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Abstract: This study aimed to investigate the protective effects of lipopolysaccharide from Rhodobacter
sphaeroides (LPS-RS) against ethanol-induced hepatotoxicity and nephrotoxicity in experimental rats.
The study involved an intact control group, LPS-RS group, two groups were given ethanol (3 and
5 g/kg/day) for 28 days, and two other groups (LPS-RS + 3 g/kg ethanol) and (LPS-RS + 5 g/kg
ethanol) received a daily dose of LPS-RS (800 µg/kg) before ethanol. Ethanol significantly increased
the expression of nuclear factor kappa B (NF-κB) and levels of malondialdehyde (MDA), tumor
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the liver tissue and decreased anti-oxidant
enzymes. Hepcidin expression was downregulated in the liver, with increased serum levels of ferritin
and iron. Prior-administration of LPS-RS alleviated the increase in oxidative stress and inflammatory
markers, and preserved iron homeostasis markers. In the kidney, administration of ethanol caused
significant increase in the expression of NF-κB and the levels of TNF-α and kidney injury markers;
whereas LPS-RS + ethanol groups had significantly lower levels of those parameters. In conclusion;
this study reports anti-oxidant, anti-inflammatory and iron homeostasis regulatory effects of the
toll-like receptor 4 (TLR4) antagonist LPS-RS against ethanol induced toxicity in both the liver and
the kidney of experimental rats.

Keywords: alcoholic liver disease; hepcidin; kidney injury molecule-1; lipopolysaccharide from
Rhodobacter sphaeroides; nuclear factor kappa B; toll-like receptor 4

1. Introduction

Alcoholic liver disease (ALD) is a worldwide health problem which may result in
the development of hepatitis, fatty liver steatosis and cirrhosis [1]. Alcohol is known to
exert a harmful effect on a variety of human tissues. In particular, the liver is the major
site of alcohol-induced damage because it is the direct recipient of the blood that contains
elevated levels of alcohol, and it is the main organ responsible for the metabolism of
alcohol [2]. The damage caused by ethanol is mainly attributed to its metabolic process
that results in generation of acetaldehyde and reactive oxygen species (ROS) such as hy-
drogen peroxide, free hydroxyl radical, and superoxide. These metabolites cause depletion
of reduced glutathione (GSH), peroxidation of cellular membranes, oxidation of macro-
molecules, and eventually lead to progressive injury of hepatocytes [3–5]. Additionally,
ethanol and its metabolic products enhance the production of inflammatory cytokines
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such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) [6]. The enhanced
production of those inflammation factors; stimulated partially by oxidative stress; results
in cytokine imbalance and immune disorders, leading to further hepatic damage. Thus,
agents with anti-inflammatory and anti-oxidative properties might be potential candidates
for protection against alcohol-induced liver disease [7,8].

The metabolic functions of the alcoholic liver are seriously affected. Disorders in iron
metabolism are characteristic of ALD. Abnormal levels of iron, transferrin, and ferritin
were detected in ALD [9]. Hepcidin is a principle hepatic regulator of the metabolism of
iron. The expression of hepcidin in the liver is downregulated by both acute and chronic
exposure to alcohol [10,11]. Ethanol consumption increases absorption of iron, presumably
by downregulation of hepcidin expression, leading to increased ferritin levels [12,13]. The
increased levels of iron and ferritin may play a role in the progression of ALD to cirrhosis
and eventually hepatocellular carcinoma [14].

The oxidative stress and the inflammatory state caused by excessive intake of alcohol
may cause damage to other organs as well. The kidney is one organ whose structure and
functions are markedly affected by ethanol [15]. Chronic administration of ethanol affects
renal function and inhibits renal tubular reabsorption. Alcohol consumption was reported
to cause abnormal thickening of the basement membrane of the glomeruli due to enhanced
cell proliferation and inflammation in the cells of the kidney tubules. These deleterious
effects result in impairment of the kidney’s ability to regulate the body’s fluid volume and
electrolyte balance [16,17].

Lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) is a penta-acylated lipid
A that inhibits the toll-like receptor 4 (TLR4) pathway by two mechanisms; the first is
based on the direct competition for binding on MD-2 between hexa-acylated lipid A and
underacylated lipid A, and the other relies on the inhibition of hexa-acylated endotox-
in:MD-2 complexes and TLR4 functions by penta-acylated lipid A:MD-2 complexes. LPS-RS
regulates c-Jun N-terminal kinase (JNK)/p38 MAPKs and p65-NF-κB signaling pathways
and inhibits TLR4 mediated inflammatory markers such as TNF-α, IL-1β, and IL-6 [18].

The current work aimed to assess the potential protective effects of LPS-RS adminis-
tration against the liver and kidney damage caused by chronic consumption of moderate
and high doses of ethanol in experimental rats. The anti-oxidative and anti-inflammatory
activities of LPS-RS and its effect on hepatic iron metabolism in a rat model of ALD
were investigated.

2. Results and Discussion
2.1. Effect of LPS-RS on Serum Levels of Liver Enzymes and Kidney Function Markers

Table 1 shows that administration of LPS-RS alone had no adverse effects on both
the liver and the kidney as indicated by the assessed biochemical parameters. Admin-
istration of either 3 g/kg or 5 g/kg of ethanol led to a significant increase in the serum
levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline
phosphatase (ALP) compared to the intact control group. The increase in the levels of those
markers in the group receiving 5 g/kg ethanol was significantly higher than the group
receiving 3 g/kg ethanol. LPS-RS had a protective effect, where the levels of ALT, AST and
ALP were significantly decreased in both LPS-RS + ethanol (3 g/kg) and LPS-RS + ethanol
(5 g/kg) groups compared to the corresponding unprotected groups (i.e., ethanol (3 g/kg)
and ethanol (5 g/kg), respectively) (Table 1).

Similarly, serum creatinine and blood urea nitrogen (BUN) levels were significantly
raised in both ethanol (3 g/kg and 5 g/kg) groups compared to the intact control group.
The administration of LPS-RS in both groups led to a significant decrease in the level of
serum creatinine but not the level of BUN (Table 1).
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Table 1. The effect of LPS-RS (800 µg/kg) on serum levels of liver enzymes and kidney function markers in the experimental
rats.

ALT (U\L) AST (U\L) ALP (U\L) BUN (mg\dL) Creatinine (mg\dL)

Intact control 42.0 ± 4.7 51.8 ± 5.3 53.0 ± 6.9 19.6 ± 2.1 0.9 ± 0.2
LPS-RS (800 µg/kg) 45.5 ± 5.2 57.7 ± 6.9 55.9 ± 6.6 21.0 ± 2.5 1.1 ± 0.2

Ethanol (3 g/kg) 105.0 ± 15.5 ab 225.6 ± 22.2 ab 185.0 ± 19.1 ab 27.9 ± 1.9 ab 1.6 ± 0.3 ab

LPS-RS + ethanol (3 g/kg) 55.0 ± 6.0 abc 92.3 ± 9.5 abc 56.6 ± 6.0 c 26.6 ± 2.4 ab 1.1 ± 0.3 c

Ethanol (5 g/kg) 162.4 ± 17.1 abcd 265 ± 27.7 abcd 248.7 ± 25.8 abcd 28.3 ± 2.1 ab 1.9 ± 0.2 abd

LPS-RS + ethanol (5 g/kg) 99.0 ± 11.2 abde 204.4 ± 21.9 abde 115.6 ± 12.6 abcde 26.7 ± 1.3 ab 1.4 ± 0.3 abe

Data are expressed as mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post hoe test (n = 8–10). ALT = alanine
amino-transferase; AST = aspartate amino-transferase; ALP = alkaline phosphatase, BUN = blood urea nitrogen; Differences were considered
significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs. ethanol (3 g/kg); d vs. LPS-RS + ethanol (3 g/kg); e vs. ethanol
(5 g/kg).

2.2. Effect of LPS-RS on Oxidative Stress and Inflammatory Markers in the Liver Tissue

Daily administration of 800 µg/kg LPS-RS only did not cause a significant difference in
any of the markers of oxidative stress or inflammatory state in the liver tissue in comparison
with the intact control group (Figure 1). MDA; indicative of lipid peroxidation; was
significantly increased in both ethanol (3 g/kg and 5 g/kg) groups compared to the intact
control group. The increase was significantly higher in the 5 g/kg ethanol group compared
to the 3 g/kg ethanol group. Administration of LPS-RS prior to ethanol in both groups
caused a significant decrease in the MDA levels compared to the corresponding unprotected
groups (Figure 1A).
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Figure 1. The anti-oxidant effects of LPS-RS (800 μg/kg) in the liver tissue of the experimental rats. Levels of (A) MDA, (B) 
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Figure 1. The anti-oxidant effects of LPS-RS (800 µg/kg) in the liver tissue of the experimental rats. Levels of (A) MDA,
(B) GSH, (C) catalase, and (D) SOD. MDA, malondialdehyde; GSH, reduced glutathione; SOD, superoxide dismutase.
Data are expressed as mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test (n = 8–10).
Differences were considered significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs. ethanol (3 g/kg); d vs.
LPS-RS + ethanol (3 g/kg); e vs. ethanol (5 g/kg).

Levels of GSH and the anti-oxidant enzymes; catalase and SOD; in the liver tissue
were significantly decreased by administration of both doses of ethanol compared to the
intact control group. The levels of GSH and catalase in the 5 g/kg ethanol group were
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significantly lower compared to the ethanol (3 g/kg) group. Administration of 800 µg/kg
of LPS-RS before ethanol (3 or 5 g/kg) led to a significant increase of GSH, catalase and
SOD levels compared to the corresponding unprotected groups (Figure 1B–D).

Expression of NF-κB and levels of inflammatory markers TNF-α and IL-6 were as-
sessed in the liver tissue of all experimental groups (Figure 2). Ethanol administration
caused a 17.7-fold increase in expression of NF-κB in the liver in the 3 g/kg ethanol group,
and a 25.8-fold increase in expression in the 5 g/kg ethanol group compared to the intact
control group. LPS-RS administration prior to ethanol downregulated the expression of
NF-κB by 3.7 fold in LPS-RS + ethanol (3 g/kg) group and by 3.9 fold in LPS-RS + ethanol
(5 g/kg) group relative to the corresponding unprotected groups (Figure 2A). Levels of
both TNF-α and IL-6 were increased significantly by administration of ethanol (3 g/kg or
5 g/kg) compared to the intact control group. IL-6 levels were significantly higher in the
group that received 5 g/kg ethanol compared to the 3 g/kg ethanol group. Administration
of LPS-RS in both groups caused a significant decrease of the levels of both TNF-α and IL-6
compared to the groups that received ethanol only (Figure 2B,C).
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Figure 2. The effect of LPS-RS (800 µg/kg) on inflammatory markers in the liver tissue of the
experimental rats. (A) the expression of NF-kB, (B) levels of TNF-α and (C) levels of IL-6. NF-κB,
nuclear factor kappa B; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6. Data are expressed as
mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test (n = 8–10).
Differences were considered significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs.
ethanol (3 g/kg); d vs. LPS-RS + ethanol (3 g/kg); e vs. ethanol (5 g/kg).
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Liver is the major organ that metabolizes alcohol. The metabolism of alcohol in the
liver leads to production of metabolites and byproducts that impair lipid metabolism and
intensify inflammatory reactions in the liver [19]. The metabolism of alcohol by cytochrome
P450 2E1 in the liver leads to excessive production of reactive oxygen radicals and induction
of endoplasmic reticulum stress [20,21], which in turn deteriorates the lysosomal function
and autophagy and results ultimately in mitochondrial injury and hepatocellular death [22].
Oxidative stress triggers adaptive immune responses in ALD [7]. Alcohol consumption
activates the cluster of differentiation 14 (CD14)/TLR4 pathway which can induce cellular
injury through activation of macrophages and generation of inflammatory mediators
such as IL1β, IL-6 and TNF-α [23,24]. Oxidative stress pathways are suggested to play
an essential role in regulating the production of the cytokines and chemokines that are
activated by the TLR4/NF-κB pathway [22].

TLR4 is a major pathway that induces inflammation TLR4 is expressed mainly in
macrophages and its activation initiates intracellular signaling through phosphorylation
of mitogen-activated protein kinases (MAPKs) and NF-κB, inducing the expression of
inflammatory cytokines such as IL-6 and TNF-α [25,26]. These inflammatory factors
accelerate oxidative stress and decrease the antioxidant capacity of cells through reducing
SOD activity and increasing MDA production [27,28]. Moreover, the decreased antioxidant
enzyme levels may be attributed to their over-consumption in alleviation of the oxidative
stress that is caused by the accelerated inflammation [29].

LPS-RS is a potent TLR4 antagonist that attenuates TLR-4 mediated inflammation [18].
The binding of LPS-RS to the complex of TLR4/myeloid differentiation factor-2 (MD-2),
either in vitro or in vivo, inhibits the nuclear factor kappa B (NF-κB) mediated generation
of inflammatory factors such as TNF-α and IL-6 [30].

In agreement with the results of the current study, LPS-RS was reported to attenuate
inflammation and increase GSH levels and SOD activity in LPS-induced acute lung in-
jury [31]. LPS-RS also modulated the release of cytokines and exerted analgesic effect in a
rat neuropathic model through blocking TLR4 expression [32]. Additionally, a recent study
reported that TLR4 inactivation by LPS-RS attenuated chronic inflammation in middle
ear cholesteatoma stem cells, resulting in a significant decrease of TNF-α, IL-6, and IL-1ß
expression [33].

2.3. Effect of LPS-RS on the Expression of Hepcidin in the Liver Tissue and Serum Levels of Iron
and Ferritin

Expression of hepcidin was quantified in the hepatic tissue by real-time PCR. Ad-
ministration of ethanol (3 g/kg and 5 g/kg) decreased the expression of hepcidin by 2.9
and 5 fold, respectively, in comparison to the intact control group. LPS-RS administration
in both groups significantly upregulated its expression relative to the corresponding un-
protected group. Notably, the upregulation of hepcidin was more effective in the LPS-RS
+ ethanol (3 g/kg), where the expression of hepcidin showed no significant difference
compared to the normal control group (Figure 3A).

Serum levels of iron and ferritin were also determined. A significant increase in their
levels was recorded in both the ethanol administered groups (3 and 5 g/kg) compared to
the intact control group, with the levels of iron in the 5 g/kg ethanol group significantly
higher than those in the 3 g/kg ethanol group. Serum levels of iron and ferritin were
reduced significantly in the two groups that received LPS-RS prior to ethanol (Figure 3B,C)
(Figure 3).

Hepcidin is a liver-synthesized hormone that acts to regulate iron. Inflammation,
erythropoiesis, and iron modulate the expression of hepcidin [34]. The oxidative stress
created by alcohol consumption inhibits the promoter activity and transcription of hepcidin
in the hepatocytes, causing accumulation of iron in the liver [35]. Alcohol inhibits hepcidin
expression through suppression of CCAAT-enhancer-binding protein in hepatocytes and
counteracting its induction by iron [36]. Alcohol was also postulated to suppress hepcidin
expression through stimulating TLR4 signaling and NF-кB in the presence of inflammation



Molecules 2021, 26, 7437 6 of 16

in the liver. Interestingly, alcohol could not suppress hepcidin expression in mice with
defective TLR4 receptor [37,38], which agrees with the findings of the current study.
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Another major player in iron storage and transport is ferritin; which is produced in
the liver by hepatocytes, Kupffer cells, and macrophages [39]. Ferritin is a marker of iron
bioavailability and its synthesis is induced by high iron levels. Ferritin also serves as an
acute phase reactant as the proinflammatory cytokines IL-1 and TNF-α increase its hepatic
synthesis [40,41]. Excessive hepatic stores of iron, caused by excessive alcohol consump-
tion, may cause oxidative stress-induced damage and promote hepatic fibrosis [42,43].
Excessive ferritin binds to specific receptors on hepatic stellate cells leading to increased
hepatic collagen deposition [44], and activation of NF-κB, that promotes synthesis of in-
flammatory mediators [45]. In the current study, LPS-RS administration before ethanol
provided protection against the ethanol-induced abnormalities in the levels of those iron
homeostasis parameters.
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2.4. Effect of LPS-RS on Markers of Inflammation and Kidney Injury in the Renal Tissue

Ethanol administration caused a significant increase of the inflammatory markers in
the kidney tissue (Figure 4) Expression of NF-κB was upregulated by 15.5 fold and 21.4 fold
in the 3 g/kg and 5 g/kg ethanol groups, respectively, compared to the intact control group.
LPS-RS administration prior to 3 g/kg and 5 g/kg ethanol downregulated the expression
of NF-κB by 4 fold and by 4.7 fold, respectively (Figure 4A). Level of TNF-α in kidney
tissue was also significantly increased in both groups that received ethanol only compared
to the intact control group, and was significantly decreased in the groups that received a
protective dose of LPS-RS compared to the unprotected groups (Figure 4B).
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Figure 4. The effect of LPS-RS (800 µg/kg) on inflammatory markers in the kidney tissue of the experimental rats. (A) the
expression of NF-kB, and (B) levels of TNF-α. NF-κB, nuclear factor kappa B; TNF-α, tumor necrosis factor-alpha. Data are
expressed as mean± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test (n = 8–10). Differences
were considered significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs. ethanol (3 g/kg); d vs. LPS-RS +
ethanol (3 g/kg); e vs. ethanol (5 g/kg).

Chronic administration of ethanol promotes hyperacetylation of mitochondrial pro-
teins and increases oxidative stress in the kidneys, resulting in metabolic dysregulation,
and impaired renal function [46]. The TLR4/NF-kB signaling pathway is a significant
mediator of inflammation and fibrosis in renal injury [47]. TLR4 is expressed in several
renal cells, including endothelial cells, tubular epithelial cell, podocytes, and mesangial
cells. The transcription of various chemokines and pro-inflammatory cytokines is regulated
by TLR4 signaling, leading to renal inflammation [48,49]. The levels of pro-inflammatory
mediators such as TNF-α in renal parenchymal cells are increased through activation of
the p38 MAPK pathways by TLR4 signaling [50]. Targeting TLR4 and its downstream
mediators may represent an effective approach to alleviate renal inflammation and subse-
quent kidney injury [48]. Matching with our results, TLR4/NF-κB pathway inhibition and
regulation of oxidative stress were previously reported to attenuate other experimental
models of nephrotoxicity [51,52].

Additionally, Markers of tissue injury were determined in the kidney tissue in the
current work. Kidney injury molecule-1 (KIM-1), vascular non-inflammatory molecule-1
(vanin-1) and cytochrome C (Cyt C) were all increased significantly by administration of
ethanol (3 and 5 g/kg). Levels of vanin-1 and Cyt C in the 5 g/kg ethanol group were
significantly higher than their levels in the 3 g/kg ethanol group. LPS-RS administration in
both groups caused a significant decrease in the levels of the three markers compared to
the groups that did not receive LPS-RS (Figure 5).

KIM-1 is considered as an early biomarker in cases of acute kidney injury [53], and
is a sensitive biomarker for chronic kidney disease [54]. KIM-1 promotes production of
proinflammatory chemokines [55], and activates macrophage activation through the MAPK
signaling pathway in kidney. This is consistent with the increased circulating levels of the
macrophage inflammatory markers, such as IL-6 and TNF-α [56].
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Figure 5. The effect of LPS-RS (800 µg/kg) on the levels of biochemical markers of kidney injury.
(A) KIM-1, (B) Vanin-1 and (C) Cyt C in kidney tissue of the experimental rats. KIM-1, kidney
injury molecule-1; Vanin-1, vascular non-inflammatory molecule-1; Cyt C, cytochrome C. Data are
expressed as mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc
test (n = 8–10). Differences were considered significantly different at p < 0.05. a vs. intact control; b vs.
LPS-RS; c vs. ethanol (3 g/kg); d vs. LPS-RS + ethanol (3 g/kg); e vs. ethanol (5 g/kg).

Vanin-1 is a protein that is highly expressed in various organs, including the kid-
ney, intestine, and liver [57]. Many studies have recently elucidated its association with
inflammation and oxidative stress both in physiological and pathophysiological condi-
tions [58,59]. In agreement with our results, increased vanin-1 levels and expression were
reported in several models of induced renal toxicity in experimental animals, suggesting a
potential role as a biomarker of renal injury [59]. Increased levels of vanin-1 along with
upregulated p38 MAPK and NF-kB were detected in mice with severe renal inflammation
and fibrosis [60].

Cyt C is a mitochondrial protein that is released from damaged cells into the extracel-
lular space. Cyt C indicates death of cells and its release indicates mitochondrial damage
that is associated with cellular apoptosis and/or necrosis [61]. Cyt C has been suggested
as a non-invasive biomarker of xenobiotics-induced renal injury [62]. Extracellular Cyt
C was hypothesized to interact with the TLR4 in human astrocytes inducing release of
inflammatory cytokines [63]. In a model of diabetic mice, blockage of TLR4 was reported
to reverse the increased renal expression of Cyt C [64], which supports the results of the
current work.
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2.5. Histopathological Examination of the Liver and Kidney Tissues

Histopathological examination of both the liver and the kidney tissues showed nor-
mal structure in both the intact control group and the group that received LPS-RS only
(Figures 6 and 7). The liver tissue in the group that received 3 g/kg ethanol showed di-
lation in the central vein combined with fibrosis and inflammatory cells infiltration. The
group that received 5 g/kg ethanol showed congestion in the portal vein with fibrosis and
inflammatory cells infiltration. Diffuse Kupffer cells proliferation as well as diffuse inflam-
matory cells infiltration were observed between the hepatocytes. The pathological changes
were attenuated by administration of LPS-RS, especially in the LPS-RS + ethanol (3 g/kg)
group that showed almost normal structure (Figure 6). Hepatic fibrosis and inflammation
in both LPS treated groups were significantly decreased. Inflammation and fibrosis score of
the group that received LPS-RS + ethanol (3 g/kg) was not significantly different compared
to the intact control group (Figure 6G,H).
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Figure 6. Histopathological sections of rats’ liver stained with hematoxylin and eosin (H&E) (40×). (A) intact control group
and (B) LPS-RS group; showing intact superficial layer, normal population and orientation of hepatocytes, (C) rats receiving
ethanol (3 g/kg); dilation was observed in the central vein associated with inflammatory cells infiltration (INF) and fibrosis
(black arrows) in the portal area, (D) LPS-RS + ethanol (3 g/kg) group; showing almost normal histopathological structure,
(E) rats receiving ethanol (5 g/kg); the portal area showed congestion in the portal vein with fibrosis (black arrow) and few
inflammatory cells infiltration (INF), diffuse Kupffer cells proliferation as well as diffuse inflammatory cells infiltration
(INF) were detected in between the hepatocytes, (F) LPS-RS + ethanol (5 g/kg) group; dilation and congestion were detected
in the central veins with few inflammatory cells infiltration (INF) in the portal area, (G) Inflammation score, and (H) fibrosis
score. Scores are expressed as mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test
(n = 8–10). Differences were considered significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs. ethanol
(3 g/kg); d vs. LPS-RS + ethanol (3 g/kg); e vs. ethanol (5 g/kg).
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Figure 7. Histopathological sections of rats’ kidney stained with hematoxylin and eosin (H&E) (40×). (A) intact control
group and (B) LPS-RS group; showing intact superficial layer, normal population and orientation of nephrocytes, (C) rats
receiving ethanol (3 g/kg); showing coagulative necrosis (black star) in the lining epithelium of some individual tubules
at the cortex, (D) LPS-RS + ethanol (3 g/kg) group; showing normal histopathological structure in kidney tissue, (E) rats
receiving ethanol (5 g/kg); showing coagulative necrosis (black stars) in the lining epithelial cells of some individual tubules,
(F) LPS-RS + ethanol (5 g/kg) group; showing almost normal histopathological structure, (G) Tubular injury score. The
score is represented as mean ± SD and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test (n = 8–10).
Differences were considered significantly different at p < 0.05. a vs. intact control; b vs. LPS-RS; c vs. ethanol (3 g/kg); d vs.
LPS-RS + ethanol (3 g/kg); e vs. ethanol (5 g/kg).

Similarly, histopathological examination of the kidney tissue demonstrated coagula-
tive necrosis in the lining epithelium of some individual tubules at the cortex in both groups
that received ethanol only. These effects were diminished in both groups that received
LPS-RS prior to ethanol (Figure 7). Tubular injury score in both groups that received LPS
was significantly lower than the unprotected groups. Decreased tubular injury was mostly
pronounced in the LPS-RS + ethanol (3 g/kg) group (Figure 7G).

3. Materials and Methods
3.1. Experimental Animals

The current study was conducted on 60 male albino rats (180–200 g weight). The
experimental rats were obtained from the Egyptian Organization for Biological Products
and Vaccines (Cairo, Egypt), and kept in the animal house of Faculty of Pharmacy, Cairo
University under experimentally optimized conditions (i.e., 25 ± 4 ◦C temperature and
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normal light/dark cycle) with free access to food and water ad libitum. The animals were
kept for a week before the experiment to acclimatize. The study protocol has been approved
by the research ethics committee at Faculty of Pharmacy, Suez Canal University, Ismailia,
Egypt (Ethics code: code 201912RA3) in agreement with the Guidelines of Canadian
Council on Animal Care.

3.2. Study Design

The experimental rats were divided randomly into six groups (10 rats each) as follows:
Group I: The intact control group; received 2.5 mL/kg of the phosphate-buffered

saline (PBS) vehicle intraperitoneally (i.p.).
Group II: Rats received a daily 800 µg/kg i.p. dose of LPS-RS.
Group III: Rats received ethanol (70% w/v) daily at a dose of 3 g/kg via intra-gastric

gavage [65].
Group IV: LPS-RS + ethanol (3 g/kg); received a daily 800 µg/kg i.p. dose of LPS-RS

30 min prior to intra-gastric administration of 3 g/kg ethanol [66].
Group V: Rats received ethanol (70% w/v) daily at a dose of 5 g/kg through intra-

gastric gavage [67].
Group VI: LPS-RS + ethanol (5 g/kg); similar to group III; 800 µg/kg LPS-RS were

administered i.p. before the daily intra-gastric dose of ethanol (5 g/kg) for 28 days.
Ethanol and LPS-RS were acquired from Sigma-Aldrich (Darmstadt, Germany). LPS-

RS was dissolved in PBS vehicle. Ethanol and LPS-RS were administered daily for 28 con-
secutive days. The volume of injected ethanol was calculated based on the density of 70%
ethanol at 20 ◦C (≈0.880 g/mL) as determined by the manufacturer, where 3 g/kg ethanol
= 3.4 mL/kg, and 5 g/kg = 5.7 mL/kg.

3.3. Collection of Samples

After the last day of treatment; rats were fasted overnight, then anesthetized by
thiopental sodium (50 mg/kg). Blood samples were collected from the retro-orbital plexus
and centrifuged at 3000 rpm for 15 min for serum separation. Sera were stored at −20 ◦C
for biochemical measurements.

Anesthetized rats were euthanized by cervical dislocation. Liver and kidney were
isolated from each rat and washed with ice cold saline. The liver and kidney tissues
of each rat were divided into two portions; the first was fixed in 10% neutral formalin
for further histopathological processing, and the other portion was kept at −80 ◦C for
further assessments.

3.4. Determination of Liver and Kidney Function Markers in Serum

The levels of the liver enzymes ALT, AST, and ALP were measured in the serum
samples by colorimetric commercial kits (Ref. No. 264002, 260002 and 216001, respectively)
(Spectrum Diagnostics, Cairo, Egypt). The serum levels of the kidney function parameters
creatinine and BUN were also detected using colorimetric assay kits (Ref. No. 235001 and
318001, respectively) (Spectrum Diagnostics, Cairo, Egypt). Levels of iron in serum were
determined by colorimetric kit (Cat. No. IR1510) (Bio-diagnostics, Giza, Egypt). Serum
levels of ferritin were assayed by ELISA (Cat. No. ab157732) (Abcam, Cambridge, UK).

3.5. Assessment of Markers of Oxidative Stress and Inflammation in the Liver Tissue

Liver tissue was homogenized with ice cold saline. The homogenate of the liver
was divided into three aliquots. The first aliquot was deproteinized with ice cold 12%
trichloroacetic acid (TCA) followed by centrifugation at 4000 rpm for 15 min at 4 ◦C. GSH
was detected in the resulting supernatant by a colorimetric kit (GR2511) (Bio-diagnostics,
Egypt). The second aliquot was used to prepare a cytosolic fraction of the liver by centrifu-
gation at 12,000 rpm for 15 min at 4 ◦C. The clear supernatant representing the cytosolic
fraction was used for measurement of malondialdehyde (MDA), catalase, and superoxide
dismutase (SOD) by colorimetric methods (Cat. No. MD2529, CA2517 and SD2521, respec-
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tively) (Bio-diagnostics, Giza, Egypt). The third aliquot was centrifuged at 4000 rpm for
15 min at 4 ◦C. Resulting supernatant was used to determine TNF-α and IL-6 levels in the
liver tissue by ELISA (Cat. No. MBS2507393 and MBS175908, respectively) (MyBioSource,
San Diego, CA, USA), according to the manufacturer’s protocol.

3.6. Quantitative Assessment of the Expression of Nuclear Factor Kappa B (NF-κB) and Hepcidin
by Quantitative Real-Time PCR

Total RNA was extracted from portions of the frozen liver and kidney tissues by
the RNeasy mini kit (Cat. No. 217004) (Qiagen, Hilden, Germany). Isolated RNA was
converted into cDNA by the High-Capacity cDNA Reverse Transcription Kit (Cat. No.
4368814) (Applied Biosystems, Waltham, MA, USA). Real-time PCR was conducted to
assess the hepcidin expression in liver tissue and the NF-κB expression in both liver
and kidney tissues. The 20 µL reaction mixture consisted of 2 µL of the cDNA template
(≈50 ng), 1 µL of each of the forward and the reverse primers (200 nM), 6 µL of nuclease
free water, and 10 µL of the SYBR Green PCR Master Mix (Cat. No. 4309155) (Applied
Biosystems, Waltham, MA, USA). The primers used for determination of the expression
of NF-κB were: 5′-AATTGCCCCGGCAT-3′ (forward) and 5′-TCCCGTAACCGCGTA-
3′ (reverse) [68]. The primers used for determination of hepcidin expression were: 5′-
TGTCTCCTGCTTCTCCTCCT-3′ (forward) and 5′-CTCTGTAGTCTGTCTCATCTGTTG-3′

(reverse) [69]. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an
endogenous control using the following primers: 5′-ATGACTCTACCCACGGCAAG-3′

(forward) and 5′-GATCTCGCTCCTGGAAGATG-3′ (reverse) [70]. The real time PCR re-
action was conducted in a StepOnePlus thermal cycler (Applied Biosystems, Waltham,
MA, USA). Cycling conditions involved initial denaturation at 95 ◦C for 10 min followed
by 40 cycles of: denaturation at 95 ◦C for 30 s, annealing at 55 ◦C (NF-κB)/60 ◦C (hep-
cidin)/56 ◦C (GAPDH) for 30 s, and extension at 72 ◦C for 30 s. The PCR cycle was ended
by final extension at 72 ◦C for 5 min. The cycle threshold (Ct) was recorded for each sample;
∆Ct and the fold change were calculated.

3.7. Determination of Markers of Renal Inflammation and Injury in the Kidney Tissue

The stored kidney tissues were homogenized with ice cold saline. The homogenate
was centrifuged at 4000 rpm for 15 min. Resulting supernatant was used to determine
the levels of: TNF-α, KIM-1, vanin-1 and Cyt C by ELISA (MBS2507393, MBS355395,
MBS9139552 and MBS727663, respectively) (MyBioSource, San Diego, CA, USA), according
to the manufacturer’s instructions.

3.8. Histopathological Examination of the Liver and the Kidney

Sections from the liver and kidney of rats from different groups were fixed in 10%
formalin saline for 24 h. Sections were then washed with tap water followed by serial
dilutions of alcohol, cleared in xylene and embedded in paraffin to form blocks. A total of
56 blocks were prepared and sectioned at a thickness of 4 µm by sledge microtome. The
tissue sections were collected on glass slides, deparaffinized with xylene, and stained by
hematoxylin and eosin (H&E) for examination by an electric light microscope (Olympus,
Shinjuku City, Tokyo, Japan). Histopathological scoring of hepatic inflammation and
fibrosis were performed by an expert pathologist using METAVIR scoring [71]. In renal
tissue, tubular injury score was determined based on the percentage of tubules with evident
cell necrosis, loss of brush border, cast formation, and tubule dilatation, as follows: 0 = none,
1 = ≤10%, 2 = 11–25%, 3 = 26–45%, 4 = 46–75%, and 5 = ≥76% [72].

3.9. Statistical Analysis

Data were expressed as mean ± standard deviation (SD). Statistical analysis was
performed by GraphPad Prism software (version 6.0). Values of the determined parameters
in different groups were compared by one-way analysis of variance (ANOVA) followed
by Bonferroni’s post-hoc test for multiple comparisons. All the reported p values were
two-tailed and the differences were considered significant at p < 0.05.
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4. Conclusions

To conclude, the findings of the current study suggest a protective role of LPS-RS,
a potent TLR4 antagonist, against the hepatotoxicity and renal toxicity induced by both
moderate and high doses of ethanol in experimental rats. To the best of our knowledge,
this is the first study to report a protective effect of LPS-RS against ethanol induced toxicity
in both liver and kidney. The effects of LPS-RS were executed through enhancement of
the anti-oxidant capacity and attenuation of TLR4 downstream induction of inflammatory
mediators. Additionally, LPS-RS helped to maintain iron homeostasis in the liver.
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