). The solving of a series of crystallographic structures
at high resolution of human angiotensinogen, together with its
physiologically truncated forms and complexes with renin, now
provides a video view of the conformational shifts that take
place on the interaction of angiotensinogen with renin. The
juxtapositioning and complexing of the two molecules requires
major shifts in each, not only to reveal the renin-cleavage site in
angiotensinogen and position it within the active site of renin but
also to give the widespread changes in each that are necessary
for their highly specific interlinkage. As highlighted here, this
video view of the interaction of the two molecules provides direct
insights of medical and biological significance, indicating how
the cleavage of angiotensinogen and release of angiotensin-I can
be modulated by external factors and providing an explanation
for the tight species specificity of the cleavage of angiotensinogen
by renin.

BURIED CLEAVAGE SITE

The crystal structure of angiotensinogen shows that it essentially
retains the typical serpin fold, including an exposed, although
inert, reactive center loop. The striking difference, however,
is seen in the superstructure formed by the 63-residue N-
terminal extension containing the angiotensin-I decapeptide.
This terminal tail is anchored to the body of angiotensinogen
by extensive hydrophobic bonding including two new helices,
with the renin-cleavage site at Leu10-Val11 being held in an
inaccessible buried site (Figure 1B). The advantage of this buried
configuration is that it protects the scissile bond in the circulating
protein, with the complexity of its conformational exposure and
entry into the active site cleft of renin ensuring the precise
specificity of the cleavage.

CONFORMATIONAL SHIFT IN RENIN
BINDING AND CLEAVAGE

An enlightenment from the structural findings is that the
conformational shift in angiotensinogen on its interaction with
renin is seen to not only expose the angiotensin cleavage
site but also to involve widespread changes that allow the
complementary binding of the two molecules. This tight and
extensive interlinkage of renin and angiotensinogen ensures
the precise entry of the scissile bond into the active site cleft
of renin and explains the proteolytic specificity of the release
mechanism. Major conformational shifts take place on the
docking of renin, with the angiotensin segment of the N-terminal
tail of angiotensinogen being competitively displaced by 10–20 Å
from its linkages to the body of themolecule. This is accompanied

by a 10-Å displacement of the CD loop of angiotensinogen,
which would otherwise sterically block the binding of renin, the
two concerted movements being linked by a conserved disulfide
bond. The widespread nature of other changes that take place on
the binding of the two molecules has been further revealed in
the most recent high-resolution structures (10), which show an
accompanying rearrangement of helix H of angiotensinogen to
allow more extensive bonding between the two molecules.

SELECTIVITY OF THE RELEASE
MECHANISM

The requirement of widespread bonding explains the highly
specific interaction of angiotensinogen and renin and
emphasizes the tight control exercised over the release of
angiotensin. Evidence of this selectivity of release comes from
the observed difference in the kinetics of the release of the
angiotensin decapeptide from synthetic peptides (11) or from a
surrogate serpin carrier (12), as compared to the release from
angiotensinogen. This is even more evident in the interspecies
selectivity of the interaction with renin, thus human renin will
only cleave human angiotensinogen and not that of the mouse or
rat (13). The critical factor in this selectivity has now been shown
(10) to be due to changes not as expected from other protease
studies in the residues surrounding the scissile site, but rather in
more peripheral residues involved in the body-to-body interface
between the two molecules.

MODULATION: OXIDATION AND
PRE-ECLAMPSIA

The structural findings as well as showing the precision of
the cleavage of angiotensinogen by renin also indicated the
likelihood that the conformational changes involved could in
themselves readily allow a modulation of angiotensin release.
With this in mind, attention focused on the disulfide bridge
that links the movement of the N-terminus of angiotensinogen
and the accompanying shift of the CD loop necessary for the
body-to-body binding of renin (9). This conserved S-S bridge,
between Cys18 in the N-terminus to Cys138 in the body of
angiotensinogen, was known from earlier biochemical studies to
have a critical functional role (12), and to be subject to external
oxidation (14). Moreover, there were recurrent references in the
literature to the occurrence of hypertensive crises at times of
oxidative stress (15, 16). Could the oxidation of the disulfide
bridge affect the cleavage by renin and the release of angiotensin?

Support for this came with the demonstration (9) that this
linking-disulfide existed in humans in a balanced equilibrium
between its oxidized (bridged) and reduced (unbridged) states.
Blood plasma samples from healthy individuals, regardless of
gender or age, showed a remarkably consistent reduced-to-
oxidized ratio for the S-S bridge, near 40:60, with the redox poise
readily allowing a switch between the two forms. Significantly
the switch from the reduced to the oxidized form results in a
4-fold increase in the catalytic release of angiotensin (9). Taken
together, these findings strongly imply a modulatory mechanism
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FIGURE 1 | The crystal structure of human glycosylated angiotensinogen (9). (A) N-terminal tail sequence, indicating renin and ACE (angiotensin converting enzyme)

cleavage sites, the glycosylation site and conserved disulfide bond. (B) Structure of angiotensinogen shown as a cartoon. Serpin template in gray, helix A in marine,

A-sheet light blue, and the disordered reactive center loop (RCL) in red dashes. Angiotensin-I tail in green with the scissile bond shown as magenta and green

spheres. Cys18 in the amino tail forms a disulfide bond with Cys138 of the CD-loop (brown). The glycan attached to Asn14 is shown as green sticks. The segment

from Glu20-Pro29 (dashed, pale green) is disordered in the structure and modeled for illustration. Surface representation of the main body of AGT, with the extra

N-terminus (1-63) shown in cartoon representation. The Angiotensin-I peptide is mainly stabilized by hydrophobic interactions with the main body (colored as yellow

surface), and the scissile bond (shown as spheres) is buried in the hydrophobic cavity formed by residues in the CD-loop (V131, P132, and W133), helix A (L68, M72,

L76, and F79) and helix D (L142 and V147). The figure was adapted from our previous publication (9) with modifications.

with the deduction being that episodic hypertension could be
triggered by the oxidative conversion of angiotensinogen to its
more active bridged form. The investigation of this proposal
using plasma assays was challenging, as the oxidative switch
predictably occurs diffusely, in renal and vascular tissues, rather
than in the circulation (5). Confirmation came however, from
the more focal oxidative stress that occurs in the placenta and
underlies the hypertensive crises of pregnancy: pre-eclampsia.
Here, evident changes were demonstrable in maternal plasma
samples from pre-eclamptic pregnancies, with a clear increase
in the oxidized form as compared to carefully matched normal-
pregnancy controls (9). The results in this initial study have
now been convincingly supported by subsequent quantitative
assays in pre-eclamptics, showing a consistent increase in the
proportion of oxidized angiotensinogen (17, 18) coupled with
a fall in plasma antioxidants (19). The 4-fold increase in the

catalytic efficiency of release of angiotensin by renin from
oxidized angiotensinogen may seem small, but evidence that it
is a sufficient cause of the resultant hypertension comes from
the previous finding of a similar but even smaller increase
in activity associated with hypertension, in a family with an
angiotensinogen cleavage-site mutation and a history of pre-
eclampsia (20).

These findings clearly establish the contribution of redox
changes to the regulation of blood pressure, but oxidation
is just one factor in the regulation of angiotensin release
from angiotensinogen. The less active unbridged form of
angiotensinogen, with reduced sulfydryls, is also demonstrably
stabilized by nitrosylation (9) in keeping with the known
hypotensive action of nitric oxide. Other adjustments of the
efficiency of the renin-release of angiotensin were shown (10) to
arise from variations of glycan composition, notably so at Asn14
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in close proximity to the renin-cleavage site at Leu10. The overall
clinical and physiological message is that angiotensinogen is not
an inert substrate. It inherently contains complex and responsive
adaptations that make it a key initiator in the regulation of
blood pressure.

WHY A SERPIN?

The bonus from the more recent structures of the complex of
renin with angiotensinogen (10) is the answer they provide to
what has long been an intriguing puzzle. Why has evolution
selected the complex serpin framework as the carrier of the
angiotensin decapeptide?

The serpins are an ancient protein superfamily, the members
of which have evolved over millions of years from their origins
as protease inhibitors in early unicellular organisms (21). The
survival and now predominance of the serpins in all forms of
life is dependent on the efficiency of their inhibitory mechanism,
which irreversibly entraps a target protease. The entrapment
mechanism involves a profound conformational change, with a
large 70-Å movement of the cleaved reactive loop to incorporate
it into the main beta sheet of the molecule (22). This transition,
from a metastable stressed (S) form to a hyperstable relaxed
(R) form, has been conserved in most but not all the later
members of the family. In particular, three of the principal
serpins in human plasma are carriers of essential hormones:
the thyroxine and corticosteroid binding globulins, TBG and
CBG, and angiotensinogen. All three carrier serpins have lost
their functions as protease inhibitors although TBG and CBG
have retained the ability to undergo the S-to-R transition (23).
The conformational shift that accompanies the movement of
the reactive center loop in TBG and CBG is seen to be directly
transmitted to the hormone-binding site in each and, hence, to
affect the binding and release of the hormones. Angiotensinogen
does not, however, undergo the S-to-R transition in stability
(2), but nevertheless, it was confidently expected that, as with
TBG and CBG, the release of its hormone would be modulated
by the inherent serpin mechanism. Repeated structures of
reactive-center cleaved and other forms of angiotensinogen failed
however to show any of the conformational shifts expected from
the movement of the cleaved loop into the body of the molecule.
This was a puzzling disappointment. Based on a primordial
form present in lampreys (24), angiotensinogen is believed to
have originated as an add-on adaptation of an active protease-
inhibitory serpin, so there had been good reason to expect that,
as with TBG and CBG, the justification for this adaptation would
be an accompanying regulatory advantage.

TAIL-IN-MOUTH MODULATORY
MECHANISM AND THE RELEASE OF
ANGIOTENSIN

An unexpected answer came from the later high-resolution
structures of the complex of angiotensinogen and renin (10),
which showed how angiotensinogen had indeed adapted a subtle
feature of the serpin mechanism to allow a fine-tuning of the

release of the angiotensin peptide. The first few residues of
the amino-tail of angiotensinogen were seen in the complex to
extend beyond the active cleft of renin and to insert into the
equivalent in angiotensinogen of what in TBG and CBG is the
hormone-binding pocket (Figure 2). This “tail-in-mouth” action
in angiotensinogen requires an unfolding of helix H, which forms
one wall of the binding pocket, with the unfolding revealing
key sites involved in the bonding that links the bodies of the
renin and angiotensinogen. In this way the interaction between
the two molecules can be seen to be dependent on widespread
conformational changes that allow the complementary binding
of the two, with integral to this the movement of the scissile
bond of angiotensinogen into the active site of renin and
the insertion of the initial residues of the N-terminus into
the “helix H” pocket of angiotensinogen. This latter, newly-
recognized aspect of the interaction with renin is of critical
regulatory significance. The efficiency of cleavage and release
of the angiotensin decapeptide, a rate-limiting step in the
control of blood pressure, is now seen to be dependent on the
completion of the renin-angiotensinogen interface, revealed by
the unfolding of the H helix. Conversely the cleavage of the
angiotensin decapeptide from the tail will cause a reversion
of this complementarity, with an accompanying dissociation of
the renin from angiotensinogen and the release of angiotensin-
I. Confirmation of the mechanism of this dissociation comes
from the observed loss of renin-binding affinity in post-cleavage
(des-angiotensin) angiotensinogen (10).

TEMPERATURE SENSITIVITY OF
ANGIOTENSIN RELEASE?

The modulatory potential of this tail-in-mouth mechanism
is clear. Any competitive blockage of the serpin “hormone”-
pocket of angiotensinogen or decrease in its binding-affinity will
hinder the interaction with renin, with a predictable decrease
in angiotensin release and, hence, hypotensive consequences. A
direct implication follows from recent studies with the thyroxine
and corticosteroid binding globulins, TBG and CBG (25–28).
These hormone-carrying serpins show how the affinity of the
hormone binding-pocket is inherently responsive to changes in
temperature, even in their conformationally inactive forms. The
temperature sensitivity is much more so however in active TBG
and CBG, with the small equilibrated movements of the reactive
center loop nudging into and out of the main beta sheet of the
molecule directly affecting the flexibility of the binding-pocket.
These coupled movements provide a clinically demonstrable
“molecular thermocouple” (29, 30), accelerated as temperatures
rise above 37◦C to give with TBG and CBG a markedly increased
release of thyroxine and cortisol in fevers.

The control of blood pressure is multifactorial but the
retention in angiotensinogen of this thermally-responsive
flexibility of the binding-pocket is likely to contribute to the
immediacy of fluctuations in blood pressure observed with
variations in temperature. Increased body temperatures, with
a lowering of binding affinity, will predictably hinder the
interaction with renin and, hence, contribute to a decreased
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FIGURE 2 | Tail-into-mouth shift of N-terminal tail on binding with Renin (10). (A) Side view of angiotensinogen showing the rearrangement of the tail (magenta and

green) that takes place on the complexing with renin in (B). The scissile bond, Leu10-Phe11 (magenta and green spheres) becomes exposed and the tail is anchored

at its terminus by docking into what in other serpins is the hormone-binding pocket, between helix H, the B beta-sheet, and helix A (as circled). Docking of the

terminus is accompanied by an unfolding of helix H to reveal sidechains essentially involved in the binding of renin. The S-S bridge between Cys18 of the tail and

Cys138 of the displaced CD loop of angiotensinogen is arrowed. Also apparent: the potential influence on cleavage kinetics of glycan variations at Asn14, adjacent to

the scissile bond. The clear electron density for the glycan linked to Asn14 is shown in gray mesh and the fragments without clear electron density are shown with

dashed lines for illustration. The figure was adapted from our previous publication (10) with modifications.

release of angiotensin, in keeping with the vasodilation and
decreases in blood pressure that occur in fevers (31). Such
temperature-sensitive changes in affinity are similarly compatible
with other fluctuations in blood pressure with ambient
temperatures (32); conversely so with a predictable increased
affinity at lower temperatures, in keeping with the observed
prompt rise in central aortic blood pressure after even short-term
exposure to winter cold (33).

CONCLUSIONS

The new structural understandings of the mechanism of cleavage
and release of angiotensin from angiotensinogen have profound
medical and physiological implications. Angiotensinogen has
long been known as the ultimate source of angiotensin but what
is now revealed by the structures of its complexes with renin
is angiotensinogen’s direct role in regulating the cleavage and
release of the peptide and, hence, in the control of blood pressure.
This inherent ability to modulate function in response to local
tissue changes, as is also so with the plasma carriers of thyroxine
and corticosteroids (34), explains why the conformationally
flexible serpin framework has been selected as the carrier of
angiotensin. The conformational shifts required for the release
of angiotensin-I involve not just the exposure of the buried
renin-cleavage site but also an accompanying rearrangement
of the wider sites required for the body-to-body interface of
renin with angiotensinogen. In particular, optimal kinetics for
the cleavage and release depends on the precise repositioning
of the renin-cleavage bond at Leu10-Val11. This is held in its

exposed configuration anchored between the S-S bridge at Cys18
and the N-terminus of the tail bound to the helix H pocket
(Figure 2).

The realization that each of these anchors can be readily
modified by external influences emphasizes the modulatory role
of angiotensinogen and opens new prospects for the investigation
of the causes and ultimately the treatment of hypertension. The S-
S bridge is demonstrably labile in vivo and is readily opened and
re-formed—reduced and oxidized—by local redox fluctuations.
This notably occurs with the placental oxidative stress and
consequent hypertension in pre-eclampsia (9). The challenge
now is to demonstrate whether such changes, occurring at a wider
tissue level, are a contributory cause of hypertension in general.
Blocking of themore active oxidized form of angiotensinogen has
been shown to occur with nitrosylation—to what extent does this
explain the hypotensive action of nitric oxide? More questions
follow from the recognition of the tail-into-mouth mechanism
that establishes the other anchor of the cleavage site. The vestigial
conformational mechanism involved, with associated changes
in the affinity of the binding-pocket, has been well studied
(27) in other ligand-binding serpins, in antithrombin as well as
TBG and CBG. Is the binding of the tail in angiotensinogen
similarly sensitive to small changes in temperature? Is the
hypotension observed to occur with hypothermia due to a
decrease in the affinity of the binding-pocket, and hence in a
decrease in angiotensin release? Predictably the binding site in
angiotensinogen, as with the other serpins, will be subject to
competitive blocking, by drugs and other small molecules, and
to modulation by its interaction with tissue receptors.
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What can be concluded with confidence is that the
recognition of the structurally well-defined helix H binding-
pocket in angiotensinogen now provides a basis for the design
of new agents to attenuate angiotensin release and thus
alleviate hypertension.
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