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Abstract

Background: The relationship between the various items in an HRQoL instrument is a key aspect of interpreting
and understanding preference weights. The aims of this paper were i) to use theoretical models of HRQoL to
develop a conceptual framework for causal and effect relationships among the five dimensions of the EQ-5D
instrument, and ii) to empirically test this framework.

Methods: A conceptual framework depicts the symptom dimensions [Pain/discomfort (PD) and Anxiety/depression
(AD)] as causal indicators that drive a change in the effect indicators of activity/participation [Mobility (MO), Self-care
(SC) and Usual activities (UA)], where MO has an intermediate position between PD and the other two effect
dimensions (SC and UA). Confirmatory tetrad analysis (CTA) and confirmatory factor analysis (CFA) were used to
test this framework using EQ-5D-5L data from 7933 respondents in six countries, classified as healthy (n = 1760)
or in one of seven disease groups (n = 6173).

Results: CTA revealed the best fit for a model specifying SC and UA as effect indicators and PD, AD and MO as
causal indicators. This was supported by CFA, revealing a satisfactory fit to the data: CFI = 0.992, TLI = 0.972,
RMSEA = 0.075 (90% CI 0.062–0.088), and SRMR = 0.012.

Conclusions: The EQ-5D appears to include both causal indicators (PD and AD) and effect indicators (SC and UA).
Mobility played an intermediate role in our conceptual framework, being a cause of problems with Self-care and Usual
activities, but also an effect of Pain/discomfort. However, the empirical analyses of our data suggest that Mobility is
mostly a causal indicator.
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Background
Health-related quality of life (HRQoL) instruments com-
prise items that relate to various aspects of health and
functioning. Previous research has attempted to classify
the items included in these instruments as being causal
or effect indicators of HRQoL [1]. Effect indicators (also
called reflective indicators) can be seen as manifestations
of an underlying construct. Thus, a change in the con-
struct will lead to, or drive, a change in the effect
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indicators. In contrast, causal indicators (also called for-
mative indicators) drive a change in the construct. There
is evidence to suggest that symptoms have a strong
causal component that drives a change in other items [2,
3]. The research into the causal nature of various
HRQoL items has been limited to disease-specific instru-
ments. No studies have investigated causal relationships
in generic preference-based measures of HRQoL, com-
monly referred to as health state utility (HSU) instru-
ments [4], which have an important role in
cost-effectiveness analyses that are increasingly being
used to aid policy decisions. Based on theoretical
models, and methodological lessons from previous
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research, this paper seeks to fill a knowledge gap by
identifying a causal pattern in the most widely applied
HSU instrument, the EQ-5D [5–7]. The causal pattern
of items in the cancer-specific EORTC QLQ-C30 instru-
ment has been investigated in three studies. Using
applied graphical methods and cross-tabulation of re-
sponse frequencies, Fayers et al. found strong evidence
that physiological symptom items (e.g. nausea, memory
problems, shortness of breath) were causal, while items
such as poor concentration, irritability, and feeling tense
were likely to be effect indicators [2]. Boehmer and
Luszczynska applied confirmatory factor analysis and
found satisfactory fit for a model with both causal indi-
cators (symptoms e.g. fatigue, pain) and effect indicators
(e.g. physical, role, cognitive, social, and emotional func-
tioning) [3]. It was noted that physical functioning and
pain might be intermediate types of indicators. Using
eight EORTC QLQ-C30 items, Bollen et al. provided an
example of confirmatory tetrad analysis (CTA) and con-
cluded that symptom items (e.g. shortness of breath,
problems sleeping, lack of appetite) should be treated as
causal indicators, while global health status and quality
of life should be treated as effect indicators [8].
Factor analysis is a common psychometric approach to

investigate the relationship between items and unob-
served constructs, which is one technique in structural
equation modelling (SEM) used for scale design and val-
idation. However, factor analysis usually depends on a
set of homogenous items and is often not appropriate if
both causal and effect items are present [2]. However,
other SEM techniques incorporate causal paths to model
the relationship among different types of items [9, 10].
Confirmatory tetrad analysis may be the best empirical
approach for determining if items should be treated as
causal or effect indicators [8]. This paper is the first to
apply CTA in HSU instruments.
The aims of the current paper were: first, to develop a

conceptual framework for causal and effect relationships
among the five dimensions of the EQ-5D instrument
based on theoretical models of HRQoL, and second, to
test this framework using data on EQ-5D-5L from six
countries (N = 7933). More knowledge on the causal pat-
tern is useful for at least two reasons: i) it provides a better
understanding of the relative importance of the five health
dimensions as reflected in the preference-based value sets,
and; ii) it provides insights into the discussion on whether
and how the QALY might be extended, e.g. by expanding
the descriptive system to include additional symptom
items (causal) or functioning items (effect).

Methods
A conceptual framework for EQ-5D dimensions
The International Classification of Functioning,
Disability and Health (ICF) and the Wilson and
Cleary model [11] are two recommended models for
conceptualizing the relationships between dimensions
in HRQoL instruments. The ICF provides a standard
language and framework for describing health and
health-related states and comprises two parts, each
with two components [12]. Part 1 refers to function-
ing and disability and consists of (a) body functions
and structures, and (b) activities and participation.
Part 2 refers to contextual factors incorporating (a)
environmental factors, and (b) personal factors. Body
functions refer to physiological and psychological
functions of body systems (e.g. symptoms such as
pain or anxiety), while activity refers to the execution
of a task or action (e.g. self-care), and participation
refers to involvement in a life situation (e.g. work).
The EQ-5D-3L was classified in an ICF framework
[13] using linking rules [14]. Its five dimensions were
classified into two ICF components, such that pain/
discomfort (PD) and anxiety/depression (AD) were
linked to the ICF component of body functions, while
mobility (MO), self-care (SC), and usual activities
(UA) were linked to the ICF component of activity
and participation.
The ICF has considerable overlap with the Wilson

and Cleary model [15, 16] that depicts dominant
causal pathways between five levels of health out-
comes: biological and physiological factors, symptoms
(corresponding to the ICF component of body func-
tions and defined as the patient’s perception of an ab-
normal physical, emotional or cognitive state),
functioning (corresponding to the ICF component of
activity and participation), general health perceptions,
and overall quality of life. The Wilson and Cleary
conceptual model has been empirically validated in
populations with different health conditions [17–24].
Based on these models, we propose the following

causal pattern between the 5 EQ-5D dimensions.
Firstly, the “symptom” dimensions of pain/discomfort
(PD) and anxiety/depression (AD) were assumed to
be primarily causal indicators, and the “activity/par-
ticipation” dimensions of mobility (MO), self-care
(SC), and usual activities (UA) to be effect variables,
i.e. PD and AD cause changes in the HRQoL con-
struct that are manifested as changes in MO, SC, and
UA. Physiological symptoms such as pain and dis-
comfort are clear drivers of activity/participation
items and influence walking and self-care [25, 26] and
daily activities [27]. Such symptoms are likely to be
unidirectional, as it is unlikely that a change in mo-
bility or self-care would alter the level of pain experi-
enced. We assume a predominantly causal link
between AD and activity/participation (MO, SC and
UA), though with AD having less influence on MO
(i.e. walking) than on SC and UA, as depressive



Gamst-Klaussen et al. Health and Quality of Life Outcomes  (2018) 16:153 Page 3 of 10
symptoms explain only a small portion of the vari-
ability in mobility scores [28]. Anxiety and depression
can cause disability by worsening other symptoms or
by leading to limitations in activity, e.g. lack of inter-
est in self-care [29] and activities of daily living [30].
It was noted, however, that emotional well-being may
be bidirectional [2, 15], because physical symptoms,
impairments, activity limitations, or participation re-
strictions can cause anxiety and/or depression [29].
Secondly, we assume mobility (MO) to be both

cause and effect in nature, e.g. pain/discomfort (PD)
can cause limitations in MO, which in turn can cause
changes in SC and UA. This places MO in an inter-
mediate position between PD and the other two activ-
ity/participation dimensions [3, 31]. Temporal priority
has further been indicated by a hierarchical onset of
disability among elderly people, where problems with
walking preceded problems with self-care (e.g. bathing
and dressing) [32].
Thirdly, we consider self-care (SC) and usual activ-

ities (UA) as similar dimensions that tap into activ-
ities of daily living. However, SC is more specific in
that it refers to washing and dressing, while UA has a
wider scope and encompasses participation in educa-
tional, employment, and social activities. Based on
this conceptual framework, a number of testable
models were specified (see Figs. 1 and 2) to be ex-
plained further below.
Data
An online survey was administered in 2012 in six
countries (Australia, Canada, Germany, Norway, UK,
US) by a global panel company [33]. Respondents
Fig. 1 An all-effect indicator model (Model 1) and two multiple indicator m
self-care [SC], usual activities [UA], pain/discomfort [PD], anxiety/depression
were initially asked if they had any of seven listed
chronic diseases and to rate their overall health on a
[0–100] visual analogue scale (VAS), where 0 repre-
sented the least desirable health and 100 represented
the best possible physical, mental, and social health.
Respondents qualified for the “healthy group” if they
reported no chronic diseases and a VAS rating of
overall health of at least 70. Respondents then com-
pleted several HRQoL instruments, including the
EQ-5D-5L. Of the 7933 respondents, 6173 reported
a chronic disease (arthritis, asthma, cancer, depres-
sion, diabetes, hearing loss, heart disease). For further
details on respondent recruitment, see Richardson
et al., 2012 [33].
Distribution of EQ-5D health states
Spearman’s rank correlations were computed across
the responses to the 5 EQ-5D dimensions. Frequency
distributions of EQ-5D health states were used to
examine the pattern of responses across the main dis-
tinction between symptoms (causes) vs activity/par-
ticipation (effects). Two subscales were created with
EQ-5D items: a Symptom subscale formed by sum-
ming the PD and AD level numbers (each from level
1 to 5), and an Activity/participation subscale formed
by summing the MO, SC and UA level numbers. The
relationship between the two subscales are illustrated
with a graph, and descriptive statistics are provided in
the Appendix.
Structural equation modelling (SEM)
Two model-testing procedures in SEM were used:
confirmatory tetrad analysis (CTA) and confirmatory
ultiple cause (MIMIC) models (Model 2 & Model 3). Mobility [MO],
[AD]



Fig. 2 Multiple indicator multiple cause (MIMIC) model. Mobility [MO], self-care [SC], usual activities [UA], pain/discomfort [PD], anxiety/depression [AD]
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factor analysis (CFA). While CTA is assumed to be
the best empirical approach for determining whether
items should be treated as causal or effect indicators
[8], agreement between the two approaches would
provide more confidence in our conceptual model
than either one alone [34, 35]. While both procedures
investigate the path directionality between items and
an underlying construct, they both have unique fea-
tures that are applicable for the current investigation.
First, CFA enables testing of the hypothesised inter-
mediate position of mobility between PD and the
underlying construct, while CTA allows comparison
of models that are not nested in the standard
log-likelihood ratio (LR) test, but nested according to the
implied vanishing tetrads (explained below).

Confirmatory tetrad analysis
CTA seeks to determine whether items of a latent vari-
able should be treated as causal or effect indicators [34,
36]. While a parameter estimator such as maximum like-
lihood (ML) method is usually applied when testing gen-
eral SEM, the CTA test does not estimate parameters,
but only tests model fit using Chi-square (χ2). The CTA
test statistic depends on the tetrads produced by a
model. Following Bollen and Ting [36], consider a latent
variable indicated by four observed items (×1 – ×4). The
effect of the latent variable to the items can be written
as Eq. 1:

xi ¼ λi1ξ1 þ δi ð1Þ
where δi is the random measurement error (disturbance)
term with Ε (δi) = 0 for all i,, COV (δi, δj) = 0 for i ≠ j,
and COV (ξ1, δi) = 0 for all i. The population covariances
(σij) of the observed items are given as Eq. 2 below:

σij ¼ λi1λ j1ϕ ð2Þ
where σij is the population covariance matrix of i and j
items, and ϕ is the variance of ξ1.
A tetrad is ‘the difference between the product of a

pair of covariances and the product of another pair
among four random variables’ (Bollen & Ting, 2000, p.5)
[34]. Thus, the four observed items produce six covari-
ances, which can be arranged into three tetrads using
Kelley’s notation [37], i.e.

τ1234 ¼ σ12σ34−σ13σ24
τ1342 ¼ σ13σ42−σ14σ32
τ1423 ¼ σ14σ23−σ12σ43

ð3Þ

where τijkl is the population tetrad that refers to σijσkl
– σikσjl. If the tetrad equals to zero, that is τijkl = 0, it
is referred to as a vanishing tetrad. Hence, if the four
observed items were effect indicators, the model
would imply three vanishing tetrads (i.e. all tetrads in
Eq. 3 should equal to 0). Furthermore, vanishing tetrads
implied by a model include redundant vanishing tetrads
(i.e. any two of the vanishing tetrads in Eq. 3 would imply
the third) [34]. Therefore, only two vanishing tetrads are
non-redundant. Redundant vanishing tetrads should be
excluded from the test. This exclusion makes covariance
matrix of the tetrads that is part of the test statistic
non-singular, and hence its inverse will exist. For a theor-
etical background on the tetrad, see [36].
Regardless of the number observed items, only four

random variables (e.g. σ12, σ34, σ13 and σ24) are consid-
ered at a time, and this process is repeated for all
combinations of the observed items. For every four-
some of items, there are three possible vanishing tet-
rads. Considering an all-effect model with five
observed variables (e.g. one item for each of the 5
EQ-5D dimensions), there will be five different com-
binations of four items, and each set will have three
tetrads. Thus, the model would imply 15 vanishing
tetrads. We could then test the hypothesis that H0: τ
= 0 and H1: τ ≠ 0 based on sample data. If the vanish-
ing tetrads implied by the model do vanish, it would
produce a good fit of the model (a non-significant χ2

test), which would not reject the null hypothesis. If
the test were highly significant, it would favour a
causal indicator structure. However, if the χ2 test was
0 with 0 degrees of freedom, it would indicate an



Table 1 Spearman’s rank correlations between the EQ-5D
dimensions (N = 7933)

MO SC UA PD AD

MO 1.00

SC 0.57 1.00

UA 0.73 0.59 1.00

PD 0.63 0.42 0.62 1.00

AD 0.26 0.27 0.40 0.35 1.00

MO Mobility, SC Self-care, UA Usual activities, PD Pain/discomfort,
AD Anxiety/depression
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all-causal indicator model (as there are no model
implied non-redundant vanishing tetrads with this
structure) [8].
SEM models are traditionally referred to as nested

when we constrain or free a set of parameters and
conduct the LR test to statistically compare models.
However, some models that are not nested in parame-
ters can be nested in terms of vanishing tetrads. That
is, models are nested ‘if the model-implied
non-redundant vanishing tetrads from one model are
contained within the set of implied non-redundant
vanishing tetrads from the other model’ ([8], p.1532).
When models are compared (i.e. nested), a χ2- differ-
ence test is formed, and a highly significant p-value
would provide support for the model with fewest im-
plied vanishing tetrads.
Three alternative models were developed for the

CTA of EQ-5D dimensions (Fig. 1). Model 1 tested
for any causal pattern, where all 5 EQ-5D items were
treated as effect indicators, indicated by the arrows
pointing away from the HRQoL construct. Models 2
and 3 are multiple cause multiple indicator (MIMIC)
models: Model 2 tested whether symptom items (PD
and AD) should be treated as causal indicators (indi-
cated by the arrows pointing from the items to the
HRQoL construct) and activity/participation items
(MO, SC and UA) as effect indicators. Model 3
treated symptom items (PD and AD) and mobility
(MO) as causal indicators, and SC and UA as effect
indicators. A bootstrap tetrad test was used to
minimize the problem of non-normality [38].
As explained above, an all-effect indicator model with

the 5 EQ-5D items (Model 1) would imply 15 vanishing
tetrads. However, a model specifying only the three ac-
tivity/participation items as effect indicators (Model 2)
would imply only nine vanishing tetrads (as a subset of
the 15 vanishing tetrads). As illustrated in Bollen and
Ting [34], this model implies nine tetrads as we always
consider four random variables at a time, and any four-
some of the items in Model 2 with 3 effect indicators
would imply either three or one vanishing tetrads. Re-
moving one causal indicator thus always leaves three
items specified as effect indicators, whereas removing
one effect indicator would always leave two items speci-
fied as effect indicators. A foursome that includes three
or four effect indicators implies three vanishing tetrads
(i.e. they are tetrad equivalent, which means they can-
not be distinguished in terms of vanishing tetrads),
while a foursome with two effect indicators implies only
one vanishing tetrad. Considering Model 2 with three
effect indicators and two causal indicators, the five sub-
sets of four items would produce nine model-implied
vanishing tetrads. That is, removing a casual indicator
would imply three vanishing tetrads each (3 + 3).
Removing an effect indicator would imply one vanish-
ing tetrad each (1 + 1 + 1).
Following a similar procedure, Model 3 implies three

vanishing tetrads. Note that a model with only one ef-
fect indicator has zero vanishing tetrads [34]. Both
Model 2 and Model 3 could be compared with the
all-effect indicator model with a nested CTA using χ2

difference test. If this test is highly significant, the
model with the fewest vanishing tetrads would be
favoured. In this scenario, the test is against the appro-
priateness of the additional vanishing tetrads implied
by the all-effect indicator model. Note that models that
are not nested in standard LR test can be nested in
CTA. For instance, Model 3 in CTA has fewer vanish-
ing tetrads than Model 2 and is therefore nested in
Model 2. CTA is estimated using the Stata user com-
mand referred to as “tetrad” [39].
Confirmatory factor analysis
The models in Fig. 1 can be tested using CFA. Fur-
thermore, a MIMIC model illustrated in Fig. 2 speci-
fied the hypothesized relationships among EQ-5D
dimensions where MO has an intermediate position.
(Due to the uncertain nature of AD and the investiga-
tion of reversed causality, alternative models were
specified, not illustrated).
Maximum likelihood (ML) estimation is considered

robust when using non-continuous data [40–42] or
data that violate multivariate normality assumptions
[43–45]. However, since ML can be affected by devi-
ation from normality [46], bootstrap standard errors
(with 1000 bootstrap draws) were used [47]. Model fit
to data was examined using fit indices, i.e. the com-
parative fit index (CFI), the Tucker-Lewis index (TLI),
root-mean square error of approximation (RMSEA),
standardized root-mean square residual (SRMR),
Akaike information criterion (AIC) and sample-size
adjusted Bayesian information criterion (SABIC). CFI
and TLI values greater than 0.95, and SRMR less than
0.08 represent a well-fitting model [48]. While
RMSEA less than 0.05 is considered to reflect a good
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fit [49], values as high as 0.08 reflect adequate fit
[50]. AIC and SABIC are only meaningful when dif-
ferent models are compared, and models with the
lowest values are those with the best fit.
Statistical analyses were performed in Stata version

14.0 (StataCorp LP), except the path analyses which
were performed with Mplus version 6.11.

Results
Respondent characteristics on age, sex, education, and
disease groups are provided in Tables 4 and 5 in
Appendix. The healthy respondents and those report-
ing chronic disease were similar on gender and edu-
cation, but those with chronic disease were older, as
could be expected. As shown in Table 1, the highest
Spearman’s rank correlation were between MO and
UA (0.73), while the lowest were between AD and
MO (0.26), indicating support for our conceptual
model. The correlation between PD and SC was lower
than that between PD and MO or UA.
Table 2 shows the frequency distribution of

EQ-5D-5L health states in terms of decrements in
symptom items or activities/participation items.
Excluding those who reported full health (health state
11,111), the most prevalent combinations were three
health states that only had slight decrements in PD
and/or AD, i.e. 11121 (slight pain/discomfort), 11122
(slight pain/discomfort and slight anxiety/depression),
11112 (slight anxiety/depression). These three
accounted for more than one-third (34.9%) of all pos-
sible combinations of non-perfect health states. When
all health states with decrements in symptoms with-
out any decrements in activity/participation (i.e. MO+
SC+UA= 3, PD +AD > 2) were included, 47% (3031 re-
spondents) of the sample was covered. In contrast, only
Table 2 Distribution of EQ-5D-5 L health states showing
frequency of symptoms (pain/discomfort and anxiety/depression)
vs activity/participation (mobility, self-care, and usual activities)

EQ-5D-5 L health states N %

11121 1135 17.7

11112 420 6.7

11122 672 10.5

1113–4,1a 163 2.6

11113-5 173 2.7

111, 2-5,2–5 468 7.3

Summary of MO + SC + UA = 3 and PD + AD > 2 3031 47.3

Summary of MO + SC + UA > 3 and PD + AD = 2 94 1.5

All other health states 3278 51.2

Total 6403 100.0

MO Mobility, SC Self-care, UA Usual activities, PD Pain/discomfort,
AD Anxiety/depression
a11151 was not reported
1.5% (94) of all respondents reported decrements in activ-
ity/participation without any decrements in symptoms (i.e.
MO+SC+UA>3, PD+AD=2), suggesting that symp-
toms precede problems with activity/participation. Fig-
ure 3 shows the relationship between increases in the
summary score of the symptom items (from 2 to 10 on
the horizontal axis) and the corresponding summary
score of the activity/participation items (from 3 to 15
on the vertical axis). The corresponding data are shown
in Table 6 in Appendix. The results indicate that in-
creasing pain/discomfort and anxiety/depression is as-
sociated with increasing problems with mobility,
self-care and usual activities, but the problems on these
activity/participation items appear to lag after the
symptoms. This supports the suggestion from Table 2
that symptoms precede problems with activity/
participation.
The results of the CTA for Model 1 (χ2 = 1500.00,

df = 15), Model 2 (χ2 = 893.79, df = 6) and Model 3
(χ2 = 105.84, df = 3) revealed highly significant χ2 esti-
mates (P < 0.0001). Model 3 clearly produced the low-
est χ2 estimates, suggesting it to be the best model.
Although the significant χ2 estimate indicates poor fit
to the data, it is usual that χ2 estimates are significant
in large samples [51]. A nested CTA test that com-
pared Model 2 and Model 3 revealed a highly
significant χ2 - difference (χ2 diff = 787.62, df = 6,
p < 0.0001), indicating that the model with fewest
vanishing tetrads (Model 3) is favoured.
The results of the CFA are presented in Table 3.

Model 1 and Model 2 produced poor fit to the data,
while Model 3 produced satisfactory model fit based
on CFI, TLI, RMSEA, and SRMR. These results are
in line with the finding from CTA that Model 3 pro-
duced a better fit than the first two models. Model 4
(only tested with CFA) produced a satisfactory fit
similar to Model 3. However, the information criteria
AIC and SABIC indicate that Model 3 is the pre-
ferred one.
An alternative model specifying AD as an effect indi-

cator with SC and UA did not produce a good fit, either
with CTA (χ2 = 927.93, df = 6, p < 0.0001) or CFA (CFI =
0.965; TLI = 0.922; RMSEA = 0.122; SRMR 0.026).
Further models investigated other specifications of the
interrelationships between the three causal indicators
(MO, PD and AD) in Model 4, including PD causing
AD (or reversed causality), PD causing AD and MO,
and PD causing AD and MO including MO as a
cause of AD. All these models had a poor fit com-
pared to the chosen model (results not reported
here). The main CTA and CFA analyses were per-
formed using the full sample (N = 7933), and remov-
ing the 1530 respondents reporting full health (11111)
produced similar results.



Fig. 3 Mean summary score of effect items (MO + SC + UA) vs summary score of symptoms (PD + AD). Mobility [MO], self-care [SC], usual
activities [UA], pain/discomfort [PD], anxiety/depression [AD]
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Discussion
We developed a conceptual framework for an empirical
investigation of the causal and effect nature of EQ-5D
dimensions. Based on theoretical models of HRQoL, the
dimensions were classified as either symptoms, and thus
causal, variables (PD and AD), or activities/participation
and thus effect indicators (MO, SC and UA) [2, 12, 15].
While SC and UA acted as effect indicators, MO, PD
and AD appeared to be causal in nature, driving changes
in SC and UA. Although MO could play an intermediate
role as indicated in Fig. 2, the results suggest that MO is
predominantly causal.
There are reasons to believe that the role of AD might

vary depending on the severity of anxiety or depression.
If moderate or severe (levels 3–5), AD could reflect
more of a clinical symptom that may cause dysfunctions
Table 3 Confirmatory factor analysis (CFA) estimates (N = 7933)

Model 1 Model 2

CFI 0.967 0.969

TLI 0.934 0.931

RMSEA 0.117 (0.109–0.125) 0.122 (0.113–0.13

SRMR 0.028 0.025

AIC 80,369.334 36,935.884

SABIC 80,426.349 36,977.694

CFI comparative fit index, TLI Tucker-Lewis index, RMSEA root-mean square error of
information criterion, SABIC sample-size adjusted Bayesian information criterion
(MO, SC, UA) and typically requires treatment. If mild
(level 2), it could reflect more subjective well-being,
which may vary according to personality traits (e.g. opti-
mist vs pessimist, or level of neuroticism) and thus acts
more as an effect variable (in line with the finding that
emotional well-being in EORTC was an effect variable)
[3]. Further investigation into the various disease groups
might have indicated that the causal nature of AD is
disease-specific.
Our observation of a causal pattern across EQ-5D

dimensions supports the need for preference weight-
ing [2]. The EQ-5D-5L values sets based on popula-
tion preferences in four western countries (Canada,
England, Spain, the Netherlands) [52–55] reveal strik-
ing similarities in the relative importance of the five
dimensions. The dimensions that our conceptual
Model 3 Model 4

0.992 0.993

0.972 0.978

1) 0.075 (0.062–0.088) 0.069 (0.059–0.080)

0.012 0.016

20,400.537 36,580.861

20,434.746 36,626.472

approximation, SRMR standardized root-mean square residual, AIC Akaike



Table 4 Respondent characteristics

Respondents (in %)

Healthy
group

Disease
groups

Total

(N = 1760) (N = 6173) (N = 7933)

Age groups (yrs)

18–24 11.0 5.2 6.5

25–34 17.6 10.3 11.9

35–44 18.0 13.2 14.3

45–54 19.7 21.5 21.1

55–64 15.9 27.5 24.9

65+ 17.8 22.4 21.4

Education

High School 33.6 30.6 31.3

Diploma/Certificate/Trade 38.8 40.9 40.4

University 27.6 28.5 28.3

Gender

Female 52.2 52.2 52.2

Table 5 Respondents by country and disease group

Diseases Australia UK USA Canada Norway Germany Total

Asthma 141 150 150 138 129 147 855

Cancer 154 137 148 138 80 115 772

Depression 146 158 168 145 140 160 917

Diabetes 168 161 168 144 143 140 924

Hearing loss 155 126 156 144 113 136 830

Arthritis 163 159 179 139 130 159 929

Heart
disease

149 167 170 154 151 152 943

Healthy
group

265 298 321 328 288 260 1760

Total 1341 1356 1460 1330 1174 1269 7933

Table 6 Mean and standard deviation (SD) of Activity/participation
scale for each value on symptom scale

Symptom (PD + AD) Activity/participation (MO + SC + UA) SD N
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model classified as causal indicators (PD and AD)
have similar preference weightings, and they are on
average 50% stronger than each of the three effect in-
dicators (MO, SC, UA), i.e. the sum of the weights of
the two symptom dimensions equals the sum of the
three functioning items. The basis for the two causal
dimensions being more important to people than the
three effect dimensions might be that people find it
easier to adapt to functional impairments than to
pain/discomfort and anxiety/depression.
The current findings may be useful when exploring

additional dimensions that could act as ‘bolt-ons’ to
the five core EQ-5D dimensions. While these five di-
mensions have proved relevant to patients across the
spectrum of diagnoses and to the general population,
the EuroQol Group has been experimenting to inves-
tigate whether additional dimensions such as vision,
tiredness, or sleep could enhance the instrument’s
performance in some settings [56]. An interesting
question is whether an HSU instrument like the
EQ-5D should broaden its operationalization of the
HRQoL concept in the direction of effect dimensions
(e.g. social connections/network or general well-being)
or in the direction of causal dimensions (e.g. vision
or tiredness). Most quality of life instruments include
both causal and effect indicators [57]. Causal indica-
tors are important to measure because they affect
HRQoL [2] and are often treated to avoid disruption
of HRQoL. This is the rationale behind many health-
care interventions (e.g. treating arthritic pain to en-
able a person to continue working).
Some limitations should be acknowledged with re-

spect to the data analyses presented here. The MIC
study is based on respondents who have volunteered to
participate, something which might lead to
self-selection bias. Second, it is difficult to claim causal-
ity from cross-sectional data. Third, CTA is primarily
intended to test for model misspecification, which does
not necessarily mean that indicators are causal rather
than effect indicators [35]. Future research should
ideally apply panel data, which would provide better il-
lustration of the expected temporal relationship be-
tween causal and effect dimensions.
2 3.10 0.52 1614

3 3.47 1.00 2101

4 3.98 1.38 1788

5 4.96 1.98 1123

6 5.86 2.38 697

7 6.99 2.47 333

8 7.46 2.64 197

9 7.77 2.85 44

10 10.08 1.74 24
Conclusion
Based on theoretical models of HRQoL, we develop a
conceptual framework for causal and effect relationships
among the five dimensions of the EQ-5D instrument.
Empirical testing on EQ-5D-5L data from a large multi-
national survey provided supporting evidence that the
EQ-5D comprises both causal variables (Mobility, Pain/
discomfort, Anxiety/depression) and effect variables
(Self-care and Usual activities).
Appendix
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